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This paper deals with the clearance capabilities of mobile robots in rough
terrain. A way of using kinematic reconfigurability is proposed to allow the
crossing of obstacle that would normally be impossible by choosing a configu-

ration that will guaranty static equilibrium. The control uses force control on
the legs and try to decrease the internal forces needed to insure stability.
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1. Introduction

There is an increasing need for autonomous vehicles to navigate through ex-

tremely rough terrain. From military applications to planetary exploration,

robots will have to cross more different type of terrains, including large

obstacles. Researchers have worked on mechanical design1,2 to improve the

clearance capabilities of autonomous vehicles, and on control algorithms3–5

to optimize friction forces. Others6,7 have worked on kinematically recon-

figurable systems to improve the tipover stability of the robot. This paper

proposes a way to use kinematic reconfigurability of the 4 wheels mobile

robot HyLoS 2 to optimize contact forces with respect to non slippage

constraints and tipover stability constraints during large obstacle crossing.

First, the quasi-static model of the system is described, the forces distribu-

tion problem under non-slippage constraint is formulated and the ability for

the robot to cross an obstacle in a given configuration is analyzed. Then,

a way of finding a configuration in which the robot is able to cross the

obstacle which minimizes the forces needed to guaranty static equilibrium

is presented. The algorithm is evaluated in simulation.
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2. Quasi-static model of the HyLoS 2

The HyLoS 2 (Fig. 1 and Fig. 2) is composed of a chassis of mass m sus-

tained by four legs, each having a wheel at its end. The legs have two

revolute joints along the lateral axis (y), allowing them to apply a force in

the sagittal plane (x, z), a revolute joint for the wheel direction and a last

one for the wheel actuation. It is assumed that the contacts between the

wheels and the ground are contact points with friction and that no moment

is transmitted through them.

The quasi-static model of the system is given by:

Gfc = Fd (1)

where fc[12×1] is the vector of contact forces expressed in the global frame

ℜo(O,x0,y0, z0), Fd[6×1] is the vector containing the desired equivalent

forces (fd) and moment (md) on the center of mass, and G6×12 is the

transformation matrix which give the equivalent wrench at the center of

mass of the robot of the contact forces:

G =

[

I3×3 ... I3×3

p̃1 ... p̃4

]

(2)

where p̃k is the skew symmetric matrix of the cross-product associated to

the vector of the kth contact point’s position expressed in ℜc(C,x0,y0, z0)

where C is the center of mass of the robot.

The contact forces fc solution of (1) must satisfy the non-slippage con-

ditions given by the Coulomb friction model and guaranty positive normal

forces. These constraints are given for the kth contact point by:

fnk
> 0

µ2f2
nk

> f2
tk

(3)

where fnk
is the component of the contact force normal to the contact plane

of the kth wheel, and ftk
is the component tangential to the contact plane

for the same wheel.

As this paper is only interested in frontal obstacle crossing, the move-

ment will be in the sagittal plane. A two dimensional half car model in the

sagittal plane is considered. It has 2 wheels in contact with the ground and

it is assumed that the contact forces along the lateral axis are null. G is

then a [3 × 4] matrix, fc is a [4 × 1] vector and Fd is a [3 × 1] vector. The

contact constraints are then given by:

fnk
> 0

µfnk
− ftk

> 0

−µfnk
− ftk

< 0

(4)
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Fig. 1. The HyLoS 2 Fig. 2. HyLoS 2 crossing a step

3. Contact forces optimization

The contact forces are decomposed in 2 terms: fc = f0 + fi. The first term

(f0) is the solution of (1) which give the two contact forces parallel to

the resultant force (fd). As long as the two contact forces have the same

direction (f01
= bf02

with b > 0), this solution is the one minimizing the

sum of contact forces’ norms. The second term fi corresponds to the internal

forces, solution of the constraint Gfi = 0.

The problem now becomes: find the internal forces which respect the

contact constraints (4).

The internal forces for a two contact points system are described by two

opposite forces whose norms are equal and of direction along the line that

joins the contact points:8

fi1 = fiui1

fi2 = fiui2

(5)

where fi1 and fi2 are the internal forces applied on the rear wheel (index 1)

and front wheel (index 2), fi is the amplitude of the contact forces. ui1 and

ui2 are the vectors giving the direction of the internal forces (ui1 = −ui2).

uik is expressed in the contact frame as:

uik =

[

uink

uitk

]

(6)

where uink
is the normal component of the internal force and uitk

is its

tangential component.
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The contact force applied at the kth contact point and expressed in the

contact frame is:

fc =

[

fnk

ftk

]

(7)

then the relation fck
= f0k

+ fik gives:

fnk
= f0nk

+ fiuink

ftk
= f0tk

+ fiuitk

(8)

The constraints (4) can now be expressed as bounds on the internal

forces norm:

fiuink
> −f0nk

fi(µuink
− uitk

) > −(f0nk
− f0tk

)

fi(µuink
+ uitk

) < −(f0nk
+ f0tk

)

(9)

Depending on the terms of uik , each of these six constraints can lead to a

lower or an upper bound on fi. These bounds are called bj with j ∈ [1, 6],

let U {j / fi < bj} be the set of index giving upper bounds and L {j /

fi > bj} the set of index giving lower bounds. The internal force’s norm

must then be within the range [blow, bup] where blow = maxj∈L(bj) and

bup = minj∈U (bj). If the upper bound is lower than the lower bound, it is

impossible for the robot to satisfy all the constraints, it can not be in static

equilibrium with its posture.

As energy consumption is critical for rovers, the internal forces which

have the lowest possible norm given the constraints are chosen.

4. Influence of the posture on the equilibrium

Let a posture be defined by X, Z, and Φ. X and Z are the horizontal and

vertical position of C expressed in ℜd(D,x0,y0, z0) where D is the center

of the segment joining the two contact points. Φ is the orientation of the

chassis around y0. In the case where fd = mg is along the vertical axis,

each bounds of the internal forces can be expressed as function of X only

such as:

bj = ajX + cj (10)

So, according to (10), the range [blow, bup] can be changed by modifying the

posture of the robot.

The following presents an analysis of the bounds blow and bup with 2

different postures for a step crossing. The angle between the ground and the

horizontal is 0 on the rear wheel and π/2 on the front wheel. The coefficient
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of friction is µ = 0.6. The bounds are plotted as function of θa, the angle

between the line joining the contact points and the horizontal. The bounds

are plotted on Fig. 3 for a nominal posture and on Fig. 4 for a posture

where the chassis is moved backward.

The results show that before θa reach 0.32, the robot can not achieve

static equilibrium with a nominal posture but he can if his chassis is moved

backward. On the other hand, the robot with the modified posture will

fall for θa greater than 0.52 when he would have remained stable with the

nominal posture.

The conclusion of these results is that it is not always possible to find a

fixed posture allowing the robot to cross a given obstacle. The robot must

adapt his posture during the motion across the obstacle.
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Fig. 3. upper and lower bound for a
step crossing with a nominal posture
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Fig. 4. with the chassis moved back-
ward

5. Control law with posture optimization

The goal of the control law presented here is to find a posture that guaranty

static equilibrium under the assumption that only the gravity is applied on

the robot. As for the internal forces, the chosen posture must minimize the

contact forces. The search for this posture is illustrated on Fig. 5. As the

bounds are affine functions of X, the postures where the bounds are at a

local minimum are the intersection points between the bounds or between

the bounds and zero. To find the horizontal position of the center of mass

Xd which minimize the contact forces, we must first filter out the infeasible

points, ie the points where blow > bsup, and choose the posture with the

minimum needed force among the remaining points.
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Fig. 5. internal force bounds

The quasi-static model is solved as described before, fd is set to com-

pensate gravity and to seek the desired posture:

fd = mg + ma (11)

where m is the mass of the robot, g is the gravity acceleration and a is the

desired acceleration of the center of mass allowing the posture correction

as:

a = [Kp(X − Xd) + KcẊ]x0 (12)

The control torques are then calculated using the Jacobian matrix:

τ = JT (fc + fp) (13)

The control scheme is showed in Fig. 6.

Fig. 6. Simulation control scheme
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6. Simulation results

The control law exposed before is evaluated in simulation using the physics

engine Bullet. Two situations are simulated. For each of them, a comparison

of the results obtained with and without the posture optimization is made.

Without it, the robot’s posture is fixed.

The first situation concerns a step crossing (contact angle of π/2 on the

front wheel). The ratio between the tangential and the normal forces needed

to achieve static equilibrium are shown on Fig. 7. If the robot doesn’t use

the posture optimization, this ratio is greater than the friction coefficient

of 0.8, the robot can not cross the obstacle because the wheels are slipping.

The horizontal position X of the robot with the posture optimization is

plotted on Fig. 9.

The second situation is the crossing of an obstacle with a 1.2 radian angle

between the ground and the horizontal on the front wheel. The goal of this

simulation is to show the effect of kinematic reconfiguration on an obstacle

that can be crossed without it. As showed on Fig. 8, the internal forces

needed to achieve static equilibrium are lower with the posture optimization

than without.

7. Discussion and conclusion

This paper presented a way of using reconfigurability to enhance the cross-

ing capability of the robot. The first result is that this control law allows

the crossing of difficult obstacles such as steps higher than the wheel’s di-

ameter. Furthermore, the reconfiguration reduces the internal forces needed

to cross an obstacle. The simulated example shows that a 20% reduction of

these forces can be achieved.

An other way of using kinematic reconfigurability could be to increase

the robustness of the stability during the obstacle crossing. Further work

will concern the implementation of the control law on the physical proto-

type.
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Fig. 8. internal force’s norm during an
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0 1000 2000 3000 4000 5000 6000
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

simulation time (ms)

ho
riz

on
ta

l p
os

iti
on

 o
f t

he
 c

en
te

r 
of

 m
as

s 
(m

)
Fig. 9. horizontal position of the center
of mass of the robot (X) during a step
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0 500 1000 1500 2000 2500 3000 3500 4000
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

simulation time (ms)

ho
riz

on
ta

l p
os

iti
on

 o
f t

he
 c

en
te

r 
of

 m
as

s 
(m

)
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