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Abstract One of the key problems of motor control is the
redundancy problem, in particular how the CNS chooses an
action out of infinitely many possible. A promising way to
address this question is to assume that the choice is made
based on optimization of a certain cost function. A number
of cost functions have been proposed in the literature to ex-
plain performance in different motor tasks: from force shar-
ing in grasping to path planning in walking. However the
problem of uniqueness of the cost function(s) was not ad-
dressed until recently. In the current paper we analyze two
methods of finding additive cost functions in inverse opti-
mization problems with linear constraints, so-called linear-
additive inverse optimization problems. These methods are
based on the Uniqueness Theorem for inverse optimization
problems that we proved recently (Terekhov et al 2010).
Using synthetic data we show that both methods allow for
determining the cost function. We analyze the influence of
noise on the both methods. At the end we show how a viola-
tion of the conditions of the Uniqueness Theorem may lead
to incorrect solutions of the inverse optimization problem.
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1 Introduction

The problem of motor redundancy, emphasized by Bernstein
(1967), remains one of the central in the current motor con-
trol and biomechanical studies. One can say that the prob-
lem consists in understanding how the human motor sys-
tem benefits from the redundant degrees of freedom it pos-
sesses. The fact that humans tend to perform the same motor
task in very similar manner suggests that the performance
is optimal in some sense. In other words, among all possi-
ble movements satisfying constraints and goals of a motor
task, humans prefer those that minimize a certain cost func-
tion. Starting from a pioneering study by (Nubar and Con-
tini 1961) this view gained its popularity. It is interesting to
mention that the authors suggested as a possible cost func-
tion used by the central controller minimization of a ‘mus-
cular effort’, the sum of squared values of muscle moments
of force.

The above view of the problem of human movement
control has been adopted in a variety of studies. Among
them are the control of arm reaching (Biess et al 2007; Cruse
et al 1990; Engelbrecht 2001; Flash and Hogan 1985; Plam-
ondon et al 1993; Tsirakos et al 1997; Hoff and Arbib 1993;
Harris and Wolpert 1998; Uno et al 1989; Ben-Itzhak and
Karniel 2008; Plamondon et al 1993; Berret et al 2008),
walking (Anderson and Pandy 2003; Prilutsky 2000; Pri-
lutsky and Zatsiorsky 2002; Pham et al 2007; De Groote
et al 2009), standing (Guigon 2010; Martin et al 2006; Kuo
and Zajac 1993), finger manipulation (Zatsiorsky et al 2002;
Pataky et al 2004; Friedman and Flash 2009; Lee and Zhang
2005; Niu et al 2009; Aoki et al 2006; Pataky 2005; O’Sullivan
et al 2009; Crevecoeur et al 2010) and especially force shar-
ing among the agonist muscles (Crowninshield and Brand
1981; Binding et al 2000; Ding et al 2000; Collins 1995;
Pandy 2001; Davy and Audu 1987; Prilutsky and Gregory
2000; van Bolhuis and Gielen 1999; Buchanan and Shreeve
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1996; Fagg et al 2002; Happee and der Helm 1995; Kauf-
man et al 1991; van Dieën and Kingma 2005; Hughes et al
1994; Nussbaum et al 1995; Herzog and Leonard 1991; Pri-
lutsky et al 1997; Schappacher-Tilp et al 2009; Ait-Haddou
et al 2000, 2004; Amarantini et al 2010; Challis 1997; Dul
et al 1984b,a; Heintz and Gutierrez-Farewik 2007; Herzog
1987; Menegaldo et al 2006; Pedersen et al 1987; Pierce and
Li 2005; Prilutsky et al 1998; Raikova 2000; Raikova and
Aladjov 2002; Hughes and Chaffin 1995; Seth and Pandy
2007; van den Bogert 1994; Vilimek 2007; Zheng et al 1998;
Vigouroux et al 2007; Czaplicki et al 2006; Anderson and
Pandy 1999; Kuzelicki et al 2005). In these studies the re-
searches usually agree on the constraints and the goals of a
particular movement, which are often determined by the task
itself and the biomechanics of the human body. On the con-
trary, the consensus on the employed cost function is very
rare. The cost functions have usually been proposed based
on the intuition of the researcher and common sense.

Adopting the optimization-based view of the motor con-
trol has led to new mathematical problem, namely the identi-
fication of the cost function based on the experimental data.
It can be called the problem of inverse optimization, where
the word ‘inverse’ means that the problem is opposite to the
common optimization: here the optimal solution is known
(recorded movement characteristics), whereas the cost func-
tion is not. The problem is usually regarded for a set of
known constraints and a set of solutions, i.e. experimental
data corresponding to the actually performed movements.
Most commonly this problem is approached in ‘cut-and-try’
manner: the researcher guesses what the CNS (central ner-
vous system) might optimize in a particular situation and
then validates the guess by comparing predictions of the
model with the available experimental data.

In the last years few more systematic approaches to the
problem were proposed (Bottasso et al 2006; Mombaur et al
2010; Liu et al 2005). Similar problem was addressed in the
domain of reinforcement learning (Abbeel and Ng 2004). In
both cases the cost function in inverse optimization or the
reward function in inverse reinforcement learning was as-
sumed to belong to a known parametrized class. If so, the
problem of the inverse optimization can be reduced to find-
ing values of parameters, for which the discrepancies be-
tween the experimental data and the cost function-based pre-
dictions are minimal. Such approach is an evident step for-
ward if compared to the simple ‘cut-and-try’. However, the
proposed methods do not address the question of whether
the cost function can be determined uniquely.

To emphasize the importance of this question we pro-
pose the following mental experiment. A subject performs
the four-finger pressing task with the requirement of mak-
ing the total pressing force equal to a target value Ft . As-
sume that the performance is ideal, i.e. it is optimal and is
not subjected to noise of any nature. Moreover, assume that

the sharing pattern (percentage of the total force produced
by individual fingers) is the same for all values of the target
force and hence the individual finger forces Fi, i = 1 . . .4,
satisfy the equations:

F1

a1
=

F2

a2
=

F3

a3
=

F4

a4
= Ft , (1)

where ai are the parameters of the force sharing pattern.
The observed force sharing pattern might arise as a so-

lution of the optimization problem:

J(F1,F2,F3,F4)→min

subject to a constraint

F1 +F2 +F3 +F4 = Ft

and inequality constraints, reflecting the fact that the finger
forces cannot be negative and must stay within the range of
physiologically possible values.

Now we would like to determine the cost function J,
whose minimization would result in the observed sharing
profile (1). It appears that there exist infinitely many essen-
tially different cost functions, satisfying this requirement.
For example, one can verify that the functions

J(F1,F2,F3,F4) =
4

∑
i=1

1
ai
(Fi)

2

and

J(F1,F2,F3,F4) =
4

∑
i=1

1
a2

i
|Fi|3

both can explain the sharing patterns with equal success.
Moreover, for any increasing continuously differentiable func-
tion g, the cost function

J(F1,F2,F3,F4) =
4

∑
i=1

ai g
(

Fi

ai

)
can do that as well.

For given example there exist infinitely many essentially
different cost functions explaining the same experimental
data. We would like to note that our mental example is not
completely artificial. In fact, as it has been shown by Niu
et al (2009) for prismatic grasps, the normal finger forces
tend to scale linearly with the weight of the grasped object,
while the force sharing pattern remains relatively unchanged
(in this study the subjects held a vertically oriented object at
rest and the required moment of force was zero).

Clearly, any method of solving inverse optimization prob-
lems would at most result in one of the infinity of the pos-
sible cost functions if applied to the data of our mental ex-
periment. Such a ‘solution’ can hardly be accepted in motor
control or biomechanical studies. Indeed, it follows, in par-
ticular, that two different methods applied to the same data
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set may result in significantly different cost functions. As a
result, one can expect that for the same motor action var-
ious researches would propose a variety of cost functions,
each of them being equally good in explaining experimental
data. Such a situation was reported for force sharing problem
(Collins 1995; Buchanan and Shreeve 1996; van Bolhuis
and Gielen 1999), for finger force distribution in prismatic
grasping (Zatsiorsky et al 2002) and for trajectory planning
in reaching task (Plamondon et al 1993) as well as for some
other tasks. On the other hand, the same method, when ap-
plied to the data sets from different motor tasks, could result
in different cost functions, even if the CNS uses the same
one for all the tasks.

These considerations illustrate the necessity of formu-
lating the conditions, under which the inverse optimization
problem can be solved unambiguously. Recently, we ob-
tained such conditions for inverse optimization problems with
additive cost function and linear constraints (Terekhov et al
2010). Such an optimization problem consists in minimiza-
tion of a cost function of the kind

J(x) =
n

∑
i=1

fi(xi)→min (2)

subject to linear constraints:

Cx = b, (3)

where x is an n-dimensional vector, fi are scalar functions,
C is a (k×n) matrix of constraints and b is a k-dimensional
vector.

In (Terekhov et al 2010) we presented some results of
theoretical analysis of the inverse optimization problem (2),
(3), the most significant of which was Uniqueness Theorem.
This theorem gives some conditions, under which the in-
verse optimization problem can be solved unambiguously.
A summary of the results of (Terekhov et al 2010) is pro-
vided in the following section. Essentially, the Uniqueness
Theorem states that the solution of the inverse optimization
problem is unique if optimal solutions are available for ev-
ery vector b from a domain of the k-dimensional space. This
means that if a problem has k linear constraints then in order
to find the cost function from experimental recordings the
values of all constraints must be varied independently in the
experiment.

The conditions of the Uniqueness Theorem are formu-
lated for an ideal situation: when infinitely many experimen-
tal observations are available (every possible b from a do-
main) and those observations are not subjected to any noise
(precise values of x are assumed to be available). Clearly,
such situation can never happen in practical applications.
However, as we show in this paper, the obtained conditions
of uniqueness do not lose their value because of that.

The current paper has three following goals: (1) to pro-
pose methods of finding an approximation of a cost function

given a limited set of noisy experimental data, which re-
lies on the uniqueness conditions reported in (Terekhov et al
2010); (2) to illustrate the fact that these conditions indeed
guarantee unambiguous identification of the cost function
even in practical situations; and (3)to show that violation of
the above conditions may lead to an incorrect solution of the
inverse optimization problem.

The paper has the following structure. We, first, give a
short summary of the theoretical results from (Terekhov et al
2010) obtained for the inverse optimization problems (2),
(3). Then we propose two methods of solving such prob-
lems and compare their efficiency. We illustrate applicability
of the methods by analyzing synthetic data. We show that,
as long as the uniqueness conditions are satisfied, the meth-
ods result in a unique solution. More precisely, we show that
if two different parametric classes are used to find two ap-
proximations of the same cost function from experimental
data, then these two approximations are close even if their
symbolic representations are significantly different. Next we
illustrate that violation of each of the conditions of Unique-
ness Theorem from (Terekhov et al 2010) may lead to an
erroneous solution of the inverse optimization problem.

2 Theoretical Considerations

Common sense guides us to conclude that the problem of in-
verse optimization can never be solved uniquely: if a func-
tion J explains given experimental data, so does the func-
tion f (J), where f is any strictly increasing function. The
cost function can be only determined up to the class of es-
sentially similar cost functions: two functions are said to
be essentially similar if under any possible constraints the
same values of the arguments bring global minima to both
of them.

Consider, for example two cost functions:

J1(x) =
n

∑
i=1

x2
i

and

J2(x) =

√
n

∑
i=1

x2
i .

Evidently, whatever are the constraints, the vector x is a so-
lution of optimization problem with J1 if and only if it min-
imizes J2. In other words, with respect to the optimization
problems the essentially similar cost functions are indistin-
guishable. Thus, one cannot expect to solve inverse opti-
mization problem better than up to the class of essentially
similar functions unless additional assumptions are made on
the cost function.

The solutions of the optimization problem (2), (3) for a
set of different vectors b form a subset X∗ of Rn. Every point
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of this set is optimal under the constraints with some value b
and, consequently, at each point the Lagrange principle must
hold. Here and on we assume the function J to be analytic.

The Lagrange principle. For every x∗ ∈ X∗ the function J
from (2) satisfies the equation:

ČJ′(x∗) = 0, (4)

where J′ =
(
J′x1

, . . . ,J′xn

)T (prime symbol denotes derivative
over the variable),

Č = I−CT (CCT )−1
C (5)

and I is the n×n unit matrix.
The Lagrange principle gives the condition (4), which

must be satisfied by the true cost function, i.e. the function
which produced the experimental data given the constraints.
In other words, it gives necessary condition for a cost func-
tion J to be the true one. It appears, that in some cases this
necessary condition is also sufficient. The latter is formal-
ized in the Uniqueness Theorem.

The Uniqueness Theorem. If two nonlinear functions J1(x)
and J2(x) defined on a domain X inside n dimensional space
satisfy the Lagrange principle for every point x in the set X∗

with the constraints matrix C and

1. J1 and J2 are additive,

2. X∗ is a smooth k-dimensional hypersurface,

3. the number of constraints k is greater or equal to 2,

4. the matrix Č defined in (5) cannot be made block-diagonal
by simultaneous reordering of the rows and columns with
the same indices1,

then

J1(x) = rJ2(x)+qTCx+ const, (6)

for every x inside the hyper-parallelepiped X∗0 surrounding
the hypersurface X∗. The hyper-parallelepiped is defined as
follows: X∗0 = {x | for every i exists x̃ in X∗ : xi = x̃i}; r is
a non-zero scalar value and q is an arbitrary k-dimensional
vector.

The proofs of these statements can be found in (Terekhov
et al 2010).

In other words, the Uniqueness Theorem defines condi-
tions, under which the inverse optimization problem can be
solved almost unambiguously. Indeed, it states that if one
has a solution of the inverse optimization problem, J1(x),

1 such constraints are called non-splittable (Terekhov et al 2010).

then the true cost function J2(x) is essentially similar to
J1(x) up to unknown linear terms qTCx.

These terms appear because the values qTCx are prede-
fined by the constraints (3) and are equal to qT b. Resolv-
ing this unambiguity requires additional experimental data,
obtained under the conditions with different constraint ma-
trices. More precisely, if L additional experimental points
x1, . . .xL belonging to the hyper-parallelepiped X∗0 are avail-
able, each of them obtained under the constraints with the
matrix C`, `= 1, . . . ,L, and if the matrix

Č0 =


Č
Č1
...

ČL

 (7)

has the rank equal to n, then the vector q in (6) can be deter-
mined unambiguously.

The Uniqueness Theorem requires that the solutions form
a k-dimensional hypersurface, which assumes that they are
known for an infinite number of vectors b in (3). This re-
quirement can never be met in practice, and, hence, the cost
function can never be determined precisely. It can be only
approximated; the approximation may be close to the true
cost function.

3 Methods

A typical approach to numerical approximation of a func-
tion may consist in defining ad hoc a set of basis functions
and then to find the coordinates of the desired function in
this basis. For example, if polynomial functions are chosen
as basis, one obtains Taylor’s decomposition of a function.
If trigonometric functions serve as basis then the decom-
position is called Fourier decomposition. The choice of the
basis functions is biased to prior expectations of the prop-
erties of the desired function. In general, the basis consists
of an infinite number of basis functions (for polynomials it
can be: 1, x, x2, x3, etc.), however in practical applications
we can obtain only an approximation of the desired function
and consequently we can consider a finite number of basis
functions.

The assumption of additivity of the cost function allows
one to use scalar functions of scalar arguments as basis for
each component fi of the desired cost function (2). For sim-
plicity of notations we assume that the basis functions are
the same for each component. This assumption can be eas-
ily removed.

A general form of the approximation of the cost function
(2) is given by the formula:

Ja(x1, . . . ,xn) =
n

∑
i=1

m

∑
j=1

ai jh j(xi), (8)
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where m is the number of basis functions and h j is the j-
th cost function. In other words, we use a weighted sum
of the basis functions h j(xi) to approximate the true cost
function. The approximation is then defined by the weights
ai j. In general, the parameters of the approximation (here
weights) are not obliged to occur linearly in the approxima-
tion. However, as it is shown below, the chosen form of the
approximation significantly facilitates the solution of the in-
verse optimization problem.

As it was noted above, for a fixed constraints matrix C
the solution of the inverse optimization problem can be de-
termined only up to linear terms. This fact makes the linear
functions play a special role in finding the cost functions.
Here and on we assume that the first basis function is always
identity:

h1(xi) = xi. (9)

In addition, we never include constant function into the basis
because the inverse optimization problem can only be solved
up to the class of essentially similar cost functions.

Now we can formulate the inverse optimization problem
that we are addressing:

Given a finite set of solutions X∗ = {x∗s}N
s=1 of the op-

timization problem with additive cost function (2), and lin-
ear constraints (3), find coefficients of the best approxima-
tion (8) of the true cost function (2). The set of solutions is
assumed to be obtained for N different vectors b from (3),
such that the linear space spanned over all b has dimension
k. Here and on the set of solutions {x∗s}N

s=1 is also called
‘experimental data’.

The words ‘the best approximation’ require additional
explanation. It is clear that the best approximation is the
one which is the closest to the true cost function. However,
since the true cost function is unknown such measure is in-
accessible. We use two criteria of what can be considered as
‘the best approximation’. Each of them produces a method
of finding the approximation (described in the ensuing sec-
tions).

We would like to emphasize that each of the following
methods is applicable only when conditions of the Unique-
ness Theorem are satisfied, in particular, when the experi-
mental data points tend to lie on a k-dimensional surface.

3.1 Method of nested optimization (NOP).

We borrowed the first method from the work of Bottasso
et al (2006). Evidently, if the approximation of the cost func-
tion equals the true cost function, then it must be minimized
by the experimental values x∗s. If the approximation deviates
from the true function, or if the values x∗s are not known pre-
cisely, then it is minimized by some other values xs, which

in general are different from x∗s. However, if the deviation
is small, the difference between xs and x∗s can be expected
to be small as well. We can use the distance between xs and
x∗s as the first criterion of the quality of the approximation.
The method then consists in solving the following nested
optimization problem.

The outer problem

SI(a11, · · · ,anm) =
N

∑
s=1
‖xs− x∗s‖2→min (10)

searches for the parameters of the cost function approxima-
tion a11, . . . ,anm, which minimize the discrepancy between
the experimental observations x∗s and model predictions xs.

The inner optimization problem determines the model
predictions xs for the given parameters of the approximation:

Ja(xs
1, . . . ,x

s
n)→min, s = 1, . . . ,N,

subject to the experimental constraints, which in this case
are linear:

Cxs =Cxs∗, s = 1, . . . ,N. (11)

The presented nested optimization problem is compu-
tationally very expensive because for every iteration of the
outer minimization it requires solving N inner optimization
problems. Bottasso et al (2006) proposed to transform this
nested optimization problem into single optimization prob-
lem of higher dimension by substituting the inner optimiza-
tion problem with necessary conditions of optimality from
the Lagrange principle. In our case of linear constraints and
additive cost function the latter can be done rather easily.

The inner optimization problem can be replaced with the
equation from the Lagrange principle:

ČJ′a(x
s) = 0, s = 1, . . . ,N (12)

where Č is defined in (5) and

J′a(x
s) =

∑
m
j=1 a1 jh′j(x1)

...
∑

m
j=1 an jh′j(xn)

 . (13)

As a result the nested optimization problem transforms into
a single optimization problem with the cost function (10)
and constraints (11), (12).

3.2 Method derived from analytical inverse optimization
results (ANIO)

The second criterion is directly based on the analytical find-
ings presented in (Terekhov et al 2010). According to the
Lagrange principle for inverse optimization if a cost func-
tion Ja reaches its minimum at a point xs then the equation
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(12) must be satisfied. In ideal case, we might determine the
coefficients a by resolving this equation on the experimen-
tal data. However, since the latter usually contain noise, this
equation may be inconsistent. Instead, we can demand the
equation to be satisfied as well as possible meaning that the
solution minimizes the following function:

SII(a11, . . . ,anm) =
N

∑
s=1
‖ČJ′a(x

∗s)‖2→min, (14)

where J′(x∗s) is defined in (13).

3.3 Regularization of the methods.

It must be noted that both methods in the form they are
currently formulated have infinitely many solutions with re-
spect to the coefficients ai j, among which there are two cases,
which must be avoided: (i) when all ai j are equal to zero and
(ii) when only ai1 do not vanish, i.e. the approximation is a
linear function of xi. Both cases must be avoided, because
they violate conditions of the Uniqueness Theorem. In order
to make the methods applicable, they must be regularized, so
that the singular cases are excluded and there exists unique
solution for the problem.

In order to avoid the singular cases we demand that the
coefficients ai j, j = 2, . . . ,m (i.e. coefficients of non-linear
functions h j), do not vanish simultaneously. To ensure that
the problem has a unique solution we exclude two sources of
ambiguity. The first one comes from the fact that the inverse
optimization problem can only be solved up to the class of
essentially similar cost functions. As a result, multiplying all
coefficients ai j by the same value r does not influence solu-
tion of the problem. In order to eliminate this source of am-
biguity and to prevent all coefficients in front of non-linear
basis functions from vanishing we introduce rather arbitrary
normalizing constraints on all ai j, j = 2, . . . ,m:

n

∑
i=1

m

∑
j=2

ai j = 1. (15)

Here we choose the normalizing constraints to be linear,
instead of traditionally used quadratic constraints, because
linear constraints are easier to satisfy when solving corre-
sponding optimization problem.

The other source of ambiguity is related to the presence
of unknown linear terms in the equation (6). As a conse-
quence, replacing the coefficients of the linear terms a1 =

(a11, . . . ,an1)
T with a1 +CT q, q ∈ Rk, does not cause any

changes neither in minimized functions (10), (14), nor in
constraints (12). In order to avoid this ambiguity we require
the vector a1 to be the shortest among all a1 +CT q. This
requirement corresponds to the equation:(
I−Č

)
a1 = 0. (16)

Indeed, for every vector a1 we can define a unique vector
q0, which corresponds to the shortest vector among all a1 +

CT q:

q0 = arg min
q∈Rk

(
a1 +CT q

)T (
a1 +CT q

)
.

The solution q0 can be found analytically:

q0 =−(CCT )−1Ca1.

In turn, the shortest vector

a1 +CT q0 = a1−CT (CCT )−1Ca1 = Ča1,

and, consequently, the requirement of the vector a1 to be the
shortest among all a1 +CT q yields (16).

3.4 About the numeric implementation of the methods.

The presented methods require minimization of the criteria
(10) or (14) subject to constraints. In both cases the mini-
mized criteria are quadratic: in NOP it is quadratic with re-
spect to the model solutions xs, while in ANIO it is quadratic
with respect to the parameters of the approximation ai j. The
NOP minimizes the function (10), which depends on n×m
parameters of approximation and n×N values of the model
solutions xs. The function is minimized subject to k×N lin-
ear constraints (11), (n− k)×N nonlinear constraints (12)
and common for both problems linear regularization con-
straints (15) and (16) of total rank k+ 1. We do not see an
easy way to solve this optimization problem and cannot pro-
pose at the moment anything better then to use general meth-
ods of optimization for finding its solution. In particular, we
used Matlab function fmincon. To facilitate the computa-
tions we provided a Jacobian matrix of the function (10).
In our computations we used the experimental values of x∗s

as initial values of xs and random numbers between −1 and
1 as initial values for the coefficients a11, . . . ,anm. The mini-
mization was performed 10 times and then the solution with
the smallest value of SI was selected.

The ANIO minimizes the function (14) of n×m param-
eters of approximation only. Just like NOP it is subject to
k+ 1 regularization constraints (15) and (16). The fact that
the cost function is quadratic and the constraint equations
are linear allows to find the solution of the problem analyti-
cally. Particular formulae are presented in Appendix.

For better stability of the methods it is preferred if the
experimental data are normalized, so that they have zero
mean and unit standard deviation. We used this normaliza-
tion when determined the approximations from noisy exper-
imental data in Section 4.3. All plots and cost functions in
the paper are presented in the original scale of the experi-
mental data.
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4 Computational Experiments

The aims of the current section are: to demonstrate the fact
that the methods can correctly find the approximation of
the cost functions if the inverse optimization problem satis-
fies the conditions of the Uniqueness Theorem; to show that
unique approximation is impossible if any of the Unique-
ness Theorem conditions is violated; to compare the per-
formance of the proposed methods. For these purposes we
build a synthetic optimization problem, for which we know
the cost function (‘true cost function’) and can produce as
much experimental data as we need. We will apply NOP
and ANIO methods to the synthetic experimental data and
compare the approximations with the true cost function.

4.1 Synthetic inverse optimization problem

Here we formulate the synthetic inverse optimization prob-
lem, used hereafter. We choose the cost function to be addi-
tive, as it is required by the first condition of the Uniqueness
Theorem. For simplicity of notation and illustration we re-
strict ourselves to the three-dimensional case. We have cho-
sen the following cost function:

J(x1,x2,x3) = f1(x1)+ f2(x2)+ f3(x3), (17)

where

f1(x1) = ex1/2

f2(x2) = (1− x2)
2

f3(x3) =
x4

3
1+x2

3

(18)

When choosing the cost function we required that the
function should be convex and sufficiently simple compu-
tationally, but at the same time that it could not be approxi-
mated by finite number of most typical basis functions: poly-
nomials.

4.1.1 Main set of experimental data

For the selected cost function we must provide a set of syn-
thetic experimental points, e.g. the solutions of the optimiza-
tion problem for a set of constraint. We impose the following
constraints:

x1 + x2 + x3 = b1
x1− x3 = b2

(19)

If the values x1,x2,x3 were the forces of three digits,
these constraints would correspond to predefined total force
of the digits and total moment with respect to the point of
the second digit placement. However, we prefer not to fo-
cus on any particular interpretation of the synthetic inverse
optimization problem we construct.

2
4

6
4

6

8

2

4

6

8

Fig. 1 The surface of solutions of the synthetic optimization problem
(17), (19). The nodes of the lattice correspond to the optimal solutions,
the edges are added exclusively for illustrative purpose.

The readers can verify that the matrix Č of the con-
straints (19) cannot be made block diagonal by simultane-
ous reordering rows and columns with the same indices, i.e.
the problem is non-splittable. The rank of matrix equals 2,
and consequently the conditions 3 and 4 of the Uniqueness
Theorem are satisfied.

The values b1 and b2 in (19) vary independently in the
range 10 ≤ b1 ≤ 20, −5 ≤ b2 ≤ 5 with the step size equal
to 1. Corresponding solutions of the optimization problem
(17), (19) are presented in Fig. 1. It can be clearly seen
that the solutions tend to form a two dimensional surface,
which allows us to assume that the second condition of the
Uniqueness Theorem is satisfied. On the whole, the experi-
mental data count 121 points in 3d space. The set, in which
the inverse optimization problem can be solved, lies inside
the minimal parallelepiped enclosing the experimental sur-
face and whose facets are parallel to the coordinate planes.
For the presented data the parallelepiped is defined as X∗0 =

(0.5;7.9)× (3.3;9.1)× (0.8;9.2)

4.1.2 Experimental data for determining linear terms

Presented experimental data are sufficient for finding an ap-
proximation of the cost function inside X∗0 , but only up to
unknown linear terms (see details in formulation of Unique-
ness Theorem). In order to determine the linear terms one
must provide experimental data, lying inside the parallelepiped
X∗0 , but obtained under new constraints, such that joint ma-
trix Č0 defined in (7) has full rank.
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We assume that in addition to solutions of the optimiza-
tion problem (17), (19), few data points obtained under the
constraints

x1 +2x2 + x3 = b3 (20)

are available. The value b3 varies in the range 12 ≤ b3 ≤
24 with the step equal to 4. This results in 4 data points,
corresponding to solutions of the optimization problem (17),
(20). The range of variation of b3 is chosen in such a way
that the solutions lie inside the parallelepiped X∗0 .

4.2 Approximation of the cost function.

Having sufficient, according to the Uniqueness Theorem,
amount of experimental data we can apply the described
methods and obtain an approximation of the cost function
(17). The first step to do that is to fix the basis functions.
Of course, we might pick the functions f1, f2 and f3 as
basis and then approximation would be precise, however,
this case represents no interest since in real applications the
parametrized class, to which belongs the desired cost func-
tion, is rarely known. We use two sets of basis functions.
The first one, the most natural, in our opinion, is the class of
polynomials. So, we choose:

hp
1(x) = x, hp

2(x) = x2, hp
3(x) = x3, hp

4(x) = x4.

We don’t use higher powers, because, as we show below,
the fourth order polynomials are able to provide very precise
approximation of the desired cost function.

One of our aims is to show that the uniqueness of the
approximation in general does not depend on the choice of
the basis functions. To do that we use the second set of the
basis functions, which we arbitrary pick to be exponential:

he
1(x) = x, he

2(x) = ex/4, he
3(x) = ex/2, he

4(x) = e3x/4.

Here we limit the number of the basis functions for the same
reason as above.

We would like to emphasize, that since linear functions
play a special role in linear-additive inverse optimization
problems (see Uniqueness Theorem for details), we include
them in both sets of basis functions.

We apply NOP and ANIO methods to obtain approxima-
tions of the cost function. We use the following schema: we
first use the experimental data obtained under the constraints
(19) in order to find the approximation containing unknown
linear terms, then apply the same method to determine these
linear terms from the experimental data, obtained under the
constraint (20).

Both methods perform nearly equally good for finding
the approximation of the cost function (17). Here we present
results obtained using ANIO; the results for NOP are indis-
tinguishable.

The result of application of the algorithm is the set of pa-
rameters ap

11, . . . ,a
p
34 and ae

11, . . . ,a
e
34 of polynomial Jp and

exponential Je approximations of the cost function (17):

Jp(x1,x2,x3) =
3

∑
i=1

f p
i (xi) =

3

∑
i=1

4

∑
j=1

ap
i jh

p
j (xi),

Je(x1,x2,x3) =
3

∑
i=1

f e
i (xi) =

3

∑
i=1

4

∑
j=1

ae
i jh

e
j(xi).

As the first test we determine the ability of the approxi-
mations Jp and Je to explain the experimental data, used for
their identification. The distances between the experimental
data and the data points, obtained by minimizing Jp or Je
subject to constraints (19), are very small: the average value
equals 0.02 for polynomial approximation and 0.03 for ex-
ponential, that corresponds to 0.9 % and 1.3 % of standard
deviation of the experimental data, respectively. We would
like to note that absolute coincidence between the experi-
mental and recomputed points is impossible because the cost
function (17) cannot be approximated by finite number of
basis functions.

More interesting would be to compare the approxima-
tions with the true cost function, e.g. f p

i and f e
i with fi. How-

ever, it is not immediately clear how to do it, because the
functions J = f1(x1)+ f2(x2)+ f3(x3) and J = k( f1(x1)+

r1)+ k( f2(x2)+ r2)+ k( f3(x3)+ r3) are essentially similar
and for the optimization problem they are nothing but two
different representations of the same cost function, while if
plotted together these functions look differently.

To make the comparison possible we substitute the ap-
proximation with another function, essentially similar to it,
but at the same time being as close to the true cost function
as possible. More precisely we substitute the functions f p

i (·)
with k( fi(·)+ ri), where the values k, r1, r2, r3 minimize the
difference between the terms of the approximation and the
true cost function, defined as follows:

3

∑
i=1

∫ maxx∗si

minx∗si

(
k f p

i (xi)+ ri− fi(xi)
)2 dx→min . (21)

Similarly for f e
i (·)

The functions f p
i and f e

i after the described linear cor-
rections are presented in Fig. 2. As one can see, they are
nearly indistinguishable from the true functions fi within
the parallelepiped X∗0 , which borders are denoted by dashed
vertical lines in Fig. 2. The latter is not true outside of X∗0 .
Since the experimental data entirely lie within X∗0 we have
no information about the cost function outside of the par-
allelepiped. In other words, changing the cost function (17)
outside of X∗0 would not lead to any change in experimental
data.
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Fig. 2 The true cost functions and two approximations, obtained using ANIO method: polynomial and exponential. Dashed vertical lines denote
minimum and maximum experimental value of the corresponding variable. It can be seen that the approximations fit the true cost functions rather
precisely inside the region, denoted by dashed lines, but not outside of this region.

The approximations Jp, Je of the cost function (17) after
the linear correction are the following:

Jp = 0.02x4
1 − 0.21x3

1 + 1.04x2
1 − 0.85x1 −

0.002x4
2 + 0.03x3

2 + 0.85x2
2 − 1.63x2 +

0.002x4
3 − 0.04x3

3 + 1.31x2
3 − 1.02x3

Je = 0.02e3x1/4 + 0.11ex1/2 + 2.62ex1/4 − 0.74x1 +

0.01e3x2/4 − 0.52ex2/2 + 10.07ex2/4 − 2.30x2 +

0.02e3x3/4 − 0.76ex3/2 + 12.79ex3/4 − 2.49x3

When written down, the approximations Jp and Je do
not resemble at all neither the true cost function J, nor each
other. At the same time, they approximate the true cost func-
tion (17) very precisely.

In addition, it can be seen that in the polynomial approx-
imation, the coefficients for the 3rd and 4th powers of x2
are non-zero, even though the true cost function depends on
x2 as the second order polynomial. Similarly, we would ex-
pect that in f e

1 all coefficients except for the one in front
of ex1/2, would vanish. We think that this inconsistency is
observed because in inverse optimization problems one can-
not approximate particular component of the cost function,
but instead approximates it as a whole. It happens because
all components are tightly interdependent through the equa-
tion (4) of the Lagrange principle. Consequently, deviating
in one component may lead to better consistency of the cost
function as a whole. To confirm this we determine the func-
tions f p

1 and f p
3 under the assumption that f p

2 equals f2. We
performed forward optimization for such approximation and
compared the solutions under the constraints (19) with the
experimental data. The average distance in this case was ap-
proximately 50% larger than in case when no assumptions
are made about f p

2 .
The ANIO method is precise in case when the cost func-

tion can be precisely fitted by the basis functions. For ex-
ample, when the cost function is polynomial, say, of the

2nd order, and the basis functions are polynomials up to
the 4th order, the method is capable to find precise values
of the coefficients. In particular, in the approximation, like
in the original function, all coefficients in front of the 3rd
and 4th order polynomials are zero. This property reflects
the fact that ANIO method has a unique minimum, which in
this case coincides with the true solution. In opposite, NOP
method usually has a big number of local minima and thus
there is no guarantee that it will converge to the precise so-
lution.

4.3 Comparison of the methods

As we have shown in the previous section, the proposed
methods could produce rather precise approximation of the
cost function using the experimental data. The analysis was
performed in an ideal case, when the experimental observa-
tions were not subjected to noise of any nature. In applica-
tions such situation is impossible, and in addition to purely
theoretical applicability of the methods we would like to an-
alyze their performance in more relevant case, when experi-
mental observations are noisy. Thereby two questions arise:
how the precision of the approximation depends on the level
of noise in the data and which of the proposed methods
shows higher robustness to the noise.

In the analysis we use the synthetic optimization prob-
lem with the cost function (17) and two variants of con-
straints: (19) and (20). We add artificially created noise to
the optimal solutions of this problem; the noise has normal
distribution and is independent for each axis (has diagonal
covariation matrix). The standard deviation of the noise is
scaled so that it equals particular percentage of the standard
deviation of the experimental data along the corresponding
axis. The percentage ranges from 0% to 50% with the step
size equal to 2.5%.
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We used polynomial approximations of different order:
2, 3, or 4. To evaluate the methods we use three performance
criteria: (i) the difference between the approximation and
the true cost function, (ii) the ability of the approximation to
explain clean experimental data shown in Fig. 1, and (iii) its
ability to explain data of new tests, presented below.

The difference between the approximation and true cost
function is defined as the sum of normalized distances be-
tween their components:

DIFFERENCE :

√√√√√√√√√
3

∑
i=1

∫ maxx∗si

minx∗si

(
fi(xi)− f p

i (xi)
)2 dxi

3

∑
i=1

∫ maxx∗si

minx∗si

(
f̄i(xi)

)2 dxi

,

where f p
i is the component of the approximation after the

linear correction (see previous section) and f̄i(xi) is the cen-
tered value of fi(xi):

f̄i(xi) = fi(xi)−
1

maxx∗si −minx∗si

∫ minx∗si

minx∗si

fi(s)ds.

The ability of the approximation to explain the clean ex-
perimental data is defined as the average Euclidean distance
between the true data points, presented on Fig. 1, and the
solutions of the optimal problem with the approximation of
the true cost function and constraints (19). The Euclidean
distance is normalized by the standard deviation of the true
experimental data.

For the new data we use a set of new constraints:

1. x1 +2x2 +0.5x3 = 16,
2. x1 +2x2 +1.5x3 = 20,
3. x1 +2x2 + 2x3 = 24,
4. x1 +2x2 +2.5x3 = 30,
5. x1 +2x2 + 3x3 = 36,
6. x1 +2x2 +3.5x3 = 40,
7. x1 +2x2 + 4x3 = 44.

(22)

We choose the values in the right hand of the equations such
that the solutions of the corresponding optimization problem
with the true cost function (17) lie inside the parallelepiped
X∗0 . As the measure of the ability to explain new experimen-
tal data we use normalized average Euclidean distance, like
before. The standard deviations, used in normalization are
still computed for the original data presented in Fig. 1.

The results are presented in Fig. 3. One can see that
the average performance of the methods is more or less the
same. The NOP method becomes rather unstable with the
increase of the noise amplitude (above 20%) that might sig-
nify that the local minima, to which the algorithm converges,
are rather distant from the global ones. We would like to em-
phasize that such behavior is due to the numeric routine used
for solving the NOP optimization problem. If we could al-
ways find globally optimal solution for the NOP problem,

no unstable behavior would be most probably observed. In
contrast, ANIO method always converges to a unique global
minimum and the dependency of the scores presented in
Fig. 3 is rather smooth.

For all scores, the higher order polynomials are prefer-
able in both methods for low level of noise (15% or less).
For more intense noise the error on the constraints (22) occa-
sionally becomes very high, which implies that the approx-
imation does not have minima inside the parallelepiped X∗0 .
The latter is regularly observed for the 4th order approxima-
tion, provided by the ANIO method. Finally, for the noise
level above 15% the error on the new data and the difference
of the cost functions are more or less the same independently
of the order of the approximating polynomials.

4.4 Violating conditions of the Uniqueness Theorem.

In the previous sections we have shown how unknown cost
function can be determined from the experimental data if
the conditions of the Uniqueness Theorem are satisfied. Af-
ter seeing only positive results one might wonder why sat-
isfaction of the Uniqueness Theorem conditions is empha-
sized all over the manuscript. To answer this question we
show how violation of these conditions may lead to non-
uniqueness of solution and consequently to totally incorrect
approximation of the cost function. In all numeric experi-
ments described below we determine polynomial approxi-
mations of the 4th degree, unless specified otherwise.

4.4.1 Violation of additivity.

The first condition of the Uniqueness Theorem is the ad-
ditivity of the desired cost function. Here we show that if
this condition is violated, e.g. the desired cost function is
not necessarily additive, then the experimental data, like pre-
sented in Fig. 1, are insufficient for finding an approximation
of the cost function. To illustrate this fact we use the syn-
thetic inverse optimization problem presented before. We
state that there exist infinitely many non-additive optimiza-
tion functions, whose minimization subject to the constraints
(19) results in the surface presented in Fig. 1.

The surface from Fig. 1 can be defined by a scalar equa-
tion:

ξ (x1,x2,x3) = 0

There exist infinitely many different functions ξ defining
this surface. For example, one of them can be derived from
the Lagrange principle:

ξ (x1,x2,x3) = (Č)11 f ′1(x1)+(Č)12 f ′2(x2)+(Č)13 f ′3(x3),

where (Č)1i denotes the i-th element of the first row of the
matrix Č.
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Fig. 3 Comparison of NOP and ANIO methods performance on noisy experimental data for polynomial approximations of different degree.
Comparison is performed based on the criteria A: the ability of the approximation to predict clean (noiseless) data, from the noisy version of which
it was identified; B: the ability of the approximation to predict brand new data obtained under new constraints; and C: the difference between the
approximation and original cost functions.

Let’s construct a new cost function J̃ of the form:

J̃1(x1,x2,x3) = J(x1,x2,x3)F (ξ (x1,x2,x3))+G(Cx),

where J is the cost function defined in (17), F is an arbitrary
positive scalar function having unique minimum at zero and
G is an arbitrary function taking a 2 dimensional vector as
input and returning a scalar value as output.

We state that under the constraints (19) the constructed
function J̃1 is minimized by the same set of values as the J.
Indeed, the term G(Cx) does not depend on x on the con-
straints (19) and, consequently, does not influence the opti-
mization. Multiplication by the term F does not change the
location of the minima because F is positive and reaches its
minimum only on the surface ξ (x1,x2,x3) = 0, e.g. when

the function J reaches its minima. Consequently, there exist
infinitely many essentially different non-additive cost func-
tions reaching their minima subject to the constraints (19) at
the same points as J.

As a consequence, it is impossible to determine the min-
imized cost function from the experimental data presented
in Fig. 1, unless it is known to be additive. Of course, it does
not mean that it is also impossible for larger amount of ex-
perimental data. Obtaining the conditions of uniqueness for
general optimization problem represents a serious problem
and stays beyond the scope of this study. However we would
like to notice, that the latter would definitely require varia-
tion of the constraints matrix C in addition to their values
b.
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Fig. 4 The two subsets of the original data, to which ANIO method is
applied in order to obtain an approximation of the cost function; stars:
‘diagonals’, circles: ‘edge’.

One can see that though there exist infinitely many es-
sentially different non-additive cost functions explaining the
same set of data, all of them would probably have rather arti-
ficial structure, like the one we presented here. So, we think
that in practical applications in human movement study if
a particular set of experimental data can be explained by an
additive cost function, it gives a rather strong argument in fa-
vor of the hypothesis that the observed behavior is governed
by an additive cost function.

4.4.2 Insufficiency of experimental data

The second condition of the Uniqueness Theorem requires
the solutions of the optimization problem to be known in a
k-dimensional hypersurface, where k is the number of con-
straints in the problem. This condition is violated if the so-
lutions lie in a hypersurface of a smaller dimension. For the
inverse optimization problem (17), (19) to be solved cor-
rectly the hypersurface of solutions must be 2-dimensional
(see Fig. 1). This condition is violated if the solutions lie
on a curve instead of the surface. To analyze how important
this condition is for finding the correct approximation of the
cost function, we perform numerical simulations, in which
we replace the original experimental data with a subset of
it. In particular, we use two different subsets of the original
data, which are illustrated in Fig. 4: (i) the two ‘diagonals’
of the original surface (stars) and (ii) its edge (circles).

Interestingly, for both data sets the approximations de-
termined by ANIO methods are rather close to the original
function. More precisely, the score of the difference between

the cost functions equals 5.0% for the diagonals and 1.7%
for the edge. To check that it does not happen by pure co-
incidence, we performed the same test for a new cost func-
tion derived from the original one by raising each fi(·) into
the second power. For this case we used 7-th order approxi-
mations. The approximations obtained from incomplete data
sets (similar to the ones presented in Fig. 4) were less pre-
cise: 9.5% of error for the diagonals and 7.1% for the edge.

It is clear that when we have only a finite number of
points, the decision whether they form a surface or a curve
is left to the researcher. For example, the data presented in
Fig. 1 can be seen as defining either a surface or 22 curves.
Similarly, we may consider the data presented in Fig. 4 as
defining the surface (but rather poorly) or as defining the
curves. According to the results of the computation, for the
cost function J from (17) the subsets of data from Fig. 4 can
be considered as defining the surface. For another cost func-
tion, produced from J by raising its terms fi into the second
power, the latter does not hold: precise approximation re-
quires more dense coverage of the surface.

4.4.3 The case of single constraint

The third condition of the Uniqueness Theorem requires that
the dimension of constraints must be great or equal 2. This
one may seem strange, however here we show that it is cru-
cial for solving inverse optimization problem.

Let’s assume that the inverse optimization problem con-
sists of minimization of the cost function (17) subject to the
first constraint of (19), e.g.

x1 + x2 + x3 = b1. (23)

The solutions define functions x1(b1), x2(b1) and x3(b1).
Let’s assume that these functions and the functions f1, f2,
f3 are monotonically increasing inside the parallelepiped.
One can verify that is true for the considered example. We
construct a new cost function

J̃3(x1,x2,x3) = g1 ( f1(x1))+g2 ( f2(x2))+g3 ( f3(x3)) , (24)

where

gi(s) =
∫

ϕ(x−1
i ( f−1

i (s)))ds

We state that there exist infinitely many different func-
tions ϕ such that the cost function J̃3 is minimized by the
same values as J under the constraints (23).

The Lagrange principle, applied to the function J and the
constraints (23), yields two equations:

f ′1(x1) =− f ′2(x2) = f ′3(x3), (25)

which must be satisfied on the curve of the experimental data
xi = xi(b1).
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In turn, the cost function J̃3 must satisfy:

g′1( f1(x1)) f ′1(x1) =−g′2( f2(x2)) f ′2(x2) = g′3( f3(x3)) f ′3(x3),

which after substituting expression for gi gives

ϕ(b1) f ′1(x1) =−ϕ(b1) f ′2(x2) = ϕ(b1) f ′3(x3).

Clearly, for any non-zero ϕ(b1) the last equations are
satisfied if and only if the equations (25) hold. As a conse-
quence, ϕ can be always chosen such that the functions J
and J̃3 have the same minima.

ANIO fails when applied to the data produced by the
problem (17), (23). The matrix inversion procedure, required
by the method, cannot be performed because the matrix to
be inverted (see Appendix for details) has zero determinant.
This means in particular, that the problem does not have
unique solution. In opposite, when applying NOP method
it converges to one of the possible solutions, which gives
rather good approximation of the cost function (17). This
finding is rather surprising because, as we have just shown,
the problem may have an infinite number of essentially dif-
ferent solutions and the fact that the algorithm converges to
the true cost function seems rather strange.

It is unclear whether the unexpectedly good performance
of NOP in the considered problem represents a general rule
or it is occasional and can be attributed only to this problem.
In order to investigate this issue we constructed the function
J̃3 as defined in (24) with the function ϕ(s) = s4. Since nec-
essary calculations can be hardly performed analytically, we
computed the values of the functions gi( fi(xi)) and then ap-
proximated each of them with a 5th order polynomial. The
resulting functions are shown in Fig. 5. One can notice that
they are significantly different from the terms of the original
function J.

We produced the experimental data for the function J̃3
minimized under the constraint (23). The obtained solutions
were very close to those computed for the function J. The
average distance was less then 1% of standard deviation for
each coordinate. Next we applied the NOP method to these
new experimental points in order to find the approximation
of the cost function J̃3. Surprisingly, the approximation was
very close to J and not to J̃3, which experimental data we
used to find the approximation. The terms of the functions
J̃3, J and the approximation computed from the experimen-
tal data of J̃3 are given in Fig. 5. This example illustrates
how the function can be determined totally incorrectly if the
dimension of the constraints is equal to one.

4.4.4 Splittable constraints

The last condition of the Uniqueness Theorem requires that
matrix Č cannot be made block-diagonal by simultaneous
swapping rows and columns with the same indices. The con-
straints, satisfying this requirement are called non-splittable

(see (Terekhov et al 2010) for details on splittable optimiza-
tion problems). Here we show that if the constraints are
splittable the cost function cannot be determined correctly.

We use the following constraints:

x1 + x2 + x3 = b1

x1 + x3 = b2
(26)

which differ from those defined in (19) by the sign in the
second equation. For these constraints

Č =
1
2

 1 0 −1
0 0 0
−1 0 1


and it can be made block-diagonal by swapping the first and
the second rows and columns.

For these constraints any cost function of the form

J̃4(x1,x2,x3) = f1(x1)+ψ(x2)+ f3(x3)

has the same solution. Here ψ(·) is an arbitrary mono-
tonically increasing function. This happens, because accord-
ing to the constraints (26) x2 = b1−b2 and, hence, whatever
is the function ψ the value of x2 is the same and does not
influence the values of x1 and x3.

Like in the previous example, ANIO method fails for
the same reason. The NOP method converges to a solution,
which is totally arbitrary and does not resemble f2(·) at all.

5 Discussion

The current paper aimed at three main goals: to propose ap-
plied methods of inverse optimization, based on the theoret-
ical considerations from (Terekhov et al 2010); to confirm
that when the conditions of Theorem of Uniqueness are sat-
isfied the approximations obtained by the methods are close
to the true cost function (i.e. the approximation is unambigu-
ous); and to illustrate how violations of the conditions of
Theorem of Uniqueness may lead to incorrect solution of the
problem, independently of the employed method. The paper
deals with the inverse optimization problems, for which it
can be assumed that the minimized cost function is additive
and the constraints, under which it is minimized, are lin-
ear. For such problems conditions of unambiguous solutions
were proposed and corresponding Uniqueness Theorem was
proved by Terekhov et al (2010).

We presented two methods for solving such inverse op-
timization problems: NOP and ANIO. NOP is based on the
method described in (Bottasso et al 2006), which we modi-
fied in order to account for possible ambiguity in solutions
of inverse optimization problems, reflected in the Unique-
ness Theorem. ANIO is derived directly from the Lagrange
principle for inverse optimization problems and also accounts
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Fig. 5 Approximation of the cost function in case of single dimensional constraint. The NOP method is applied to approximate the modified cost
function J̃3, however the algorithm converges to the approximation, which is closer to the original cost function J given in (17). This example
illustrates importance of the condition of Uniqueness Theorem, according to which the dimension of constraints must be greater or equal to two.

for the possible ambiguity. Hence, both methods significantly
rely on the theoretical results from (Terekhov et al 2010).

When developing the current methods we aimed at two
relatively vast classes of problems arising in human motor
control and biomechanics. The first one includes the prob-
lem of choice of the finger forces in various finger manipu-
lations tasks, like grasping and pressing. In such problems
the number of mechanical constraints is typical less than
the number of degrees of freedom relevant to the task (Zat-
siorsky and Latash 2008). The constraints can be considered
linear as long as the locations of the fingertips are fixed,
like when grasping an object with the prescribed grasping
configuration or when pressing with the fingers at the spec-
ified points. Moreover, we believe that it is reasonable to
assume that the cost function is close to additive with re-
spect to the finger forces. Some primary results of applica-
tion of Uniqueness Theorem to these problems are reported
in (Terekhov et al 2010; Park et al 2010).

Another big class of problems is related to the problem
of muscle force distribution. This problem consists in distri-
bution of the forces among the muscles in such a way that al-
together they produce prescribed torques at the joints. In iso-
metric force production, i.e. when the limb posture is fixed,
the moment arms of the muscles can be considered constant
and consequently the constraints can be considered linear.
It is reasonable to assume that for each individual muscle
there is the cost of its activation and that the total cost func-
tion sums the individual costs. This assumption is made in
the dominant amount of the studies considering this problem
(for example, Crowninshield and Brand 1981; Binding et al
2000; Prilutsky et al 1997; Prilutsky and Zatsiorsky 2002,
etc.).

In order to analyze the performance of the methods we
built a synthetic inverse optimization problem, for which we

knew the true cost function and used this problem to com-
pare the performance of the two methods:

– in the case of precise experimental data we applied the
methods to get approximations of the true cost functions
on the two classes of basis functions: polynomials and
exponential functions;

– we found that both methods could provide very precise
approximations on both classes of basis functions; the
approximations were precise only inside the region, pre-
dicted by the Uniqueness Theorem and diverged outside
of this region (see Fig. 2);

– in the case of noisy experimental data the quality of the
approximation depended a lot on the magnitude of noise
and the order of the approximating polynomials; for suf-
ficiently intense noise the 2nd order polynomial approx-
imation is preferable;

– in general, the ANIO method works more than 300 times
faster and unlike NOP always returns the set of param-
eters, corresponding to the global minimum of its crite-
rion (14).

The performance of both presented in this paper meth-
ods was comparable. However, we would recommend ANIO
for practical use for two main reasons. The first, it is signif-
icantly faster than NOP (by about 300 times) that becomes
important when large sets of data are considered. The sec-
ond, it converges always to the unique global minimum of
its criterion whenever this minimum exists and it fails when
the minimum does not exist. The latter happens when the
conditions of the Uniqueness Theorem are coarsely violated.
In turn, NOP may converge to a local minimum, which is
rather far from the global one, and consequently it may re-
sult in wrong approximation of the true cost function. In fact,
the main advantage of the ANIO method over to the NOP,
is that the optimization problem of the ANIO method can
be approached analytically, unlike NOP, for which we use
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a general algorithm, which does not necessarily converge to
the global optimal solution. It is quite possible that if one
could find a way to solve the NOP problem, this method
would show the better performance than ANIO.

We would like to emphasize that when we used two dif-
ferent classes of basis functions, the symbolic representa-
tions of the approximating functions differed a lot, while
their plots were nearly the same. We think that the latter
property is absolutely necessary to check for any method,
which claims to address the problem of inverse optimiza-
tion.

In addition to the demonstration of the applicability of
the methods when the conditions of the Uniqueness Theo-
rem were satisfied we characterized the importance of these
conditions for correct approximation of the true cost func-
tion:

– if the cost function is not assumed additive then for the
same set of experimental data there exist infinitely many
essentially different non-additive cost functions; how-
ever, the fact that the experimental data can be repro-
duced with the additive cost function may be an argu-
ment in favor of the hypothesis that the true cost function
is additive;

– when the experimental data lie on a curve (or curves)
instead of a surface the error of the approximation be-
comes significant even in absence of noise; the error of
the approximation may become small if the curves cover
the expected surface sufficiently densely;

– if the number of constraints in the inverse optimization
problem equals to one, then there exist infinitely many
additive cost functions explaining the same set of exper-
imental data (which is a curve in this case); for this rea-
son it is very unlikely that any algorithm (not only those
presented in the paper) will converge to the approxima-
tion of the true cost function;

– if the constraints of the optimization problem are split-
table then only some terms of the cost function can be
identified.

It can be seen that not all conditions are equally impor-
tant for applications. The requirement of additivity, though
it is crucial for the theory, in practice can never be insured.
However, if all other conditions of the Uniqueness Theo-
rem are satisfied and the experimental data can be explained
by an additive objective function then one can expect that
the function used by the CNS is additive. Indeed, if a non-
additive function were actually used then it would have a
very specific structure, illustrated in Section 4.4.1, such that
it looked like an additive function on the hypersurface of the
experimental data.

In opposite, the requirements of the constraints matrix to
be non-splittable and to have the rank of 2 or above are very
important. In fact, if these requirements are violated the cor-

rect approximation of the cost function becomes nearly im-
possible. This property is intrinsic to the inverse optimiza-
tion problem and does not depend of the employed method.
The same situation may occur when the experimental data
are available on the set of lower dimension than the rank
of constraints. For example, if in the problem with two con-
straints the experimental data is available on a curve only the
resulting approximation is very likely to be incorrect. How-
ever, if this curve covers a surface sufficiently densely the
proper approximation may be possible.

We would like to emphasize that the class of additive
cost functions, considered in the current study, is signifi-
cantly vaster than it may seem. As soon as the cost function
can be determined only up to essential similarity, any mono-
tonically increasing function of an additive function is also
additive. For example, the functions

J(x1,x2,x3) =
√

x2
1 + x2

2 + x2
3

J(x1,x2,x3) = ex2
1+x2

2+x2
3

J(x1,x2,x3) = x2
1 · x2

2 · x2
3

J(x1,x2,x3) = xx2x3
1

are additive even though they may not look as such at the
first glance. Moreover, the cost function is not obliged to be
additive in the whole range of its variables. It can be addi-
tive for available range of experimental data, but loose this
property when the values of the variables become too large
or small.

In general, it must be understood that the cost function
can be determined only in the range of the variables, for
which experimental data are available. We can only guess
what the behavior of the cost function outside of the avail-
able range is. As it is clearly shown in Fig. 2, the approxima-
tion can be very close to the true cost function in this range,
but deviate a lot elsewhere. Without paying proper attention
to this matter mistakes and misunderstandings may occur.

There is a rather common tendency to assume that the
cost function, used by the CNS, must have ‘nice-looking’
symbolic representation and must contain as few parame-
ters as possible. This tendency is especially evident for the
studies modeling human movements from optimal control
point of view, where the use of quadratic cost functions pre-
vails. However, in the few studies we know (Körding and
Wolpert 2004; Cruse et al 1990), in which identification of
the cost function was performed directly from experimen-
tal data, the resultant cost functions were far from being
‘nice-looking’. We see no reasons why the CNS would pre-
fer ‘nice’ cost functions to ‘ugly’ ones. Moreover, as it is
illustrated in Section 4.2, the same cost function may have
both ‘nice’ and ‘ugly’ symbolic representation. Our prefer-
ence to ‘nice-looking’ functions, biased by the mathemat-
ical tools we use, is not necessary applicable to the CNS.



16 Alexander V. Terekhov, Vladimir M. Zatsiorsky

In our opinion, one of the reasons, why ‘nice’ cost func-
tions are preferred, is in the ambiguity of solutions of the
inverse optimization problems . The requirement of the cost
function to be ‘nice-looking’ and free of parameters intro-
duces additional restrictions on the search space and con-
sequently regularize the problem. We hope that the condi-
tions of uniqueness for inverse optimization problem, ob-
tained in (Terekhov et al 2010) and the methods presented
here will help relaxing the constraint of ‘nice-looking’ func-
tions and will serve as tools for data-based approximation
of the cost function instead of guessing it. Of course, the re-
sults of the approximation require interpretation, which can
be done only be researchers.
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Appendix

Here we present the solution of the minimization problem
corresponding to ANIO method.

We notice that the criterion SII , defined in (14), is quadratic
with respect to the desired coefficients ai j. The minimiza-
tion of SII must be performed subject to regularization con-
straints, which are linear with respect to ai j. This problem
can be solved analytically. To find the solution we rewrite
the expression ČJ′a(x

∗s) in a more convenient form:

(
ČJ′a(x

∗s)
)

q =
n

∑
i=1

Čqi

m

∑
j=1

ai jh′j(x
∗s
i ) =

n

∑
i=1

m

∑
j=1

(
Čqih′j(x

∗s
i )
)

ai j =
nm

∑
r=1

Hs
qrar,

where r is the new index such that r = i+n( j−1),

Hs
qr =

n

∑
i=1

m

∑
j=1

(
Čqih′j(x

∗s
i )
)

and ar = ai j. Consequently,

ČJ′a(x
∗s) = Hsa,

where a is the vector of the coefficients ordered in such a
way that a = (a11, . . . ,a1n, . . . ,am1, . . . ,amn)

T .
Substituting the last expression into the function SII yields:

SII(a) =
N

∑
s=1
‖ČJ′a(x

∗s)‖2 =
N

∑
s=1

aT (Hs)T Hsa,

or, after introducing the matrix H = ∑
N
s=1 (H

s)T Hs,

SII(a) = aT Ha→min . (27)

The function SII must be minimized subject to the regu-
larization constraints (15) and (16), which can be rewritten
in matrix form:

Da = d, (28)

D =

(
01,n 11,n(m−1)

In−Č 0n,n(m−1)

)
, d =

(
1

0n,1

)
,

where 0 and 1 are the matrices of zeros and ones with the
specified dimensions.

Applying the Lagrange principle to resulting linear-quadratic
optimization problem (27), (28) yields:

ĎHa = 0, (29)

where Ď = I−D
(
DDT

)
DT .

If the function H has full rank, then the latter equation
has the rank equal to n(m− 1)− 1 and together with the
constraints (28) introduces nm linear equations on nm coef-
ficients ai j. If the matix H does not have full rank then the
coefficients ai j cannot be determined uniquely and conse-
quently the conditions of the Uniqueness Theorem are vio-
lated.

It is convenient to find the solution using pseudoinverse
matrix. The equations (28), (29) define the system of linear
equations:

Za = z,

where

Z =

(
ĎH
D

)
, z =

(
0nm,1

d

)
.

And since the rank of Z is equal to nm the solution can be
expressed as

a =
(
ZT Z

)−1
ZT z.


