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Abstract

The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing
hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories
suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial
learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the
network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse
topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports
multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion
mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a
functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link
from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive
‘‘insight’’ capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows
how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial
planning, including prospective coding and distance-to-goal correlates.
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Introduction

Spatial cognition requires long-term neural representations of

the spatiotemporal properties of the environment [1]. These

representations are encoded in terms of multimodal descriptions of

the animal-environment interaction during active exploration.

Exploiting these contextual representations (e.g. through reward-

based learning) can produce goal-oriented behavior under

different environmental conditions and across subsequent visits

to the environment. The complexity of the learned neural

representations has to be adapted to the complexity of the spatial

task and, consequently, to the flexibility of the navigation strategies

used to solve it [2,3]. Spatial navigation planning —defined here as

the ability to mentally evaluate alternative sequences of actions to

infer optimal trajectories to a goal— is among the most flexible

navigation strategies [3]. It can enable animals to solve hidden-

goal tasks even in the presence of dynamically blocked pathways

(e.g. detour navigation tasks, [4]). Experimental and theoretical

works have identified three main types of representations suitable

for spatial navigation planning, namely route-based, topological,

and metrical maps [2,3,5–7]. Route-based representations encode

sequences of place-action-place associations independently from

each other, which does not guarantee optimal goal-oriented

behavior (e.g. in terms of capability of either finding the shortest

pathway or solving detour tasks). Topological maps merge routes

into a common goal-independent representation that can be

understood as a graph whose nodes and edges encode spatial

locations and their connectivity relations, respectively [2].

Topological maps provide compact representations that can

generate coarse spatial codes suitable to support navigation

planning in complex environments. Metrics-based maps go

beyond pure topology in the sense they embed the metrical

relations between environmental places and/or cues —i.e. their

distances and angles— within an allocentric (i.e. world centered)

reference frame [5]. Here, we model a spatial memory system that

primarily learns topological maps. In addition, the resultant

representation also encodes directional-related information, allow-

ing some geometrical regularities of the environment to be

captured. The encoding of metric information favors the

computation of novel pathways (e.g. shortcuts) even through

unvisited regions of the environment. In contrast to the qualitative

but operational space code provided by topological maps, metrical

representations form more precise descriptions of the environment

that are available only at specific locations until the environment

has been extensively explored [5]. However, purely metric

representations are prone to errors affecting distance and angle

estimations (e.g. path integration [8]). Behavioral and neurophys-

iological data suggest the coexistence of multiple memory systems

that, by being instrumental in the encoding of routes, topological

maps and metrical information, cooperate to subserve goal-

oriented navigation planning [9].

An important question is how these representations can be

encoded by neural populations within the brain. Similar to other

high-level functions, spatial cognition involves parallel information
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processing mediated by a network of brain structures that interact

to promote effective spatial behavior [3,9–11]. An extensive body

of experimental work has investigated the neural bases of spatial

cognition, and a significant amount of evidence points towards a

prominent role of the hippocampal formation [12]. This limbic

region has been thought to mediate spatial learning functions ever

since location-selective neurons —namely hippocampal place cells

[1], and entorhinal grid cells [13]— and orientation-selective

neurons —namely head-direction cells [14]— were observed by

means of electrophysiological recordings from freely moving rats.

Yet, the role of the hippocampal formation in goal representation

and reward-dependent navigation planning remains unclear [15].

On the one hand, the hippocampus has been proposed to encode

topological-like representations suitable for action sequence

learning [16] (see [15] for a review of models). This hypothesis

mainly relies on the recurrent dynamics generated by the CA3

collaterals of the hippocampus [17]. On the other hand, the

hippocampal space code is likely to be highly redundant and

distributed [18], which does not seem adequate for learning

compact topological representations of high-dimensional spatial

contexts. Also, the experimental evidence for high-level spatial

representations mediated by a network of neocortical areas (e.g.

the posterior parietal cortex [19] and the prefrontal cortex [20])

suggests the existence of an extra-hippocampal action planning

system shared among multiple brain regions [21,22]. The model

presented here relies on the hypothesis of a distributed spatial

cognition system in which the hippocampal formation would

contribute to navigation planning by conveying redundant spatial

representations to higher associative areas, and a cortical network

would elaborate more compact representations of the spatial

context —accounting for motivation-dependent memories, action

cost/risk constraints, and temporal sequences of goal-directed

behavioral responses [23].

Among the cortical areas involved in map building and action

planning, the prefrontal cortex (PFC) is likely to play a central role,

as suggested by anatomical PFC lesion studies showing impaired

navigation planning in rats [24,25] and neuroimaging studies

[26,27]. Also, the anatomo-functional properties of the PFC seem

appropriate to encode multimodal contextual memories that are

not merely based on spatial correlates. The PFC receives direct

projections from sub-cortical structures (e.g. the hippocampus

[28], the thalamus [29], the amygdala [30] and the ventral

tegmental area [31]), and indirect connections from the basal

ganglia through the basal ganglia - thalamocortical loops [32].

These projections convey multidimensional information onto the

PFC, including (but not limited to) emotional and motivational

inputs [33], reward-dependent modulation [34], and action-

related signals [32]. The PFC seems then well suited to (i) process

manifold spatial information [35], (ii) encode the motivational

values associated to spatiotemporal events [15], and (iii) perform

supra-modal decision making [36,37]. Also, the PFC may be

involved in integrating events in the temporal domain at multiple

time scales [38]. Indeed, its recurrent dynamics, regulated by the

modulatory action of dopaminergic afferents, may maintain

patterns of activity over long time scales [39]. Finally, the PFC

is likely to be critical to detecting cross-temporal contingencies,

which is relevant to the temporal organization of behavioral

responses, and to the encoding of retrospective and prospective

memories [38].

This article presents a neurocomputational model of the PFC

columnar organization [40] and focuses on its possible role in

spatial navigation planning. The cortical column model generates

compact topological maps from afferent redundant spatial

representations encoded by the hippocampal place cell activity

patterns as modeled by Sheynikhovich et al. [41]. The model

exploits the multimodal coding property offered by the possibility

to refine the cortical architecture by adding a sublevel to the

column, i.e. the minicolumn. It also exploits the recurrent nature

of the columnar organization to learn multilevel topological maps

accounting for structural regularities of the environment (such as

maze alleys and arms). It shows how specific connectivity

principles regulated by unsupervised Hebbian mechanisms for

synaptic adaptation can mediate the learning of topological neural

representations in the PFC. Then, the model uses the underlying

topological maps to plan goal-directed pathways through a neural

implementation of a simple breadth-first graph search mechanism

called activation diffusion or spreading activation [42–44]. The

activation diffusion process is based on the propagation of a

reward-dependent signal from the goal state through the entire

topological network. This propagation process enables the system

to generate action sequences (i.e. trajectories) from the current

position towards the goal. We show how the modeled anatomo-

functional interaction between the hippocampal formation and the

prefrontal cortex can enable simulated rats to learn detour

navigation tasks such as Tolman & Honzik’s task [4]. The model

presented here aims at shedding some light on the link between

single-cell activity and behavioral responses. We perform a set of

statistical and information theoretical analyses to characterize the

encoding properties of hippocampal and PFC neuronal activity —

in terms of both main correlates (e.g. location, distance-to-goal,

and prospective coding) and functional time course changes. We

interpret and validate the results of these analyses against available

experimental data (e.g. extracellular electrophysiological record-

ings of PFC units).

Materials and Methods

Cortical column model for spatial learning and
navigation planning

Cortical maps consist of local circuits —i.e. the cortical columns

[40]— that share common features in sensory, motor and

associative areas, and thus reflect the modular nature of cortical

Author Summary

We study spatial cognition, a high-level brain function
based upon the ability to elaborate mental representations
of the environment supporting goal-oriented navigation.
Spatial cognition involves parallel information processing
across a distributed network of interrelated brain regions.
Depending on the complexity of the spatial navigation
task, different neural circuits may be primarily involved,
corresponding to different behavioral strategies. Naviga-
tion planning, one of the most flexible strategies, is based
on the ability to prospectively evaluate alternative
sequences of actions in order to infer optimal trajectories
to a goal. The hippocampal formation and the prefrontal
cortex are two neural substrates likely involved in
navigation planning. We adopt a computational modeling
approach to show how the interactions between these
two brain areas may lead to learning of topological
representations suitable to mediate action planning. Our
model suggests plausible neural mechanisms subserving
the cognitive spatial capabilities attributed to rodents. We
provide a functional framework for interpreting the activity
of prefrontal and hippocampal neurons recorded during
navigation tasks. Akin to integrative neuroscience ap-
proaches, we illustrate the link from single unit activity to
behavioral responses while solving spatial learning tasks.

Navigation Planning in a Prefrontal Cortex Model
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organization and function [45]. Cortical columns can be divided

in six main layers including: layer I, which mostly contains axons

and dendrites; layers II-III, called supragranular layers, which are

specialized in cortico-cortical connections to both adjacent and

distant cortical zones; layer IV, which receives sensory inputs from

sub-cortical structures (mainly the thalamus) or from columns of

cortical areas involved in earlier stages of sensory processing; and

layers V–VI, called infragranular layers, which send outputs to sub-

cortical brain areas (e.g. to the striatum and the thalamus)

regulating the ascending information flow through feedback

connections. According to the cytoarchitectonic properties of the

rat medial PFC [32], no layer IV is considered in the model of

cortical column described henceforth. Neuroanatomical findings

(see [45] for a review; see [46,47] for anatomical data on rat PFC)

suggest that columns can be further divided into several

minicolumns, each of which consists of a population of intercon-

nected neurons [48]. Thus, a column can be seen as an ensemble

of interrelated minicolumns receiving inputs from cortical and sub-

cortical areas. It processes these afferent signals and projects the

responses both within and outside the cortical network. This

twofold columnar organization has been suggested to subserve

efficient computation and information processing [45,49]. Several

models have been proposed to study the cortical columnar

architecture, from early theories on cortical organization [50–52]

to recent computational approaches (e.g. the blue brain project

[53]). These models either provide a detailed description of the

intrinsic organization of the column in relation to cytological

properties and cell differentiation or focus on purely functional

aspects of columnar operations.

The approach presented here attempts to relate the columnar

organization to decision making and behavioral responses using a

highly simplified neural architecture which does not account for

cell diversity and biophysical properties of PFC neurons. Fig. 1A

shows an overview of the model architecture based on this notion

of cortical column organization. As aforementioned, the underly-

ing hypothesis is that the PFC network may mediate a

sparsification of the hippocampal place (HP) representation to

encode topological maps and subserve goal-directed action

planning. The model exploits the anatomical excitatory projec-

tions from hippocampus to PFC [28] to convey the redundant HP
state-space representation S to the columnar PFC network, where

a sparse state-action code S|A is learned. Within a column, each

minicolumn becomes selective to a specific state-action pair

(s,a) [ S|A, with actions a [ A representing allocentric motion

directions to perform transitions between two states s,s0 [ S. Each

column is thus composed by a population of minicolumns that

represent all the state-action pairs (s,a1 � � � aN ) [ S|A experi-

enced by the animal at a location s. This architecture is consistent

with data showing that minicolumns inside a column have similar

selectivity properties [54] and that some PFC units encode purely

cue information while others respond to cue-response associations

[55].

The model employs the excitatory collaterals between mini-

columns [45,56] to learn multilevel topological representations.

Egocentric self-motion information (provided by proprioceptive

inputs) biases the selectivity properties of a subpopulation of

columns to capture morphological regularities of the environment.

Unsupervised learning also modulates the recurrent projections

between minicolumns to form forward and reverse associations

between states. During planning, the spreading of a reward signal

from the column selective for the goal through the entire network

mediates the retrieval of goal-directed pathways. Then, a local

competition between minicolumns allows the most appropriate

goal-directed action to be inferred.

The following sections provide a functional description of the

model columnar structure, connectivity and input-output func-

tional properties. A more comprehensive account –including

equations, parameter settings and explanatory figures– can be

found in Supplementary Text S1.

Encoding topological maps by a network of columns.

Every column in the model (Fig. 1B) has a highly simplified

structure consisting of three units s,p,v and of a population of

minicolumns, each of which is composed of two units q and d. The

activity of each of these units (see Supplementary Text S1) represents

the mean firing rate of a population of pyramidal neurons either in

supragranular layers II–III (p,v,q units) or in infragranular layers

V–VI (s,d units).

As exploration proceeds, s neurons become selective to spatial

locations —due to the driving input from hippocampal place cells

(Fig. 1B). In the model, hippocampal representations integrate

visual and self-motion cues, and result in populations of Gaussian-

shaped place fields (see [41,57,58] for detailed accounts). During

spatial learning, at each location visited by the simulated animal,

an unsupervised Hebbian scheme reinforces the projections from

the subset of active place cells to the most active s unit (see

Supplementary Text S1). As a result, the population activity of s
units tends to encode more compact state-space representations

than hippocampal place fields. Note that the unsupervised

learning scheme begins to reinforce afferent connections to s units

only when the place field representation has become stable (i.e.

every place is encoded by a sub-population of place cells, see

Supplementary Text S1 Sec. Spatial learning: encoding topolog-

ical representations).

Within each column one neuron v encodes goal information

related to a specific state, whereas neurons q encode the relation

between actions and goal. Neurones q and v back-propagate the

goal signal through the cortical network and their discharge

correlates to the distance to the goal. Neurones p forward-

propagate the selected path signal (i.e. the planned trajectory) from

a given position towards the goal. Neurones d integrate spatial and

reward-related information and compete for local action selection.

Their activity triggers a motor command tuned to a specific

allocentric motion direction. Inter- and intra-column connectivity

(Fig. 1B, see also Supplementary Text S1) involves plastic and non-

plastic projections, respectively, whose synaptic efficacies are

modeled as scalar weight matrices w [ ½0,1�. Plastic synapses are

randomly initialized to low efficacy values within ½0,0:1�, i.e. the

cortical network starts with weak interconnectivity. As the

simulated animal explores the environment, plastic projections

are modified through unsupervised Hebbian learning to encode

either states or forward and reverse associations between adjacent

states (i.e. environment topology). For instance, whenever the

simulated rat moves from one place to another, collateral

projections wpd and wqv (Fig. 1B) are updated to reflect to

connectedness between the two places.

Navigation planning through activation diffusion of

reward-dependent signals. The simulated animal behaves to

either improve its representation or follow known goal-directed

pathways (see Supplementary Text S1). This exploration-

exploitation trade off is governed by a simple stochastic policy

[58]. During exploration, motivation-dependent signals modulate

the activity of neurons v in layer II-III of the model (Fig. 1B),

which allows specific columns to become selective to reward states.

The reward-related signal transmitted by wm projections simulates

a physiological drive mediated by either dopaminergic neurons in

the ventral tegmental area [34] or the amygdala [33], both sending

synapses to the prefrontal cortex [32]. An activation diffusion

process [52] supports the exploitation of topological information to

Navigation Planning in a Prefrontal Cortex Model
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retrieve optimal trajectories to the goal. The motivation signal

elicits the activity of the v neuron in the column corresponding to

the goal location. This reward-based activity is then back-

propagated through reverse associations mediated by the lateral

projections wqv (Fig. 1B). When the back-propagated goal signal

reaches the column selective for the current position, the

coincidence of s and q activity triggers the discharge of neurons

d . The d activation, in turns, activates the forward propagation of

a goal-directed signal through projections wpd . Since q neurons are

already active, successive discharges of d and p neurons allow the

path signal to spread forward to the goal column. A competitive

winner-take-all scheme, which locally selects the motor action

a [ A associated to the most active neuron d , reads out goal-

directed trajectories.

It is worth mentioning that projections wqv attenuate the back-

propagating activity such that the smaller is the number of

synaptic relays, the stronger is the goal signal received by the q
neurons of the column corresponding to the current location.

Thus, the activation diffusion mechanism produces an exponential

decrease of the intensity of the goal signal that propagates along

the network of columns. Since the receptive fields of the model

columns tend to be evenly distributed over the environment, the

intensity of the goal signal at a given place does correlate with the

distance to the rewarding location. In other words, the columnar

network encodes goal-related metrical information allowing the

shortest pathway to the target to be selected.

Recurrent cortical processing for multilevel topological

mapping. The model can learn hierarchical state-space

representations by employing recurrent projections between

columns [45,56]. As shown in Fig. 1 (but see Supplementary Text

S1 for more details), this multistage processing can simply be

understood in terms of the interaction between two subpopulations

of cortical columns. The first population C1 receives and processes

direct spatial inputs from the hippocampus. The second population

C2 receives already processed state information from neurons

s [ C1, but the dynamics of the neurons s [ C2 is also modified by a

putative proprioceptive signal w, modulating their electrores-

ponsiveness and the synaptic plasticity between neurons s [ C1

and s [ C2. This w signal encodes the probability of sharp motion

direction changes at a particular location. Thus, while moving along

a corridor for instance, the signal remains constant and allows for

the potentiation of synapses between multiple neurons s [ C1 and

one unit s [ C2. At a turning point, the signal w changes its value

which may result in the recruitment of a new C2 column (see

Supplementary Text S1 for implementation details). As a consequence

the selectivity of neurons s [ C2 accounts for the presence of structural

features of the environment such as alleys and corridors. The spatial

resolution of the resultant multilevel representation can then adapt to

the structural complexity of the maze.

The C2 columnar network, which is learned similarly to the C1

network, also supports the activation diffusion mechanism to plan

goal-directed trajectories (Supplementary Text S1). After learning,

collateral projections wvv and wpp allow C2 to modulate the

activity of neurons p,v [ C1 during planning (Fig. 1B).

Spatial learning tasks and statistical analyses
We demonstrate the ability of the model to learn topological

representations and plan goal-oriented trajectories by considering

Figure 1. Overview of the model architecture and connectivity. (A) Model hippocampal place (HP) cells are selective to allocentrically-
encoded positions. The prefrontal cortex (PFC) columnar network takes HP cell activities as input to learn a sparse state-action code S|A reflecting
the topological organization of the environment. The model employs recurrent excitatory collaterals between minicolumns of two subpopulations
(C1 and C2) to implement multilevel spatial processing capturing morphological regularities of the environment. (B) Each model column uses three
units s,p,v and a population of minicolumns, each of which is composed of two units q and d . Neurons s receive inputs from HP cells through wsh

synapses to encode spatial locations. Forward and backward associations between locations are encoded by wpd and wqv connections, respectively,
so that the minicolumn corresponding to the execution of an action in a given place is linked to the place visited after movement. The model uses a
motivational signal conveyed by wvm synapses to encode goal information. The population of neurons d projects to motor output, where a winner-
take-all competition takes place to select actions locally. Collateral projections between columns (wss, wpp, wvv and wqq) together with a
proprioceptive signal w allow the model to implement multilevel spatial processing.
doi:10.1371/journal.pcbi.1002045.g001

Navigation Planning in a Prefrontal Cortex Model

PLoS Computational Biology | www.ploscompbiol.org 4 May 2011 | Volume 7 | Issue 5 | e1002045



a navigation task: the Tolman & Honzik’s detour task. The

behavioral responses of simulated rats are constraint by intersect-

ing alleys, which, in contrast to open field mazes, generate clear

decision points and permit dynamic blocking of goal-directed

pathways.

Tolman & Honzik’s detour task. The classical Tolman &

Honzik’s maze (Fig. 2) consisted of three narrow alleys of different

lengths (Paths 1, 2, and 3) guiding the animals from a starting

location to a feeder location. Tolman & Honzik’s experiment aimed

at corroborating the hypothesis that rodents, while undergoing a

navigation task, can predict the outcomes of alternative goal-

directed trajectories in the presence of dynamically blocked

pathways. We implemented Tolman & Honzik’s experimental

setup within the Webotssimulator. The latter provided a realistic

three dimensional environment where simulated rats could process

visual and proximity information (provided by whisker-like sensors),

as well as self-motion (proprioceptive-like) signals. Simulated rats

were moving at constant speed (15 cm/s). We ran a series of

numerical simulations to emulate the experimental protocol

originally designed by Tolman & Honzik:

The training period lasted 168 trials (that correspond to 14 days

with 12 trials per day), during which the simulated animals could

explore the maze to elaborate topological representations and

learn navigation policies. In the following, we refer to 12 training

trials as a ‘‘day’’ of simulation.

N Day 1. A series of 3 forced runs was carried out in which the

simulated rats were forced to go through P1, P2, and P3

successively. Then, during the remaining 9 trials, the subjects

were allowed to explore the maze freely. At the end of Day 1, a

preference for P1 was expected to be already established [4].

N Day 2 to 14. On each trial, a block was introduced at location A

(Block A, Fig. 2) to induce a choice between P2 and P3. Entrances

to P2 and P3 were also blocked in order to force the animals to go

first to Block A. When the simulated rats reached block A and

returned back to the first intersection, doors were removed and

subjects had to decide between P2 and P3. Every day, 10 runs with

a block at A were mixed with 2 non-successive free runs to

maintain the preference for P1.

The probe test lasted 7 trials (Day 15) with a block at location B

(Block B, Fig. 2) to interrupt the portion of pathway shared by P1

and P2. Animals were forced to decide between P2 and P3 when

returning to the first intersection point. Both training and probe

trials ended when the simulated animal reached the goal, i.e. when

it crossed the entrance to the food box.

To assess the invariance of the model performance with respect

to the size of the environment, we implemented the above

experimental protocol for two different maze scales, 1:1 and 4:1.

We took the dimensions of the simulated mazes so as to maintain

the proportions of Tolman & Honzik’s setup.

We employed a population of 40 simulated rats for each

experimental protocol. We quantified the statistical significance of

the results by means of an ANOVA analysis (Pv0:001 was

considered significant).

Statistical analysis of neural activities. We analyzed the

activity patterns of simulated neurons in relationship to

electrophysiological data. This study aimed at elucidating the

link between cell activity and behavior and it stressed the

importance of relating the time course profile of single cell

discharges to decision-related behavioral responses. This was done

by: (i) characterizing the spatial selectivity properties of single cell

types; (ii) comparing the density —and other correlated measures

such as sparseness and redundancy— of the spatial population

codes learned by simulated animals (we recall that one of the aims

of the cortical column model was to build spatial codes less

redundant than hippocampal place field representations); (iii)

differentiating the coding properties of purely reward-related

neurons (q and v populations) vs. purely spatial units (s
population); (iv) quantifying and comparing the reliability of

neural spatial representations (both at level of single cell and

population code) in terms of information content —i.e. how much

can we infer about either the animal’s position or a particular

phase of the task by observing neural responses only? See

supplementary Text S2, for details on the statistical measures

and parameters employed to perform data analyses.

Besides relating our simulation results to literature experimental

data, we studied the consistency between model neural responses

and a set of PFC electrophysiological recordings from navigating

rats. In these experiments —carried out at S.I. Wiener’s

laboratory; see detailed methods in [59,60]— extracellular

recordings were performed from medial PFC pyramidal cells of

Long-Evans rats solving a spatial memory task. The analysis

presented here investigated whether the coding properties of all

types of neurons in the cortical network model could actually be

observed in the PFC during spatial learning.

Results

Spatial behavior in Tolman & Honzik’s detour task
We first examined the behavioral responses of n~40 simulated

animals solving the 1:1 version of Tolman & Honzik’s task (see

Sec. sec:tolmantask and Fig. 2 for details on the experimental

apparatus and protocol). The qualitative and quantitative results

Figure 2. Spatial navigation tasks used to test the capability of
inferring detours. The Tolman & Honzik’s maze (adapted from [4])
consists of three pathways (Path 1, Path 2 and Path 3) with different
lengths. The original maze fits approximately within a rectangle of
1.2061.55 m. Two blocks can be introduced to prevent animals from
navigating through Path 1 (Block A) or both Path 1 and Path 2 (Block B).
The gate near the second intersection prevents rats from going from
right to left.
doi:10.1371/journal.pcbi.1002045.g002

Navigation Planning in a Prefrontal Cortex Model
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shown on Figs. 3A and B, respectively, demonstrate that the model

reproduced the behavioral observations originally reported by

Tolman & Honzik [4].

During the first 12 training trials (Day 1) the simulated animals

learned the topology of the maze and planned their navigation

trajectories in the absence of blocks A and B. Similar to Tolman &

Honzik’s findings, the model selected the shortest pathway P1

significantly more than alternative paths P2 and P3 (ANOVA,

Pv0:0001; Figs. 3A,B left column).

During the following 156 training trials (Days 2–14), a block at

location A forced the animals to update their topological maps

dynamically, and plan a detour to the goal. The results reported by

Tolman & Honzik provided strong evidence for a preference

for the shortest detour path P2. Consistently, we observed a

significantly larger number of transits through P2 compared to P3

(ANOVA, Pv0:0001; Figs. 3A,B central column).

The simulated protocol included 7 probe trials (Day 15) during

which the block A was removed whereas a block at location B was

added. This manipulation aimed at testing the ‘‘insight’’ working

hypothesis: after a first run through the shortest path P1 and after

having encountered the unexpected block B, will animals try P2

(wrong behavior) or will they go directly through P3 (correct

behavior)? In agreement with Tolman & Honzik’s findings,

simulated animals behaved as predicted by the insight hypothesis,

Figure 3. Spatial behavior performance in the Tolman & Honzik’s detour task. Simulation results. Day 1: left column; Day 2–14: central
column; Day 15: right column. (A) Occupancy grids representing path selection results qualitatively. (B) Mean path selection rate (averaged over 40
simulated animals) in the 1:1 scale version of the maze. Note that similar to Tolman & Honzik [4] we ignored P1 in Day 2–14 and Day 15 analyses
because blocked. (C) Performance of ‘‘control’’ vs. ‘‘no C2 ’’ animals in the 4:1 version of Tolman & Honzik’s maze.
doi:10.1371/journal.pcbi.1002045.g003

Navigation Planning in a Prefrontal Cortex Model

PLoS Computational Biology | www.ploscompbiol.org 6 May 2011 | Volume 7 | Issue 5 | e1002045



i.e. they tended to select the longer but effective P3 significantly

more often than P2 (ANOVA, Pv0:0001; see Figs. 3A,B, right

column). The patterns of path selection during this task is

explained by the ability of the model to choose shortest paths.

When a block is added into the environment, the goal propagation

signal is also blocked at the level of the column network, and hence

the simulated animals choose the shortest unblocked pathways.

We then tested the robustness of the above behavioral results

with respect to the size of the environment. We considered a 4:1

scaled version of Tolman & Honzik’s maze and we compared the

performances of n~40 simulated animals with intact C1,C2

populations (‘‘control’’ group) against those of n~40 simulated

animals lacking the C2 cortical population (‘‘no C2’’ group). The

latter group did not have the multilevel encoding property

provided by the C1–C2 recurrent dynamics (see Sec. Recurrent

cortical processing for multilevel topological mapping). Fig. 3C

compares the average path selection responses of the two

simulated groups across the different phases of the protocol.

During Day 1 (i.e. no blocks in the maze) both groups selected the

shortest path P1 significantly more often (ANOVA, Pv0:0001;

Fig. 3C left). However, the action selection policy of subjects

without C2 began to suffer from mistakes due to the enlarged

environment, as suggested by lower median value corresponding

to P1. During Days 2–14 (with block A), the group without C2 did

not succeed in solving the detour task, because no significant

preference was observed between P2 (shortest pathway) and P3

(ANOVA, Pw0:001; Fig. 3C center). By contrast, control animals

coped with the larger environmental size successfully (i.e. P2 was

selected significantly more often than P3, ANOVA, Pv0:0001).

During the probe trials of Day 15 (with a block at B but not at A),

the group without C2 was impaired in discriminating between P2

and P3 (ANOVA, Pw0:6756; Fig. 3C right), whereas control

subjects behaved accordingly to the insight hypothesis (i.e. they

selected the longer but effective P3 significantly more than P2;

ANOVA, Pv0:0001). The better performances of control

subjects were due to the fact that back-propagating the goal

signal through the cortical network benefited from the higher-level

representation encoded by the C2 population and from the C1-C2

interaction during planning (see Supplementary Text S1 Sec.

Exploiting the topological representation for navigation planning,

Fig. S2). Indeed, an intact C2 population allowed the goal signal to

decay with a slower rate compared to C1, due to the smaller

number of intermediate columns in C2 (i.e. planning could benefit

from a more compact topological representation).

Henceforth we demonstrate how the modeled neural processes

can be interpreted as elements of a functional network mediating

spatial learning and decision making. We show that the neural

activity patterns of all types of neurons in the cortical model are

biologically plausible in the light of PFC electrophysiological data

[20,35,59–66].

Single cell and population place codes
Analysis of single cell receptive fields. To understand how

single neurons took part to place coding, we compared the

location-selective activities of two types of units of the model:

hippocampal place (HP) cells and cortical neurons s [ C1,C2

(Fig. 1). We analyzed their discharge patterns while simulated

animals were solving the 4:1 version of the Tolman & Honzik’s

task. Fig. 4A displays some samples of receptive fields recorded

from each of these populations. The representation encoded by

units s [ C1 was in register with the place field organization of HP
cells (left and center panels), whereas the activity of neurons s [ C2

(right panel) captured some structural properties of the

environment (i.e. alley organization). As quantified on Fig. 4B,

the mean size of place fields increased significantly as spatial

information was subsequently processed by HP, C1 and C2

populations (ANOVA, Pv0:0001; see also Fig. S3 A for results

based on a kurtosis analysis, Supplementary Text S2). These

findings are consistent to experimental data on the sizes of

receptive fields of hippocampal and PFC cells recorded from rats

solving a navigational task [20].

We also characterized the multistage spatial processing of the

model in terms of Shannon mutual information between single unit

responses and spatial locations (Supplementary Text S2). As shown

on Fig. 4C, the activity of neurons s [ C2 encoded, on average, the

largest amount of spatial information, followed by neurons s [ C1

and HP cells (ANOVA, Pv0:0001). This relationship was due the

fact that the smaller the receptive field is, the larger is the region of

the input space for which a neuron remained silent, and then the

lesser can be inferred about the entire input set by observing the

variability of the neuron discharge. This result was based on the

computation of the total amount of information, averaged over all

positions. Other authors characterized the spatial locations where

cells are most informative, such as the spatial coherence, which

estimates the local smoothness of receptive fields [20], or the local

information, which is a well-behaved measure of a location-specific

information [67,68].

We also compared the location-selective responses of single

neurons s [ C1 with the discharge patterns of pyramidal cells

recorded from the medial PFC of navigating rats (see Materials

and Methods Sec. Statistical analysis of neural activities). Fig. 4D

shows three examples of experimental (top) and simulated (bottom)

receptive fields evenly distributed on a linear alley. Real and

simulated patterns are consistent to each other in terms of both

shape and signal-to-noise ratio of the response profiles. These

results corroborated the hypothesis that purely location-selective

neurons s of the model might find their biological counterpart in

real PFC populations.

Analysis of population place coding properties. As

aforementioned, we modeled the interplay between hippoca-

mpus and PFC to produce compact space codes suitable to

support navigation planning. Fig. 5 shows how the implemented

multistage processing (including the C1–C2 recurrent dynamics)

provided a progressive sparsification of the population place code.

Fig. 5A qualitatively compares three examples of distributions of

receptive field centers of HP and s [ C1,C2 neural populations

(left, center and right, respectively). Consistently to experimental

findings reported by Jung et al. [35], our simulated cortical units

produced less redundant place representations than HP cells. The

size of neural populations encoding the Tolman & Honzik’s maze

decreased significantly from HP to C1 and then to C2 (ANOVA,

Pv0:0001; Fig. 5B). The sparser nature of cortical place codes

was confirmed by the significant difference between spatial

densities of receptive fields (Fig. 5C; see also Figs. S3 B,C for

the results of population kurtosis and information sparseness

analyses, respectively).

Finally, we measured the Shannon mutual information between

population response patterns and spatial locations. The highly

redundant HP code had the largest spatial information content

(ANOVA, Pv0:0001; Fig. 5D). Yet, although less redundant, the

population of neurons s [ C1 encoded about 85% of the

theoretical upper bound, which proved to be suitable for solving

the behavioral tasks. A significant loss of information content was

observed for the population code implemented by neurons s [ C2.

This is consistent with the functional role of the C2 cortical

network, which could not support navigation planning alone, but

rather complemented the C1 representation by encoding higher

level features of the environment.
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PLoS Computational Biology | www.ploscompbiol.org 7 May 2011 | Volume 7 | Issue 5 | e1002045



Figure 4. Single cell response analysis. Simulation results and relation to electrophysiological PFC recordings. (A) Examples of receptive fields of
model hippocampal place (HP) cells (left), cortical neurons s in C1 (center) and s in C2 (right) when the simulated animals were solving the 4:1 version
of Tolman & Honzik’s maze. White regions denote large firing rates whereas black regions correspond to silent activity. (B) Mean size of the receptive
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Time course analysis of neural responses supporting
decision making

Goal distance coding. Besides the spatial correlates of s
neurons’ activity, the model cortical representation encoded

reward-dependent information. Fig. 6A shows the correlation

between the firing rate of units v [ C1 and the shortest distance-to-

goal. The diagram shows that, given a location in the maze, the

smaller the length of the shortest goal-directed pathway was, the

larger was the mean discharge of the v neuron belonging to the

column corresponding to that location. This property was relevant

to the decision making process determining the spatial navigation

behavior reported in Sec. Spatial behavior in Tolman & Honzik’s

detour task. When the exponentially decaying frequency of v units

reached the basal neural noise level, the action selection policy

reduced to random search (see the performance of ‘‘no C2’’

simulated animals on Fig. 3C, central and right panels). The

distance-to-goal coding property of v neurons called upon their

selective responses in the frequency domain. The population

spectral power of Fig. 6B (top) demonstrates that each neuron

vi [ C1 had a unique preferred discharge frequency fi correlated to

its distance-to-goal (Fig. 6A). Preferred frequencies fi were

uniformly distributed over the normalized range ½0,1�.
Interestingly, when we analyzed the activity of PFC pyramidal

cells recorded from navigating rats (see Sec. Statistical analysis of

neural activities) we found a subset of neurons with no spatial

correlate but with evenly distributed preferred discharge

frequencies (see Fig. 6B, bottom, for few examples). To

summarize, in contrast to location-selective neurons s of the

model, the activity of neurons v had characteristic discharge

frequencies and encoded distance-to-reward information. During

planning (i.e. the ‘‘mental’’ evaluation of multiple navigation

trajectories), this property of v neurons allowed the value of each

state to be assessed with respect to its relevance to goal-oriented

behavior, consistently with PFC recordings showing reward-

dependent activity patterns [61,63].

Fig. 6C shows how the activity of neuron v belonging to the

column associated to the first intersection of Tolman’s maze

changed according to the task (phase of the protocol). Recall that

the activity of neuron v was anti-correlated to the shortest distance

to the goal among available pathways (Fig. 6A). Thus, when at the

end of Day 1 (i.e. Trial 12) the system learned to select the shortest

path P1 (no block was present in the maze), neuron v exhibited the

largest firing rate. When path P1 was blocked (e.g. Day 14 Trial

12), the length of the shortest available pathway (i.e. P2) increased,

as indicated by the lower discharge rate of v. Finally, the distance

to the goal was the largest when both P1 and P2 were blocked (e.g.

Day 15 Trial 7). Consequently, the weakest activity of v
corresponded to the available path P3. In order to quantify this

coding property, we measured the mutual information It between

the phases of the task and the discharge patterns of neurons v (we

took neurons s as a control population). As shown in the inset of

Fig. 6C, v neurons (unlike s neurons) provided a significant

account of abstract task-related information, meaning that the

phase of the protocol could be decoded reliably by observing the

time course of their discharge patterns.

Coding of action-reward contingency changes. We

studied how the activity of neurons q and d of the model

contributed to decision-making. Recall that, after learning, each

cortical minicolumn (q,d) [ C1,2 encoded a specific state-action

pair (s,a). The analysis reported on Fig. 7 shows the time course of

the firing rate of units q,d belonging to the column coding for the

first intersection of Tolman & Honzik’s maze. Figs. 7A,B,C focus

on the action selection process taking place at the beginning of

Day 2 Trial 1 of training (i.e. with block A). During the outward

journey, the simulated animal arrived at the intersection point at

t^4s. Due to the policy learned during Day 1 of training (i.e.

without any block in the maze), at t^4s the unit q1 of the

minicolumn associated to the action leading to P1 discharged with

the largest firing rate, followed by unit q2 of the minicolumn

associated to P2, and finally by q3 related to P3 (Fig. 7B). Thus,

corresponding neurons d1,2,3, which combined inputs from q1,2,3,

respectively, with the location-selective activities of neurons s of

the same column, discharged according to the same ranking at

t^4s (Fig. 7C). As a consequence, the action driven by d1 was

selected and the simulated animal proceeded along P1. However,

when block A was encountered at t^5s, the model updated the

topological representation (see Supplementary Text S1 Sec.

Spatial learning: encoding topological representations), which

resulted in a change of action-reward contingencies (with q1 firing

rate dropping below that of q2, meaning that the action leading to

P2 from the intersection point was now better scored, Fig. 7B).

This activity update is consistent with findings showing sustained

discharge changes highly sensitive to a switch in reward

contingencies [37,66]. Thus, when during the backward journey

the animal met again the intersection point (at t^7s), neuron d2

discharged with the largest frequency (Fig. 7A, bottom) leading to

the selection of P2.

Similarly, the analysis reported on Figs. 7D,E,F shows how the

time course of the relative strengths of the activities of neurons

q1,2,3 and d1,2,3 determined action selection at the beginning of the

probe test, Day 15 Trial 1 (with block A removed and block B

inserted). Notice the increased q1 firing frequency at t^6 s

reflecting the re-discovery of the transition blocked at A during

Days 2–14 of training.

Coding of prospective place sequences. After a local

decision was made (based on the competition between d neurons’

discharges), collateral projections wpd (Fig. 1B and Fig. S2 A)

enabled the cortical network to forward propagate the selected

state-action sequence. Fig. 8 shows how the time course of p
neurons’ firing patterns subserved this propagation process. First,

we analyzed the receptive fields of p units as the simulated animal

proceeded from the starting position towards the goal. Fig. 8A

compares the activity profiles of neurons p and s belonging to the

same columns (four different columns are considered in this

example). In contrast to the symmetrical receptive fields of neurons

s (see also Fig. 4), all neurons p had asymmetric response profiles

with negative skews (i.e. with the left tail of the distribution longer

than the right tail). The skewness of these neural responses

increased quasi-linearly with the number of synaptic relays

forming a mentally planned trajectory (Fig. 8A, top-right inset).

When we analyzed PFC data recordings from navigating rats (see

Materials and Methods, Sec. Statistical analysis of neural

activities), we also found a subset of neurons with asymmetric

tuning curves, whose negative skewness seemed to be correlated to

the distance traveled by the animal (Fig. 8B).

Another difference between neurons p and s of the model was

that the peak discharge frequency of neurons s did not have any

significant modulation, whereas all neurons p had mean peak

fields for each neural population, measured in pixels (i.e. 565 cm square regions). (C) Mutual information between single unit responses and spatial
input for each population. (D) Location-selective responses of model single neurons s [ C1 functions of the normalized distance traveled along a
section of the linearized trajectory P3 (top row) and medial PFC pyramidal cells recorded from navigating rats (bottom row).
doi:10.1371/journal.pcbi.1002045.g004
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Figure 5. Population place coding analysis. Simulation results. (A) Examples of distributions of place field centroids for the populations of
model HP cells (left), cortical neurons s in C1 (center) and s in C2 (right), when simulated rats were solving the 1:1 version of Tolman & Honzik’s maze.
(B) Mean number of active neurones (average over 40 animals) when learning the 4:1 Tolman & Honzik’s maze (left). Evolution of the number of
active neurons during the first 12 trials, i.e. Day 1 (right). (C) Mean spatial density (averaged over 40 animals) of receptive fields for each neural
population. (D) Mutual information between population responses and spatial input states.
doi:10.1371/journal.pcbi.1002045.g005
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firing rates positively correlated to the distance traveled towards

the goal (Fig. 8A). Accordingly, Jung et al. [35] provided

experimental evidence for increased neuronal firing rates during

the approach to a reward. Finally, an important property of

neurons p of the model is that their discharge tended to temporally

anticipate the activity of neurons s (Fig. 8A). In other words, p
neurons encoded prospective place information predicting the

next state visited by the animal. A cross-correlogram analysis

Figure 6. Coding of distance-to-goal and task-related information. Simulation results and relation to experimental PFC recordings. (A)
Relation between the shortest distance of a place to the goal and the firing rate of the neuron v in C1 belonging to the column representing that
location. Each cross corresponds to one neuron v. Beyond a certain distance, the intensity of the back-propagated goal signal reaches the noise level.
As a consequence, neurons v discharges become uncorrelated with the distance to the goal, and random decisions are made. (B) Frequency-selective
responses of model single neurons v [ C1 (top row) and of medial PFC pyramidal cells recorded from navigating rats (bottom row). (C) Relation
between task-related information (Day 1 Trial 12: end of ‘‘no block’’ phase, Day 14 Trial 12: end of ‘‘block A’’ phase and Day 15 Trial 7: end of ‘‘block B’’
phase) and firing rate of the neuron v in C1 belonging to the column representing the first intersection point. Inset: mutual information between the
phase of the task and single unit responses of s in C1 vs. v in C1 .
doi:10.1371/journal.pcbi.1002045.g006
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showed that p neurons’ activity anticipated the discharge of s
neurons by a mean time delay t^1:6s, std~+0:6s (given a

constant velocity of ^15cm=s). The prospective coding property

of neurons p is consistent with experimental findings on PFC

recordings reported by Rainer et al. [62].

We further studied the predicting nature of p neurons’ activity

in relationship to experimental data on neural encoding of the

serial order of planned sequences before the action begins [65]. In

their experiment, Averbeck et al. [65] performed simultaneous

recordings of PFC single cell activities from monkeys drawing

sequences of lines (i.e. segments forming abstract shapes). Each

segment was associated to a distinct pattern of neural activity, and

the relative strength of these patterns prior the actual drawing was

shown to predict the serial order of the sequence of segments

Figure 7. Time course analysis of action-reward contingency changes. Simulation results. Left column: Day 2 Trial 1 with block at A. Right
column: Day 15 Trial 1 with block at B. (A, D) Examples of trajectories performed by simulated animals when encountering either block A or block B
(distinct colors illustrate distinct actions). (B, E) Time course profile of firing rates of three neurons q1 , q2 and q3 belonging to the column encoding
the first intersection (and, in particular, to the minicolumns representing the actions a1 , a2 and a3 , respectively). Vertical dotted lines indicate
decision-making events (according to colored arrows at the bottom). (C, F) Time course profile of neural activity of three neurons d1 , d2 and d3

belonging to the column representing the first intersection and to the minicolumns representing the actions a1 , a2 and a3 , respectively.
doi:10.1371/journal.pcbi.1002045.g007
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Figure 8. Coding of prospective place sequences. Simulation results and relation to experimental PFC recordings. (A) Comparison of time
course shapes of the responses of four pairs of neurons si and pi belonging to the same column (i~1 � � � 4). Inset: correlation between the position of
a given column within a planned path (measured as the path length from the starting column to that given column) and the skewness of the time
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actually drawn by monkeys (Fig. 8C left). Consistently, we found

that the ranking of the discharge frequencies of p neurons before the

actual execution of a planned trajectory was a good predictor of

the serial order of the states to be visited by the simulated animal

(Fig. 8C right). This relationship not only held at time t~0 (i.e. at

the very beginning of a trajectory), but for every time t, meaning

that the ranking of p neurons’ firing rates could predict the order

of future state sequences at any moment.

Comparative analysis of model and experimental PFC
population activity patterns

We studied to what extent the neural populations of the model

(i.e. s, v, p, q and d neurons) could be quantitatively segregated on

the basis of a set of statistical measures. We then compared the

results to those obtained by applying the same clustering analysis

to a population of neurons recorded from the medial PFC of

navigating rats (see Materials and Methods Sec. Statistical analysis

of neural activities).

We first gathered all non-silent simulated neurons recorded

during the 4:1 version of Tolman & Honzik’s task. All types of

units (i.e. s, v, p, q, d) were pulled together in a data set. We

characterized each neuron’s discharge by measuring its mean

firing rate, standard deviation, skewness, lifetime kurtosis, spatial

information per spike and spatial mutual information (see

Supplementary Text S2). Then, we performed a principal

component analysis (PCA) on the multidimensional space

containing the values provided by these measures per each neuron

(see Figs. S4 A,C for details). Fig. 9A shows the resulting data

distribution in the space defined by the first three principal

components. Interestingly, model neurons with different functional

roles tended to occupy distinct regions of the PCA space. For

instance, neurons v,q [ C1,C2, whose function in the model is to

propagate goal information and code for the distance to the goal,

were located within the same portion of the PCA space (blue and

cyan crosses and circles). All neurons s [ C1, which primarily code

for spatial locations, were also clustered within the PCA space (red

crosses). Neurons p,d [ C1 (and also p [ C2), responsible for

forward signal propagation and local decision making, respective-

ly, were aggregated within the same region (gray and black crosses,

and black circles). Finally, neurons s,d [ C2, mainly involved in

high-level mapping and navigation planning, were also separated

from other units in PCA space (gray and red circles).

Figs. 9B,C,D display the mean values, averaged over each

population s,d,p,q,v [ C1,C2 of the model, of three statistical

measures (out of six) used to perform the PCA. These diagrams

can help understanding the data point distribution of Fig. 9A.

When considering the mean spatial information per spike (Fig. 9B),

at least three groups could be observed: neurons whose activity

had nearly no spatial correlate (q,v [ C1,C2), neurons conveying

intermediate amounts of spatial information (s,d,p [ C1 and

p [ C2), and neurons with larger spatial information values

(s,d [ C2). The mean firing rate parameter (Fig. 9C) allowed two

distinct groups to be clearly identified: one with low average firing

(neurons s,p,d [ C1,C2), and one with high firing rates (neurons

q,v [ C1,C2). Together with Fig. 9A, this diagram can help

understanding why neurons q,v [ C1,C2, which had almost no

spatial correlate and very high firing rates compared to other

populations of the model, were well segregated within the same

region of the PCA space (Fig. 9A, blue and cyan crosses and

circles). Finally, when comparing the mean skewness values of all

neural populations (Fig. 9D), neurons d,p [ C1 and p [ C2 were

pulled apart, according to their distribution in the PCA space

(Fig. 9A, gray and black crosses, and black circles). As a control

analysis, we extended the data set used for the PCA by adding a

population of neurons with random Poisson activities. As shown in

supplementary Figs. S5 A–B, the population of Poisson neurons

(light green data points) was well separated from all model neurons

within the space defined by the first three principal components,

suggesting that the variability of model discharge properties could

not be merely explained by a random Poisson-like process.

We then applied an unsupervised clustering algorithm (k-means

clustering method with k~3) to partition the distribution of data

points of Fig. 9A, based on the discharge characteristics of model

neurons. This blind clustering analysis (i.e. without any a priori

knowledge on neural populations) allowed us to identify three

main groups (Fig. 10A). The first cluster (blue data points)

corresponded to non-spatial, reward-related neuronal activities

(i.e. neurons q,v [ C1,C2). The second cluster (green points)

represented location-selective activity (mainly from neurons

s,p,d [ C1, but also including some neurons p [ C2). The third

cluster (red data points) corresponded to location-selective activity

of neurons in the cortical network C2 (i.e. mainly s,d,p [ C2). See

supplementary Fig. S6 for details on the composition of the three

identified clusters.

We performed the same series of analyses on a dataset of medial

PFC neurons recorded from navigating rats (see Materials and

Methods, Sec. Statistical analysis of neural activities). We

characterized every recorded activity according to the same set

of statistical measures used for model neurons (i.e. mean firing

rate, standard deviation, skewness, lifetime kurtosis, spatial

information per spike and spatial mutual information, see

Supplementary Text S2). Then, we applied a PCA on the

resulting high dimensional space containing, per each neuron, the

resulting values of these measures (see Figs. S4 B,D for details).

Finally, we used the same unsupervised k-mean clustering

algorithm to partition the data distribution in the space defined

by the first three principal components. As for simulated data, the

clustering method identified three main classes (Fig. 10B; with red,

green, and blue data points corresponding to three subsets of

electrophysiologically recorded activities in the PFC). We then

compared model and experimental clusters (Figs. 10C,D,E) in

order to investigate whether real and simulated data points

belonging to the same clusters shared some discharge character-

istics. In terms of mean spatial information (Fig. 10C), we found

similar non-homogeneous distributions between model and real

clusters. Both red clusters encoded the largest spatial information

content. Recall that the model red cluster mainly contained

activities from location-selective neurons s,d, p [ C2 (as quantified

in supplementary Fig. S6 B). When looking at mean firing rates

averaged over each cluster (Fig. 10D), we found that both real and

simulated activities within the blue clusters had significantly larger

frequencies than others. The model blue cluster was mainly

course profile of its neuron p activity (black crosses) or its neuron s activity (gray dots). (B) Asymmetric responses of model single neurons p [ C1 (top
row) and of pyramidal cells recorded from the PFC of navigating rats (bottom row). (C) Sequence order coding carried out by a population of monkey
PFC neurons (left; data courtesy of Averbeck et al. [65]). Each curve denotes the strength of the neural activity encoding a specific segment of a
planned drawing sequence (the peak of each curve corresponds to the time when the segment is actually being drawn). Similarly, a sequence order
coding property was observed when recording neurons p in C1 of the model (right). Each curve measures the activity of a neuron p belonging to a
planned trajectory. The peaks of activity represent the times when places are actually visited.
doi:10.1371/journal.pcbi.1002045.g008
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composed by neurons v,q [ C1,C2 propagating reward-related

information. Finally, when comparing the mean absolute values of

the skewness of receptive fields (Fig. 10E), we found both model

and experimental populations with asymmetric fields (i.e. non-zero

skewness). Model-wise, the red and green clusters (containing

neurons d,p [ C1,C2, Fig. S6 B) had the largest mean skewness.

Similarly, experimental red and green subpopulations had larger

skewness values than the blue population. As a control analysis, we

computed the three mentioned measures (i.e. information per

spike, mean firing rate and skewness of the receptive field) for two

populations of neurons with random Uniform and Poisson

activities. As shown in supplementary Fig. S7, unlike model data,

the two populations of random neurons could not explain the

experimental data in terms of information content and skewness of

the receptive field. Taken together, these results indicated that,

within the data set of experimental PFC recordings, subpopula-

tions of neurons existed with distinct discharge properties, and that

these subpopulations might be related to distinct functional groups

predicted by the model.

Discussion

We presented a model focusing on navigation planning

mediated by a population of prefrontal cortical columns. During

exploration of a new environment, the model learns a topological

representation in which each place is encoded by a neocortical

column and strengthening of synapses between columns is used to

represent topological links between places. During goal-oriented

trajectory planning, an activation diffusion mechanism produces a

spread of activity in the column population leading to selection of

the shortest path to the goal. Our simulation results demonstrate

that the model can reproduce rodent behavior previously

attributed to the animals’ ability to experience a cognitive

‘‘insight’’ about the structure of the environment [4]. Moreover,

Figure 9. Principal component analysis of simulated neuronal activities. (A) Simulated neurons represented within the space defined by the
first three principal components. (B) Spatial information per spike averaged over each neural population of the model. (C) Mean firing rate averaged
over each neural population. (D) Mean absolute skewness average over each population. The color code is the same used in (A).
doi:10.1371/journal.pcbi.1002045.g009
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we show that spatial planning in our model is invariant with

respect to the size of the maze. This property relies on the ability of

the model to encode cognitive maps with a resolution that fits the

structure of the environment (e.g. alleys).

On the neural level, we characterized the activities of model

neurons and compared them to electrophysiological data from real

PFC neurons. Our neural response analysis suggests how the

interplay between the model hippocampus and the prefrontal cortex

can yield to the encoding of manifold information pertinent to the

spatial planning function, including, for example, distance-to-goal

correlates. The model also provides a functional framework for

interpreting the activity of prefrontal units observed during

performance of spatial memory tasks [20,35,60–63,65,66]. In

general, our results are consistent with the hypothesis that cognitive

control stems from the active maintenance of patterns of activity in

the PFC that represent goals and means to achieve them [64].

Related work
Our model is based upon three main assumptions. First, the

model relies on the columnar organization of the cortex. Although

this concept is supported by many experimental studies [45,48], no

clear general function for columns has emerged to explain their

role in cortical processing [69]. In addition, Rakic [70] stressed

that the size, cell composition, synaptic organization, expression of

signaling molecules, and function of various types of columns are

dramatically different across the cortex, so that the general

concept of column should be employed carefully. In our model, we

call ‘‘column’’ a local micro-circuit composed by neurons

processing common spatial information, and we propose that this

columnar organization may be a substrate suitable to implement a

topological representation of the environment. Second, our

planning model relies on an activation diffusion mechanism. At

the neural level, this suggests that strong propagation of action

potentials should occur in the neocortex. This is not a strong

assumption, since several studies have demonstrated such

phenomena as propagating waves of activity in the brain

[71,72]. For example, Rubino et al. [73] suggested that oscillations

propagate as waves across the surface of the motor cortex, carrying

relevant information during movement preparation and execution.

Third, the multiscale representation is based on a putative w

Figure 10. Principal component analysis and unsupervised clustering of simulated and real neuronal activities. (A) Clustering of
model activities within the PCA space. The same color scheme (used to discriminate clusters) is applied throughout the entire figure. (B) Blind
clustering of real PFC recordings represented in the three first principal components space. (C, D, E) Mean information per spike, firing rate and
skewness for real vs. model subpopulations (i.e. clusters).
doi:10.1371/journal.pcbi.1002045.g010
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signal. There are several potential candidates for its implementa-

tion in the brain. One of these candidates is habit learning

involving the striatum [74,75]. Indeed, if for instance the rat

always turns left at a particular location it may acquire a

corresponding habit. The neural activity corresponding to this

stimulus-response association may serve as the w signal. In this

case, the time scale of learning in the C2 population should

correspond to the time scale of habit acquisition (potentially many

trials, see e.g. [75]).

Topological map learning and path planning have been

extensively studied in biomimetic models (see [6] for a general

review; see also [76] for theoretical discussions on hierarchical

cognitive maps). These models aimed at either providing more

efficient path planning algorithms or, like our work, establishing

relations between anatomical substrates, electrophysiology and

behavior. In particular, several studies took inspiration from the

anatomical organization of the cortex and used the activation

diffusion mechanism to implement planning. Burnod [49]

proposed one of the first models of the cortical column

architecture, called ‘‘cortical automaton’’. He also described a

‘‘call tree’’ process that can be seen as a neuromimetic

implementation of the activation diffusion principle. Some

subsequent studies employed the cortical automaton concept

[77,78], while others used either connectionist architectures

[16,79–84] or Markov decision processes [85]. Our approach is

similar to that of Hasselmo [44], who also addressed goal-directed

behavior by modeling the PFC columnar structure. Both

Hasselmo’s and our model architectures employ minicolumns as

basic computational units to represent locations and actions, to

propagate reward-dependent signals, and mediate decision

making. Yet, the two models differ in the encoding principles

underlying the learned representations, which generate, conse-

quently, distinct behavioral responses. The connectivity layout of

Hasselmo’s model allows state-response-state chains to be

encoded, with each minicolumn representing either a state or an

action. In our model, a state and its related actions are jointly

encoded by a set of minicolumns within a column. Similar to

Koene and Hasselmo [44,86], we compared the discharge of

simulated PFC units against experimental recordings exhibiting

place-, action- and reward-related correlates. As explained

henceforth, we focused further on the functional relationship

between the hippocampus and the PFC in encoding complemen-

tary aspects of spatial memory, with a quantitative approach based

on the analysis of statistical properties and information content of

the neural codes. We also put the emphasis on the time course

analysis of neural responses mediating place coding vs. decision

making.

Differential roles of PFC and hippocampus in spatial
learning

The successful performance of our model in large environments

relies on its ability to build a multiscale environment representa-

tion. This is in line with the proposal by McNamara et al. [87]

who have suggested that humans can solve complex spatial

problems by building a hierarchical cognitive map, including

multiple representations of the same environment at different

spatial scales. Moreover, animals may be able to chunk available

information and build hierarchical representations to facilitate

learning [88–92]. Recently, multiscale spatial representations have

been identified at the neural level. For example in the entorhinal

cortex, Hafting et al. [13] have shown that grid cells have spatial

fields forming grids with different spacing and place field sizes.

Kjelstrup et al. [93] have provided neural recordings of place cell

activities in a large maze, supporting the multiscale coding

property in the hippocampus. These entorhinal and hippocampal

multiscale representations are likely to encode spatial contextual

information at variable resolution. Complementing this code, we

suggest that multiscale representations related with space, action

and reward should also be found in neocortical areas such as the

prefrontal cortex, commonly associated with high-level cognitive

processes. Moreover, there are several works suggesting a role of

the PFC in the learning of hierarchical representations. For

example, Botvinick [94] reviewed how the hierarchical reinforce-

ment learning framework [95] could explain the mechanism by

which the PFC aggregates actions into reusable subroutines or

skills. The multiscale property is applied there for actions instead

of states as in our approach. From a biological point of view,

recent studies directly pointed out the role of the PFC for

hierarchical representations, with a possible anatomical mapping

of the hierarchical levels along the rostro-caudal axis of the PFC

[96].

In spite of a possible complementary role for the PFC and the

hippocampus in multiscale space coding, our work focuses on

different roles of the PFC and the hippocampus in the planning

process. Namely, we propose that the hippocampus is more

involved in the representation of location [1] and, possibly, route

learning [97,98], while the PFC is responsible for topological

representations and action selection. From a more general

perspective, a route could be seen as an example of navigation

from a point to another, an episode. In contrast, the more

integrated topological representation would be more similar to a

set of navigation rules. This hypothesis is in accordance with data

showing that the hippocampus would be involved in instance-

based episodic memory, whereas the PFC would be linked to rule

learning from examples [99–101].

Our model is consistent with recent studies suggesting a role for

the PFC in prospective memory [102,103]. Goto and Grace [102]

showed that, depending on the dopamine receptors activation,

PFC either incorporates retrospective information processed by

the hippocampus or processes its own information to effect

preparation of future actions. This is in accordance with our model

which includes hippocampal information to localize itself in the

environment, and then propagates reward signal to generate a

goal-directed sequence of action. Moreover, Mushiake et al. [104]

showed that activity in the PFC reflects multiple steps of future

events in action plans. They suggested that animals may be

engaged in planning sequences in a retrograde order (starting from

the goal to the first motion), in conjunction with a sequence

planning with an anterograde order. At the cognitive level, the

activation diffusion planning process provides a capacity of mental

simulation of action selection: the back-propagated goal signal

allows possible navigation trajectories to be identified, whereas the

forward-propagated path signal actually simulates the execution of

the selected action sequence. Schacter et al. [103] recently

reviewed theories on simulation of future events and neural

structures associated with this cognitive ability. They showed that

the same core network, which plays a role in remembering, is also

implied in mental simulation. This network involves prefrontal as

well as medial temporal regions including the hippocampus, which

is also involved in prospective and retrospective memory coding

([105,106]; see also [107,108] for theoretical works modeling the

role of this core network in memory retrieval and mental imagery).

From neural activity in the PFC to behavior
Our simulation results on the Tolman and Honzik detour task

show that the behavior of the model is consistent with an ‘‘insight’’

demonstrated by rats in this task. The insight, as defined by

Tolman and Honzik, is the ability to conceive that two paths have
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a common section, and so when a passage through the common

section is blocked, both of these paths are necessarily blocked and

a third, alternative pathway, should be chosen. The realization

that a common section exists leads to two conclusions. First,

animals do not act exclusively according to stimulus-response

associations, but use some kind of mental representation of the

environment [109]. For example, in the conditions of the detour

task (Fig. 2A), the rats chose path 3 without actually testing path 2

during probe trials and so they did not have a chance to form the

correct stimulus-response associations to solve the task. In order to

choose the correct path 3, rats had to mentally replay path 2 and

realize that it was blocked, suggesting the existence of a spatial

representation. Second, a representation of the environment in

terms of routes is not sufficient to solve the task. Indeed, if after

training animals store separate representations of routes via paths

1–3, then the fact that route 1 is blocked should not lead to the

conclusion that route 2 is also blocked. In summary, the results of

this experiment suggest the existence of a topological graph-like

representation in which common points (nodes) and common

sections (edges) are identified. The model presented here proposes

a plausible way of how such a representation can be built (see

below). In terms of the model, the insight capability in the detour

task is mediated by the propagation of the goal signal through the

nodes of the spatial graph, in which the common section of paths 1

and 2 is blocked.

The other important question addressed by the present study is

whether the requirements of the proposed model are consistent

with the neural activities observed in the PFC. We show that all

types of neurons that are required by the model, have actually

been observed in the PFC. Namely, (i) the state-encoding s
neurons in the model correspond to spatially selective prefrontal

neurons with different receptive field sizes (Fig. 4D, see also [20]);

(ii) the distance-to-goal, or value, neurons v correspond to the PFC

neurons with constant discharge rate (Fig. 6B), giving rise to the

prediction that neurons with higher (constant) discharge rates can

code for locations closed to reward; (iii) the prospective-coding p
neurons in the model correspond to PFC neurons with the firing

rate that increases when the animal moves toward the goal

(Figs. 8B,D, see also [62,65]); and, finally, (iv) neurons q and d,

which together encode state-action values, show activity patterns

similar to strategy-switching neurons observed by Rich and

Shapiro [37]. Indeed, the authors reported that in their task (i.e.

strategy switching in a plus-maze) during the periods before and

after reward contingency change, different subsets of PFC neurons

were highly active. This is exactly what was observed in our

model. For example, neurons q1 and d1 that were more active

than neurons q2 and d2 before the contingency change (Figs. 7B,C

at 4 s) became relatively less active after the change (Figs. 7B,C at

5 s).

The model provided a vantage point to interpret PFC

electrophysiological data in terms of quantitative clustering of

population activity. On the basis of a set of statistical measures, we

performed a principal component analysis on both simulated and

real data sets of PFC recordings. This study gave rise to

comparative results based on the identification of clusters of

characteristic discharge properties. We could put forth some

hypotheses about the functional meaning of the observed clusters

—in terms of their role in spatial localization and planning, reward

coding, and prospective memory. For instance, model neurons

mediating planning in large scale mazes (i.e. belonging to the

cortical population C2 of the model) could be segregated from

other simulated units (red cluster in Fig. 10). A corresponding

cluster was found when analyzing real recordings, corroborating

the hypothesis of the presence of neurons with similar discharge

properties in the PFC. We also identified another cluster of real

PFC activities which contained both pyramidal cell and interneu-

ron responses (*60% and *40%, respectively). This cluster

corresponded to goal propagating neurons of the model (blue

cluster in Fig. 10), leading to the prediction that interneurons may

contribute to decision making by participating to the propagation

of information relevant to the next decision to be taken.

Interestingly, in their study of spatial navigation, Benchenane

et al. [60] showed that the inhibitory action of PFC interneurons

onto pyramidal cells is enhanced during periods of high coherence

in theta oscillations between hippocampus and PFC occurring at

decision points.

Limitations and future work
In this model, the simulated hippocampal population does not

account for the full range of place cell firing properties that have

been extensively studied during the past decades. Particularly, the

dynamics of the model hippocampal population in terms of

learning, extrafield firings and rhythmic discharges are not

reproduced. Experimental data show that the introduction or

the removal of a barrier in the environment may induce learning-

related changes in the hippocampal population (remapping). For

example, previously silent cells may discharge and previously

active cells may be silent when the animal visits the modified

environment [110,111]. In addition, complementing their location

selectivity, hippocampal place cells may have extrafield firings, and

neural ensembles in the hippocampus may transiently encode

paths forward of the animal [112]. Finally, it has been shown that

hippocampal place cell discharges are modulated by theta

oscillations (e.g. phase precession phenomena, [113]) and that

the hippocampus and the PFC seem to synchronize at behaviorally

relevant places in a maze, such as decision points [114]. Although

the scope of the presented model is targeted to address the PFC

firing patterns, these experimental data suggest that improving our

hippocampal place cell model is relevant to provide plausible

predictions about the interactions between the hippocampus and

the PFC during decision making in spatial navigation tasks.

The second limitation of the model is related to the issue of goal

representation in the PFC. The model makes decisions based on

an appetitive motivational signal only (i.e. the reward at the goal

site). Clearly, there are other variables apart from the reward size

that influence the planning process. For example, there is evidence

that physical efforts required to reach the goal or delay in reward

delivery influence PFC-dependent behavioral decisions [115].

Moreover, the model can merely deal with a single goal at present

and can not estimate relative values of different goals [63]. In

order to address these limitations, the activation diffusion

mechanism in the model can be extended to propagate several

motivational signals, the intensities of which are proportional to

their subjective values. In this case, a goal-related effort or delayed

reward can be modeled by adjusting the relative values of

motivation signals at different locations in the maze.

We limited our study to a structured maze (i.e. Tolman &

Honzik’s maze [4]) to focus on the adaptive response to dynamic

blocking of goal-directed pathways, a required property to validate

detour-like navigation behavior. Furthermore, Tolman & Honzik’s

maze provided us with the possibility to investigate the neural

dynamics of the modeled network at clear decision points –i.e. at

the intersections between corridors. Several models have ad-

dressed spatial navigation in open-field environments based on

place-triggered-response strategies (i.e. locale navigation), in which

hippocampal place cell activity is associated to the best local action

leading to the goal (e.g. [57,116,117]). In fact, two components are

relevant to avoid the combinatorial explosion of the state|action
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space in open-fields: (i) the reliability of the spatial code in terms of

minimum hidden-state probability, to avoid, for instance, that a

same place cell population can code for different locations –a

problem often arising from sensory-aliasing phenomena in purely

topological maps; (ii) the use of a discrete action space, meaning

that a finite set of actions are available at each state (location). Our

hippocampal-PFC model satisfies these requirements. We already

used a highly simplified version of the model presented in this

paper to solve open-field navigation problems (e.g. Morris water

maze [11]). Note that, however, Dollé et al. (2010) focused on

navigation strategy switching and did not model the PFC

columnar organization and the (possibly) involved computational

processes (e.g. multiscale coding) to drive planning behavior [11].

In open-field environments with no obstacles our model predicts

C2-like units with uniform activity across the whole space –as a

result of a uniform w signal reflecting equal probability of turning

at each location. Adding borders or barriers would result in the

‘‘recruitment’’ of new C2 units preferentially active on either one

side or the other of the barriers. In more structured environments

such as interconnected arenas (e.g. [15]), the model predicts

separate C2 units for each space. To our knowledge, there is no

direct experimental evidence in favor or against the existence of

such PFC units.

Another interesting direction of future work is to study the

encoding of task-related information in the PFC during sleep.

Although it is likely that information is transferred during task

learning, memory consolidation during sleep also appears to play a

central role [59]. In particular, sharp wave-ripple complexes in the

hippocampus seem prominent for transferring labile memories

from the hippocampus to the neocortex for long-term storage

[118]. A key issue for modeling approaches is to understand

computational properties of this learning mechanism.

Supporting Information

Figure S1 Multilevel topological map learning in C1 and C2

populations. Columns in C1 and C2 populations encode locations

at different spatial resolutions. For instance, column c1[C1

corresponds to the end of the first alley, whereas c2[C2 encodes

the entire alley before the turn. The model achieves multilevel

state coding thanks to collateral projections ws2s1
between columns

in C1 and C2. When a place transition occurs, lateral connections

between columns selective for previous and next states are updated

in C1 population (wp0
1
d1

and wq1v0
1
), as well as in C2 population

(wp0
2
d2

and wq2v0
2
). These latter synaptic weights are modified thanks

to the inputs conveyed by wq2q1
and wp0

2
p0

1
projections so that the

activity of q2[C2 will mirror the activity of q1[C1, whereas p02[C2

will mirror p01[C1. Finally, another set of collateral connections

from C2 to C1 population (wp1p2
and wv1v2

) enables columns in C2

population to bias the activity in neurons p and v of C1 population.

(PDF)

Figure S2 Action planning through multilevel activation diffu-

sion of a goal signal. (A) A motivation signal induces the activity of

neurons v in the goal columns of C1 and C2 populations (1). The

goal information is then back-propagated through the reverse state

associations encoded by neurons v and q in C1 and C2 (2). When

the back-propagated goal signal reaches the columns selective for

the current position in both C1 and C2 populations, the

coincidence of the state-related input conveyed by s neurons and

the goal-related input transmitted by q neurons activates neurons

d (3). In turns, neurons d trigger the forward propagation of a

pathway signal through the neurons p and d (4). At each step of

the forward propagation, the motor action associated to the most

active neuron d can be selected (e.g. for the first planning step a1

for C1 population and a2 for C2 population) and the sequence of

actions from the current position to the goal can be iteratively

readout. (B) Effect of the top-down modulation exerted by the

population C2 upon the back-propagating activity at the level of

neurons v in C1. We plotted the relation between the number of

synaptic relays connecting the columns that form the planned path

from a given place to the goal and the firing rate of the neuron v
belonging to the column representing that place. Each cross

indicates the activity of one neuron v after a given number of

synaptic relays. Without any modulation from the C2 population

(exponentially decreasing set of points), the activity of neurons v
drops quickly to the noise level as the length of the planned path

increases. With the C2 modulation, the time constant of the

decreasing function is much larger, leading to a better propagation

in large environments. As indicated by black rectangle, given a

pathway involving 10 synaptic relays, a modulated neuron v would

fire at about 0.9 Hz, whereas it would only fire at about 0.35 Hz

without modulation.

(PDF)

Figure S3 Additional measures of the location selectivity

property of neurons s in C1 and neurons s in C2. (A) Left:

sparseness of single cell responses as measured by their lifetime

kurtosis. The larger the kurtosis is, the larger is the sparseness.

Right: the size of the receptive field (see Fig. 4B) is anti-correlated

to the lifetime kurtosis measure. (B) Left: sparseness of the

population place code as measured by the population kurtosis

function. Right: the density of receptive fields (see Fig. 5C) is anti-

correlated to the population kurtosis measure. (C) The spatial

information sparseness –computed as the ratio between popula-

tion information and the sum of single cell information–

demonstrates that the hippocampal place code is redundant in

terms of spatial information content. By contrast, although

loosing part of the spatial information, the cortical population

achieves a better coding, maximizing the contribution of each

unit to the population code, particularly for the C2 population.

(D) Spatial information Pearson correlation. Expectedly, the way

spatial information is encoded by neurons firing rates is not

different between the three populations: they all have their

surprise information strongly correlated with the strength of the

discharge activity.

(PDF)

Figure S4 Principal component analysis of simulated (left) and

real (right) neuronal activities. Eigenvalues (top) and structure of

the principal components (bottom).

(PDF)

Figure S5 Principal component analysis (PCA) of simulated

neuronal activity. Comparison between model and random

population activities. Two different views of the same three-

dimensional PCA space are shown (A and B, respectively). The

size of the original data set used for the analysis reported on Fig. 9

was doubled by adding a population of Poisson neurons. The

distribution of the mean firing rates over the original data set was

fitted by the distribution of the mean firing rates computed over

the population of Poisson neurons.

( )

Figure S6 Principal component analysis (PCA) and unsuper-

vised clustering of simulated neuronal activities. (A) Clustering of

model activities within the PCA space (first three principal

components). (B) Distribution of neural populations s,p,v,
d,q[C1,C2 for each cluster (top: percentages; bottom: absolute

counts).

(PDF)
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Figure S7 Principal component analysis (PCA): control analysis

for the comparison between experimental and model data shown

in Fig. 10. (A) Information per spike computed for model rescaled

data, experimental data and two random neuron populations

(formed by N~600 neurons each). Model data in this figure were

obtained by rescaling the mean firing rates of model neurons from

½0,1� to ½0,R�, where R denoting the maximum mean firing rate

observed in experimental data. The first random population,

called ‘‘Uniform distribution’’, consisted of neurons discharging

between 0 and R according to a uniform distribution. The second

control population, called ‘‘Poisson distribution’’, generated

random activities following Poisson distributions with parameters

(i.e. means) drawn from an uniform distribution between 0 and R.

As expected, the two random populations exhibited extremely

weak information content and could not explain the high spatial

information found in experimental data. (B) Mean firing rate for

the same four sets of data. This figure provides a mere empirical

validation of the process used to draw random neural responses

with mean firing rates within the range of those of experimental

and rescaled model data. (C) Skewness of the receptive field for the

same four sets of data. The random neural populations did not

have asymmetrical deformation of their response profiles, and thus

could not explain the values observed experimentally.

( )

Text S1 Detailed account of the model. This document provides

equations and parameter settings related to the column model, the

connectivity layout and the learning rules shaping the dynamics of

the network.

(PDF)

Text S2 Statistical analyses of neural activities. This document

provides a description of the set of statistical measures used to

characterize the model neural code.

(PDF)
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