
Pattern Recognition Letters 32 (2011) 411–422
Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec
Tree-structured image difference for fast histogram and distance between
histograms computation

Séverine Dubuisson ⇑
Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie (UPMC), 4 place Jussieu, 75005 Paris, France

a r t i c l e i n f o
Article history:
Received 22 February 2010
Available online 5 November 2010
Communicated by R. Davies

Keywords:
Fast histogram computation
Integral histogram
Histogram-based distance
0167-8655/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.patrec.2010.11.002

⇑ Fax: +33 0 1 44 27 74 95.
E-mail address: Severine.Dubuisson@lip6.fr
a b s t r a c t

In this paper we present a new method for fast histogram computing and its extension to bin to bin his-
togram distance computing. The idea consists in using the information of spatial differences between
images, or between regions of images (a current one and a reference one), and encoding it into a specific
data structure: a tree. The histogram of the current image or of one of its regions is then computed by
updating the histogram of the reference one using the temporal data stocked into the tree. With this
approach, we never need to store any of the current histograms, except the reference image ones, as a
preprocessing step. We compare our approach with the well-known Integral Histogram one, and obtain
better results in terms of processing time while reducing the memory footprint. We show theoretically
and with experimental results the superiority of our approach in many cases. We also extend our idea
to the computation of the Bhattacharyya distance between two histograms, using a similar incremental
approach that also avoid current histogram computations: we just need histograms of the reference
image, and spatial differences between the reference and the current image to compute this distance
using an updating process. Finally, we demonstrate the advantages of our approach on a real visual track-
ing application using a particle filter framework by improving its correction step computation time.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Histograms are often used in image processing for feature rep-
resentation (colors, edges, etc.). The complex nature of images
implies a large amount of information to be stored in histograms,
requiring more and more computation time. Many approaches in
computer vision require multiple comparisons of histograms
for rectangular patches of an input image. Each one is developed
for a specific application, such as for image retrieval (Halawani
and Burkhardt, 2005; Zhong and Defee, 2007), contrast enhancing
(Caselles et al., 1999; Arici et al., 2009) or object recognition
(Gevers, 2001; Laptev, 2010) (and many others). In such appro-
aches, we dispose a reference histogram and try to find the region
of the current image whose histogram is the most similar. The sim-
ilarity is given by a measure that has to be computed between
each target histogram and the reference one. This implies the com-
putation of a lot of target histograms and similarity measures, that
can be very time consuming, and may also need a lot of informa-
tion to store. The main difficulty in such approaches is then to
reduce the computation time, while using small data structures,
requiring less memory.
ll rights reserved.
In this article, we first propose a new fast histogram computa-
tion by using a data structure only coding the pixel differences
between two frames of a video sequence. This data structure is then
used to update the histograms of the first frame, computed during a
preprocessing step. With such an approach, we never need to store
any histogram (except those of the first frame) and our representa-
tion is compact because it only contains the information of differ-
ences between two frames. The main advantages of our approach
are that it is not strongly dependent on the histogram quantization
(i.e. number of bins), it is fast to compute (comparing to other
approaches) and compact. We secondly propose an incremental
version of the Bhattacharyya distance that uses the information of
differences encoded in our data structure. We show this is possible
to derive any Bhattacharyya distance between a precomputed
histogram of a region in the first frame (the reference one) and
the histogram of the corresponding region into the current frame,
without needing to compute this current histogram. Section 2
reviews some of the previous works on fast histogram and similar-
ity measure between histogram computations. Section 3 presents
our method and its application to fast histogram computation.
We extend our reasoning to a fast Bhattacharyya distance computa-
tion just using one histogram, and only updating this distance from
a frame to another one. Section 4 gives some theoretical consider-
ations about time computations and size of storage needed, and
compare the proposed approach, for both contributions, with
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another one based on the Integral Histogram approach. In Section 5,
experimental results show the benefit of our approach. In Section 6
we illustrate the capability of our method on a real application:
object tracking using particle filtering. Finally, we give concluding
remarks in Section 7.

2. Previous works

An image yields a distribution color space by mapping each pix-
el of the image to its color. Binning this probability distribution is a
way to summarize it, and the applied quantization (bin size) con-
trols how much the distribution is summarized: the resulting
quantized structure is called histogram. Without any quantization,
the histogram H of an image I is given by HðkÞ ¼

PN
x¼1

PM
y¼1

fIðx; yÞ ¼ kg, where I(x,y) is a pixel, k = 0, . . .,L � 1 its value (in our
case, this is a grayvalue, but we can also consider color histograms,
gradient orientation histograms, etc.) and N �M the size of the im-
age. If we now consider the histogram is divided into B bins
b = 1, . . .,B, then, a quantized histogram is defined by HðbÞ ¼

PN
x¼1PM

y¼1fIðx; yÞ ¼ k; k 2 ½ðb� 1Þ L
B ; b

L
B ½g. An histogram H is then com-

puted into a region R by browsing its pixels, yielding a global com-
plexity of OðjRjÞ, where jRj is the number of pixels in the region. If
lots of histograms have to be computed locally around a set of sali-
ent points, it can be advantageous to use the histogram of a nearby
region and to update it to obtain the histogram of the current re-
gion, instead of computing all the histograms. This is particularly
necessary in a lot of applications in image or video processing, such
as image retrieval, spatial image filtering (contrast enhancing,
denoising), or temporal image filtering (tracking, detection), when
trying to find displacements of objects between frames. An impor-
tant issue is here the comparison of images, that can be made by
comparing their histogram, using a similarity measure or a dis-
tance. In practice, bin-to-bin distances, like the Euclidean, the v2

or the Bhattacharyya distances are considered as the simplest
way to measure quickly the similarity between two histograms.
The Bhattacharyya distance is believed to be the absolute similar-
ity measure for frequency coded data, such as histograms, and is
then a lot used for histogram comparisons, but if we need real-time
treatments, this is necessary to accelerate its computation. This can
be done by reducing the histogram computation time and/or their
similarity measure computation, and a lot of works have been pro-
posed, mainly for the first task.

One of the first work on the reduction of the redundancy in his-
togram computation was proposed in (Tang et al., 1979), in the
context of image filtering (median filter). Considering the histo-
gram HR of a region R, the histogram of a region Q is computed
by keeping the histogram of their intersection region, removing
the pixels of R that do not belong to Q, and adding those from Q
that do not belong to R. This approach can be very efficient if the
two considered regions have a large intersection area. Recently this
method has been improved by Perreault et al. (2007), also in the
context of median filtering, similar in spirit to Tang et al. (1979),
but using median filtering properties to optimize computations:
they break up the histogram into the union of the columns of the
image, and while filtering it, all histograms can be kept up to date
in constant time with a two-step approach. In (Sizintsev et al.,
2008) the authors propose the distributive histogram, that extends
a part of the work presented in (Sizintsev et al., 2008) but general-
izes it to many applications. They use the property for disjoint re-
gions R and Q that is H(R

S
Q) = H(R) + H(Q), and also maintain one

histogram by column, but the difference is they update histograms
not only using previously computed columns, like in other ap-
proaches, but also using rows. Their approach can also easily be
adapted to non-rectangular regions and multi-scale processing
that is not the case of previous approaches and then a strong
advantage. One can also mention the approach (Hagyard et al.,
1997), dedicated to morphological operations on images: they
use a window similar to the structural element’s one, that only
considers the new pixels (i.e. not already computed ones) to recur-
sively maintain the maximum or minimum in the window for then
performing dilation or erosion operations. A fast way to compute
histograms in terms of time computation is the Integral Histogram
(Porikli, 2005) (IH), that is now used in many applications needing
massive histogram computations by localized searches, especially
in recent tracking algorithms (Adam et al., 2006; Wang et al.,
2007). This approach, inspired from integral image (Viola and
Jones, 2001), consists in computing the histogram of any region
of an image only using four operations (two additions and two sub-
tractions). IH is a cumulative function whose cells IH(ri,cj) contain
the histogram of the region of the image containing its ri first rows
and cj first columns. Each cell is given by IH(ri,cj) = I(ri,cj) +
IH(ri � 1,cj) + IH(ri,cj � 1) � IH(ri � 1,cj � 1). Once IH has been
computed over all cells, we also can derive any histogram of a
sub-region only using four elementary operations, see Porikli
(2005) for more details. For example, the histogram of a w � h re-
gion R with pixel (ri,cj) as bottom right corner is given by HR = IH
(ri,cj) � IH(ri � h,cj) � IH(ri,cj � w) + IH(ri � h,cj � w). The main
drawback of IH is the large amount of data that need to be stored.
For an N �M image, the size of the array IH is N �M � B, where B is
the number of bins of the histogram. All the methods previously
exposed (we can find a good comparative study of some of them
in (Sizintsev et al., 2008)) try to reduce the histogram computation
time by avoiding making two times the same computation, and
then exploiting redundancy properties. But they do not consider
another important question: which one of the computations are
really necessary?

A lot of works also concern the acceleration of the computation
of the similarity between histograms, especially for tracking or
detection applications. This is due to the fact that we need more
and more information to achieve good tracking accuracy, that dras-
tically increases the computation cost. Recent tracking applications
concern for example articulated body (Koch et al., 2009; Nejhum et
al., 2008), in which the object to track is decomposed into several
regions, or also consider both the foreground and the background
(Jeyakar et al., 2008; Hu et al., 2008), and for each one, lots of his-
tograms and similarity measures are computed. Recent works also
concern the combination of multiple visual cues (color, shape,
motions, etc.) to achieve robust object detection or tracking
(Badrinarayanan et al., 2007; Breitenstein et al., 2009; Leichter et
al., 2009). If we know the experimental conditions, it is easy to con-
struct histograms and similarity measures adapted to the task (Qiu
and Han, 2008; Guha et al., 2002), and then to accelerate computa-
tion times. However, only few works directly concern the decreas-
ing of the computation time of similarity measures between
histograms, because most of them choose to reduce only the histo-
gram computation time, and then to integrate them into their
framework (Peihua, 2006; Adam et al., 2006). For all of these
approaches, histograms are always computed, and as previously
said, the main goal is to avoid redundant computations, not the
undesirable ones. In a recent work (Yao et al., 2010) the authors
add temporal information into Bhattacharyya distance computa-
tion to improve tracking the quality in of particle filter framework.
In their case, they embed an incremental similarity matrix that
handles target changes over time in the Bhattacharyya distance
formulation. Their goal is not to accelerate the computation time,
but to improve the robustness of the similarity measure.

In that sense, our approach is totally different than previous ex-
posed ones: we never need to encode histograms (except the refer-
ence ones, as a preprocessing step), but only the temporal
differences between two images, encoded into a specific data
structure, that is then used to update histograms or distances be-
tween histograms. The size of this data structure, the histogram



Fig. 1. Construction of the data structure associated with the image reference D, on
the left. For each non-zero value pixel of D, we store in a tree its row number ri,
column number cj and original and final bins, respectively bo and bf.
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and Bhattacharyya distance computation times mainly depend on
the variations between frames. This method is exposed in the next
section.

3. Proposed approach: temporal structure

In this section, we describe our temporal structure, and the way
we use it for fast histogram and Bhattacharyya distance computa-
tion. Assume that we have a reference Integral Histogram IH (from
the reference image It), and want to compute any histogram in a
new image It+d by only using IH and temporal variations between
It and It+d. Temporal variations are given by the image difference
and we encode them using a tree data structure with height
hT = 3. Then, for each changing pixel (ri,cj), between It and It+d, lo-
cated in the row ri and the column cj, we store ri at the level
h = 1 of the tree and cj at the level h = 2. Leaf nodes contain, for each
pixel (ri,cj), the difference between It and It+d, expressed by (i) the
initial bin it was belonging to in H (extracted from It), and (ii) the
bin it belongs to in It+d. Fig. 1 shows a basic example of the con-
struction of this data structure. On the left, the image difference
between It and It+d shows only four different pixels, situated in
three different rows r1, r2 and r3, and four different columns c1,
c2, c3 and c4. For each pixel (ri,cj), we also have to store its original
and new bins, respectively bo and bf. Algorithm 1 summarizes the
construction of our temporal structure T.

Algorithm 1. Temporal data structure construction

T {}
Compute the image difference D = It � It+d

for all D(ri,cj) – 0 do
bo bin of It(ri,cj); bf bin of It+d(ri,cj)
if bo – bf and node ri does not exist in T then

Create branch ri � cj � (bobf) in T
else

Add branch c � (bobf) to node r in T
end if

end for
3.1. Temporal Histogram

Once we have the reference histogram H and the difference tree
T, we can derive any histogram of a region R in It+d, as described in
Algorithm 2. We then just need to browse the data structure T to
determine if some pixels have changed in this region between
the two images (then, corresponding nodes have been created in
T). For each changing pixel, we can derive the histogram of R from
H by removing one from its bin bo and adding one to its bin bf. This
is a very simple but efficient way to compute histograms because
we just perform the necessary operations (where changes between
frames have been detected).

Algorithm 2. Histogram computation of a region R

Extract the sub-tree TR from T, containing changing pixels in R
between the two frames

for all node branch ri � cj � bo � bf in TR do
H(bo) H(bo) � 1
H(bf) H(bf) + 1

end for
3.2. Temporal Bhattacharyya distance

If we consider two normalized histograms P and Q extracted
from an image of size N �M, with bi (respectively qi) the ith bins
of P (respectively Q), i = 1, . . .,B, the Bhattacharyya distance dbt be-
tween P and Q is given by Bhattacharyya (1943):

dbt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XB

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðbiÞQðqiÞ

qvuut ð1Þ

This can also be written as d ¼ ðdbtÞ2 � 1 ¼ �
PB

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðbiÞQðqiÞ

p
.

As we said previously, when there is a bin difference between
two pixels, we have to remove in H one from the original bin bo

and to add one to the new one bf. If we consider normalized histo-
grams, we have to remove 1

NM from bo and to add 1
NM to bf (this con-

stant need to be precomputed only one time). Considering Eq. (1)
we have to evaluate:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðboÞ HðboÞ�
1

NM

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ�

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

q !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ Hðbf Þþ

1
NM

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þþ

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q !

If we suppose we dispose the histogram of a region R of an im-
age It, and that only one pixel changed its bin in R between It and
It+d, the update dt+d can be written as:

dtþd ¼ �
XB

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðbiÞ2

q !

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ �

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ þ

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
¼ dt þ co þ cf ð2Þ

where

co ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ �

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
Hðb0Þ

q

cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ þ

1
NM

r ! ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
are the update coefficients for one changing pixel (i.e. from bin bo to
bin bf). The update of the Bhattacharyya distance is then given by:

ðdbt
tþdÞ

2 ¼ dt þ dþ 1 ¼ dt þ c0 þ cf þ 1 ð3Þ

Then, for each changing pixel, the Bhattacharyya distance can
be updated using Eq. (3). The initial value of dbt is fixed to 0 be-
cause there is no temporal changes in the reference frame, then
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d0 = (dbt)2 � 1 = �1. Note that this incremental version performs an
exact computation of the Bhattacharyya distance between histo-
grams. Algorithm 3 summarizes the idea, where A ¼ 1

NM has been
precomputed. A big advantage of this new way of writing the Bhat-
tacharyya distance formulation is that square root values can be
precomputed: 1 6 bo 6 B and 1 6 bf 6 B are bins, we can then store
into a B-size array all the B possible H(b) values (b 2 {1, . . .,B}), and
then do not need to compute at each iteration these square root
operations. This is possible but more time consuming with the
classical formulation of Eq. (1), that necessitates to compute and
store all possible

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðbiÞQðqiÞ

p
.

Algorithm 3. Bhattacharyya distance update for a region R

Extract the sub-tree TR from T, containing changing pixels in R
between the two frames It and It+d

Precompute
ffiffiffiffiffiffiffiffiffiffi
HðbÞ

p
values, b 2 {1, . . .,B}

dt �1
for all branch ri � cj � bo � bf in TR do

co  ð
ffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðboÞ � A

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðb0Þ

p
cf  ð

ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ þ A

q
Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Hðbf Þ

q
dt = dt + c0 + cf

ðdbt
tþdÞ

2 ¼ dt þ 1
end for
4. Theoretical study: memory and computation cost

Integral Histogram (IH) is, in our opinion, the best in the sense
that it requires low computation times and is flexible enough to
adapt to many applications, therefore it is the one we have chosen
for comparison with our approach (reader can however find a good
comparative study in (Sizintsev et al., 2008) between existing ap-
proaches and the Integral Histogram one).

In this section, we then compare our approach with IH in terms
of number of operations necessary to compute histograms or dis-
tances between histograms, and size of storage needed for the re-
quired data structures. Here we consider the current image It+d and
the reference one It, of size N �M, and B the number of bins in the
histograms. The histogram of the reference image It has to be com-
puted as a preliminary step for both approaches: we then do not
consider this common step, neither the access to any of the sub-
histograms of It that is also necessary for both approaches. We also
do not consider the allocation operations for the two data struc-
tures (an array for Integral Histogram and a tree for Temporal His-
togram), but this is clear that the tree needs less allocation
operations than an array, for a fixed number of pixels, because it
only stores four values per changing pixel, whereas IH stores a
whole histogram per pixel. The determination of the bin of a cur-
rent pixel requires one division and one floor: we call fb = div(k,B)
this operation (where k is a pixel value, and div the integer divi-
sion). We also call a an addition (or a subtraction). The access to
a cell of the array (for Integral Histogram) or of the tree (for Tem-
poral Histogram) of the current image It+d requires computing an
offset, corresponding to a pointer addition (operation a). In our
tests on Matlab�, we found fb � 8a, by considering B = 2x: we then
will use this approximation to simplify our formulations. Both
methods require two steps:

1. the data structure construction, then
2. the new histogram computation.

We first consider and compare independently both steps. Next, we
call IH Integral Histogram and TH Temporal Histogram.
4.1. Construction of data structures

For IH, we need to browse each one of the NM pixels It+d(ri,cj) of
the image, determine its bin value (one operation fb), and compute
the histogram using four additions (four operations a for data ac-
cess, then four operations a to add or subtract these values, see
Section 2), for each of the B bins of the histogram. This part then
needs a total number of operations of:

ðndÞIH ¼ ð8aþ fbÞNMB � 16aNMB

This number of operations is constant.
For TH, we first need to find non-zero values in the image differ-

ence D (NM operations a). By scanning D in the lexicographic order,
we then create a branch in the tree data structure for each non-
zero value: let s be the total number of non-zero value pixels
(s 6 (N �M)). For each of the s changing pixels, we have to deter-
mine its new bin (one operation fb) and stock the two bin values
bo and bf into the tree (2 operations of addition, corresponding to
pointer additions). The number of operations needed for the con-
struction of the tree is then:

ðndÞTH ¼ sðfb þ 2aÞ þ NMa � að10sþ NMÞ

Thus, to compare with IH, we have to consider two special cases:

� In the best case, all the pixels in the image difference are zero-
valued pixels: we need ðndÞbest

TH ¼ NMa operations to construct T.
� In the worst case, all the pixel values of the image difference are

different from zero, the construction of T can be done using a
total number of operations of:
ðndÞworst
TH ¼ NMðfb þ 2aÞ þ NMa ¼ NMð3aþ fbÞ � 11aNM
Even in the worst case (i.e. all the pixels have changed), the

number of operations necessary for the construction of T is less
than the one necessary for the Integral Histogram construction.
The gain g using TH is significant even in this worst case, equal
to 16

11 B � 3
2 B operations, then increasing with B. In a general way,

we have 3
2 B 6 g 6 16B. It should also be noted that (nd)TH does

not directly depend on the number B of bins of the histogram be-
cause we do not encode any histogram (and so do not need to
browse all the bins), but only temporal changes between images.
That is one of the advantages of our approach.

4.2. Histogram computations

4.2.1. One histogram computation
For both approaches, we consider the problem of computing the

histogram of any region R of a new image It+d knowing histograms
in It.

For IH we just need two additions and two subtractions be-
tween values stored in the data structure (four operations a to ac-
cess the data, then four to sum them), for each of the B bins of the
histogram (see Section 2). Then, to compute any histogram of It+d,
we need a constant number of operations:

ðncÞIH ¼ 8aB

This is a bit more complicated for TH. We first need to extract
the region R from T, if it does exist, i.e. if pixels have changed be-
tween It (we know its histograms, see the introduction of this sec-
tion) and It+d. Then, for each of the sR differences in R (sR 6 s if R is a
subregion of It+d, otherwise sR = s), we have to remove one from the
bin bo (two operations a to access bo, then one operation a for the
substraction) and add one to the bin bf (two operations a to access
bf, then one operation a for the addition). The computation of a
new histogram requires a total number of operations of:

ðncÞTH ¼ 6asR
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We then need to consider the two following special cases:

� In the best case, there is no difference between the two consid-
ered regions: we need ðncÞbest

TH ¼ 0 operation.
� In the worst case, all the pixel values have changed between the

two regions, and an histogram computation requires a number
of operations of:
ðncÞworst
TH ¼ 6ajRj

where jRj is the number of pixels in R. Moreover, if R = It+d, then
ðncÞworst

TH ¼ 6aNM.

The efficiency of our approach for the new histogram compu-
tation (without considering data structure construction times, see
Section 4.2.2 for the total computation evaluation) then depends
on the size of R and more precisely on the number of changing
pixels between It and It+d belonging to R. In the general case, we
have:

ðncÞTH < ðncÞIH if 6asR < 8aB() sR <
4
3

B

We then conclude that TH is better as long as the number of chang-
ing pixels is less than 4

3 times the number of bins of the computed
histogram.
4.2.2. Total computation
The total histogram computation time in a region of the new

image It+d is fixed for IH:

ðntÞIH ¼ ð8aþ fbÞNMBþ 8aB � 8aBð2NM þ 1Þ

For TH, it depends on two major factors: (i) the number s of chang-
ing pixels between It and It+d and (ii) the number sR of changing pix-
els between ðRÞIt

and ðRÞItþd
. We need a total number of operations:

ðntÞTH ¼ NMaþ sðfb þ 2aÞ þ 6asR � aðNM þ 10sþ 6sRÞ

As previously, we may distinguish two cases:

� In he best case, there is no difference between the considered
regions: T is empty and we need ðntÞ best

TH ¼ NMa operations, cor-
responding to the image difference computation.
� In the worst case, all the pixel are different between It and It+d

(so they are between ðRÞIt
and ðRÞItþd

), and we then need a total
number of operations:
ðntÞworst
TH ¼ NMð3aþ fbÞ þ 6ajRj � að11NM þ 6jRjÞ
If R = It+d, ðntÞworst
TH ¼NMð3aþ fbÞþ6aNM¼NMð9aþ fbÞ � 17aNM.

IH depends on the size N �M of the image and on the num-
ber B of bins of the histogram. TH depends on the number of
changing pixels s between It and It+d but also on the size of
the region on which we compute the histogram. But the data
structure construction step requires less operations for TH (see
Section 4.1).

Proposition 1. The total time computing for one histogram compu-
tation is always less with Temporal Histogram approach, than with the
Integral Histogram one.
Proof. Let’s compute ðntÞworst
TH � ðntÞIH:

ðntÞworst
TH � ðntÞIH � 17aNM � 8aBð2NM þ 1Þ

� 17aNM � 16aBNM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
60 if BP2

�8aB

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
60 if BP2
As the quantization of an histogram must be up to one, we deduce
that ðntÞworst

TH < ðntÞIH: Temporal Histogram approach gives the lower
computation time for one histogram computation. h
4.3. Storage

We now compare the quantity of information necessary for
both approaches.

For IH, we need one B-size array for each pixel (ri,cj), corre-
sponding to the histogram of the region from rows 1 to N and col-
umns 1 to M. Note that to avoid overflows, we can compute one
Integral Histogram per bin. We then need a constant-size array,
containing a total number of cells of:

ðcÞIH ¼ NMB

For TH we use a tree T as data structure whose size depends on the
number s of changing pixels between images It and It+d. If we call nr

the number of rows in It+d containing changing pixels, the number
of nodes of T is:

ðcÞTH ¼ nr þ 3s

i.e. nr for the rows, and 3 nodes for each changing pixel. Here again,
we can distinguish two cases:

� In the best case, there is no difference between regions, T is
empty: ðcÞbest

TH ¼ 0.
� In the worst case, all the pixels are different, and the size if the

required data structure T is:
ðcÞworst
TH ¼ N þ 3NM ¼ Nð1þ 3MÞ
Proposition 2. Temporal Histogram necessitates less memory foot-
print than Integral Histogram does for any detection, comparison or
recognition task based on histograms.

Proof. We have ðcÞworst
TH � ðcÞ IH ¼ Nð1þ 3MÞ � NMB:

ðcÞworst
TH 6 ðcÞIH if Nð1þ 3MÞ 6 NMB() B P

1þ 3M
M

() B P 3

For detection, comparison or recognition tasks based on histograms,
we may use histograms that are not too much quantized. In the
most common cases, we choose B = 8 or B = 16, values greater than
3, and then ðcÞworst

TH < ðcÞIH. Globally our histogram computation
needs then less storage. h

Note that if we consider (c)TH = nr + 3s, we can say it is more
than probable that the number of changing pixels between the
two images is less than the total number of pixels. At most, if all
these changing pixels are located on different rows (negative sce-
nario), we have nr + 3s = s + 3s = 4s, so:

ðcÞTH 6 ðcÞIH if 4s 6 NMB() s 6
NMB

4

The more B, N or M increases, the more this is useful to use our ap-
proach instead of Integral Histogram one.

4.4. Temporal Bhattacharyya distance computation

Usually, the computation of the Bhattacharyya distance corre-
sponds to a scalar product between two B-size vectors (i.e. the his-
tograms). If we call p a product of square roots (i.e. p ¼

ffiffiffi
x
p ffiffiffi

y
p

, with
x 2 N and y 2 N), the cost of the Bhattacharyya distance computa-
tion is then pB. To optimize and avoid computing a lot of square
roots, this is better to precompute all the square roots and stock
them into an array, so that the cell i of this array contains

ffiffi
i
p

,
i = 1, . . .,N �M (tests have shown this takes 32 ms for N = M =
1024, and 8 ms for N = M = 512). In this case, the Bhattacharyya
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distance computation corresponds to B products, in our tests
approximatively equivalent to B additions:

ðtÞbt � Ba

We are now comparing Bhattacharyya distance computation time
given by our approach and by the classical one (using Integral His-
togram). Note that with our approach, we never compute any histo-
gram: we directly update the Bhattacharyya distance using the
temporal tree T. We then do not need to store anything, except
for the first frame (the reference one), that is also necessary in the
other approach.

The computation of the Bhattacharyya distance between two
images It and It+d with (IH + Bhat.) approach necessitates the fol-
lowing steps:

1. Compute the whole Integral Histogram of It+d (the one of It was
already computed in a previous iteration of the algorithm).

2. Compute Ht and Ht+d the histograms of respectively It and It+d.
3. Compute the Bhattacharyya distance between Ht and Ht+d (oper-

ation (t)bt).

See Section 4.2.2 for the estimation of the computation times of the
two first steps. The total computation time is then:

ððntÞIHÞ
bt � ð8aþ fbÞNMBþ 8aBþ aB � aBð16NM þ 9Þ

For Temporal Bhattacharyya (TB), the idea is to update the dis-
tance value by browsing the temporal tree T. The computation of
Bhattacharyya distance between two images It and It+d necessitates
the following steps:

1. Construct the temporal tree T only containing differences
between It and It+d (histograms was computed for It in a previ-
ous iteration of the algorithm).

2. Update the Bhattacharyya distance between ht and ht+d using
Eq. (3).

See Section 4.2.2 for the total computation time of the first step.
The update of Bhattacharyya distance (Eq. (3)) necessitates to
access data (four operations a to access each bo and bf in T), then
four products and four additions (�8a). The total computation time
in the complete image It+d is then:

ððntÞTHÞ
bt � sðfb þ 2aÞ þ NMaþ ð4aþ 8aÞsR � að10sþ NM þ 12sRÞ

We can distinguish two cases:

� In the best case, there is no difference between regions, T is
empty (s = sR = 0):
ððntÞbest
TH Þ

bt � NMa
� In the worst case, all the pixels are different (s = NM and
sR = jRj):
ððntÞworst
TH Þbt � að11NM þ 12jRjÞ
If R = It+d, ððntÞworst
TH Þ

bt � 23aNM.

Proposition 3. The computation time of the Bhattacharyya distance
between two histograms is always less with Temporal Bhattacharyya
approach, compared to the classical one.

Proof. Let’s compute ððntÞworst
TH Þbt � ððntÞ IHÞ

bt in the worst case for
our approach (all the pixels have changed between frames, and
we compute the whole histogram of It+d):
ððntÞworst
TH Þbt � ððntÞ IHÞ

bt � 23aNM � 16aBNM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
60 if BP2

�9aB

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
60 if BP2

B is always up to one, we then have ððntÞworst
TH Þbt

< ððntÞIHÞ
bt: Tempo-

ral Bhattacharyya gives the lower computation times. In that special

case, ððnt ÞIHÞ
bt

ððnt Þworst
TH Þbt � 16aBNMþ9aB

23aNM � 16B
23 : our approach is 16B

23 times faster than

the classical approach. h

As we have shown, this time mainly depends on the number sR

of changing pixels between the two considered regions of the
frames. Two other parameters are also very important for bin to
bin histogram distance computation: the whole size N �M of the
image and the number B of bins of the considered histograms.

All of these theoretical considerations about the number of
operations and storage needed for both approaches will be checked
with a number of experimental results in the next section.

5. Experimental results

5.1. Temporal Histogram vs. Integral Histogram

In this section, we systematically compare Integral Histogram
(IH) with the proposed Temporal Histogram (TH), since no method
has been proved to be more interesting than IH in terms of both
computation time and storage: it would then not be relevant to
perform comparisons with other methods based on this criteria.
All the tests have been performed with Matlab, on a MacBook
Pro 2.53 GHz Intel Core Duo. In the next subsections, we call com-
putation of an histogram the two-steps process needed for both
approaches: data structure construction and histogram computa-
tion. In Section 4, we have highlighted some parameters that we
directly involved in our tests, such as the number B of bins of the
histograms, the size N �M of the images, the number s of changing
pixels in the whole image, and the number sR of changing pixels in
the considered region for the histogram computation. We also test
the number of histograms we can compute in a same frame while
well-performing IH approach. All computation times reported in
this section correspond to the mean value over 100 different tests.
Finally, we compare storage footprints.

5.1.1. Video sequences
Tests on different complete video sequences have been per-

formed. In this section we only present those made on sequences
‘‘Walking’’ (15 frames of size 275 � 320), ‘‘Tennis’’ (89 frames of
size 240 � 342) and ‘‘Parking’’ (231 frames of size 576 � 768),
see examples of frames in Fig. 2. In these tests, we are interested
in the total computation times (along all the sequence) needed
for the computation of the histograms of 10 randomly chosen re-
gions of size 50 � 50 in each It+d (d P 1, and at least 10% of pixels
have changed between considered regions) i.e. all over the se-
quences, depending on the number of bins. We can see in Fig. 3
that the computation times obtained with our approach are lower
for each one of these sequences. This is in part due to the fact that
the computation of the array in each frame of the Integral Histo-
gram takes a lot of time, even if the histogram computation time
(just requiring four operations) is small. This also shows that our
approach stays stable with respect to the increasing number of
bins B, contrary to Integral Histogram one, whose computation
time increases with B (drastically for B = 256). This is due to the
fact that, contrary to IH, the number B of bins does not affect a
lot the computation time (see Section 4.2.2) of TH if there are only
few changing pixels between two frames. As there is no ‘‘best’’
number of bins, and different bin numbers can reveal different
features of the data, it is difficult to determine an optimal number



Fig. 2. A frame from, from left to right: ‘‘Walking’’, ‘‘Tennis’’ and ‘‘Parking’’ sequences.
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of bins, without making strong assumptions about the shape of the
distributions. With our approach, it is not necessary to make such
assumptions. Finally we can see our approach can achieve a mean
of 4 times more frames per second than IH does.
5.1.2. Image and size variations
The performance of our approach principally depends on the

number s of changing pixels. The larger s, the more consuming
the method is. We then have tested the computation time as a
function of s and compared results with those obtained by the IH
method.

In the first test, on the ‘‘Walking’’ video sequence, I1 (first frame)
is used as reference image and we evaluated the histogram compu-
tation time for the histogram of the whole next image (I2), in which
25% of the pixels vary from the first frame. Results are shown in
Fig. 4, for different values of B. We can see that the computation
time stays stable with the increasing of B with TH, when the one
of IH drastically increase.

For the second test we have generated synthetic N � N images
for different values of N and compared times for the computation
of the histogram with B = 16 bins of this whole image (no pixel var-
iation) for both approaches. Comparative results (in seconds) are
reported in Table 1, depending on N. The increase of N does not
influence a lot our approach, while drastically decreasing IH per-
formance. As no pixel have changed between the two considered
frames, the small time computation increasing for TH is just due
to the pixel scanning of the new image, for the image of differences
Fig. 3. Tests on different video sequences (see examples of frames in Fig. 2). Bar dia
approaches all over the sequence (the number of frames depends on the sequence), for
green and ‘‘Parking’’ in orange (IH is represented as plain color, TH as transparency colo
referred to the web version of this article.)
computing, that takes more time for a large image than a small
one: this explains why the time computation for TH is equal to
0.19 ms for N = 256 and to 12 ms for N = 2048 (�64 times more
computing, exactly corresponding to the size of frame ration be-
tween these two cases).

The third test consists in considering a 1024 � 1024 synthetic
image and simulating a number s of changing pixels, then comput-
ing the histogram with B = 16 bins of this new image. We have
compared the computation times between both approaches
depending on the percentage of changing pixels: results are re-
ported in Table 2. The computation time with our approach stays
always below IH’s.
5.1.3. Number of histogram computations
The most time consuming part of IH is the construction of the

array. However this array allows computing very quickly any his-
togram (or any set of histograms) only using four operations per
histogram. In this subsection, we have launched a massive number
of histogram computations and compared both approaches in
terms of computation times. The idea is to simulate the computa-
tion of target histograms in a search window around a precise po-
sition, such as in spatial filtering or temporal filtering (particle
filtering for example). Test have been made on the ‘‘Walking’’ se-
quence. We have chosen to present the results for different values
of B. Results are shown in Fig. 5. Once again the performance de-
pends on the quantization of the histograms. For a strong quantiza-
tion (B = 2 or 4), IH and TH become equivalent for 5000
grams of computation times (in ms) of 10 randomly chosen histograms for both
different sequences and increasing number of bins: ‘‘Walking’’ in blue, ‘‘Tennis’’ in
r). (For interpretation of the references to color in this figure legend, the reader is



Fig. 4. Comparison of Integral Histogram (IH, dashed line) and Temporal Histogram
(TH, plain line) time computation depending on quantization (value of B) of the
histogram. Tests have been made on ‘‘Walking’’ sequence (275 � 320), between
frames I1 and I2: 25% of the pixels have changed.

Table 1
Time computation (in seconds) of an histogram with B = 16 bins depending on the
size of the image (no pixels have changed).

N 64 128 256 512 1024 2048

IH 0.002 0.009 0.03 0.14 0.58 2.34
TH 1.2 � 10�5 4.7 � 10�5 1.9 � 10�4 7.64 � 10�4 0.003 0.012

Table 2
Time computation (in sec.) of the histogram (B = 16) of a new 1024 � 1024 synthetic
image depending on the percentage of changing pixels.

% Changing pixels 0% 5% 10% 25% 50% 75% 100%

IH 0.78 0.78 0.78 0.78 0.78 0.78 0.78
TH 0.003 0.0055 0.008 0.015 0.027 0.039 0.052
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computations of histograms. For B = 8,16,32, methods are also
equivalent for 5000 computations. For B = 128, 10,000 computa-
tions are needed, and 25,000 for B = 256. These results confirm the-
oretical results of Section 4, in which we have shown the more B
increases, the more TH outperforms IH. This interesting result then
shows that we can keep good results (compared to IH) with no
need for a strong quantization of the histogram: TH does not need
to approximate too much histograms to provide good computation
times, which is a real advantage for histogram based search appli-
cations. We can however see one limitation of the proposed ap-
proach when dealing with too much histograms. It is clear that
the performances of TH then depends on the number of changing
pixels between the two considered regions on which we compute
histograms, and that is the reason why our computation times in-
crease with the number of computed histograms. However, for a
small histogram quantization, we achieve very good results. Our
TH is then suitable for visual tracking applications where it is bet-
ter not to quantify histograms too much.

5.1.4. Storage
In this section we show that our approach does not need to

store a lot of information, contrary to Integral Histogram. Table 3
reports the size (number of elements) required for the two data
structures used for the test shown in Fig. 4 (between two consec-
utive frames of the sequence). The number of elements necessary
for IH increases with the number of bins, according to the results
of Section 4.3, in which we found (c)IH = NMB. For TH, it depends
on the number of changing pixels between the two frames,
(c)TH = nr + 3s. A pixel is said to be changing between the two
images if it changes its bins in the histogram. This notion then
strongly depends on the histogram quantization: the more
histogram is quantified, the less a pixel changes its bins between
two images. That is the reason why the number of elements of
our data structure indirectly depends on B. Note that the number
of elements needed for IH does not change if images are really dif-
ferent, which is not the case for TH. We report in Table 4 the size of
these data structures depending on the number s of changing pix-
els between two images generated as random 1024 � 1024 matri-
ces (same experiments as in Section 5.1.2). We fixed B = 16. For this
case, the number of elements necessary for Integral Histogram is
fixed so that (c)IH = NMB = 1024 � 1024 � 16 = 1.6 � 107. Even con-
sidering 106 changing pixels (i.e. 100% of the initial image) in the
region where the histogram is computed, the number of elements
needed to store it is always below the one IH needs.

In our opinion, TH is a good alternative to histogram computa-
tion in a lot of cases because it gives a compact description of tem-
poral changes and lower histogram computation times. Moreover,
we never need to store histograms (except for the reference im-
age), that is a real advantage when working on video sequences
(for these cases, the reference image is the first of the sequence,
and the histogram computation can be seen as a preprocessing
step).

5.2. Temporal Bhattacharyya distance vs. classical one

We compare computing time of the classical approach, consist-
ing in extracting histograms using Integral Histogram approach,
then computing the Bhattacharyya distance (we call (IH + Bhat.)
this approach), and of our approach (TB).

5.2.1. Size of the image
In this test, we compare (IH + Bhat.) and TB computation times

between two N � N images (randomly generated), depending on
the number of changing pixels between frames (the number of bins
is here fixed, B = 16). In the first line of Table 5, we have reported IH
results (these results do not depend on the total number of chang-
ing pixels). In the other lines, we reported the results obtained with
our approach, when, from top to bottom, 0%, 25%, 50% and 100% of
the pixels have changed. The results emphasize the fact that our
temporal data structure construction and use is very efficient be-
cause we do not compute distances when there is no changing pix-
els between frames: we just need to update the value of the
distance (initialized to �1) if this is necessary. We can also see that
even in the worst case (i.e. 100% of the pixels have changed be-
tween the two considered images), our time computations are low-
er. This is mainly due to the fact that the construction of the
Integral Histogram takes a lot of time, although it is necessary to
quickly compute any histogram in the image. In our case, we never
compute any histogram, just update the distance value, that is a big
gain of time.

As we can see in Table 5, it takes less computation time with our
approach to compute Bhattacharyya distance between two histo-
grams, even when 100% of the pixels changed their value. The
mean gain over all values of N is 11.3. This confirms Proposition
3: our approach is approximatively 16B

23 � 11:13 times faster than
(IH + Bhat.).

5.2.2. Number of bins
We now compare computation times of both approaches

depending on the quantization of histograms (value of B). As it is
well-known, bin-to-bin distances, such as the Bhattacharyya one,
are not robust to the histogram quantization. Therefore, the num-
ber of bins is often limited to B = 8 to make a compromise between
the discriminative power of the descriptors stored in the histogram
and the robustness of the representation. Here again, we can see
(Table 6) the advantages of our approach that is not drastically af-
fected by the variation of this parameter, when the computation



Fig. 5. Comparison of IH (dashed lines) and TH (plain lines) results for a massive number of histogram computations, for different values of B, from top to bottom, from left to
right, 2, 4, 8, 16, 32, 64, 128 and 256.

Table 3
Size (number of elements) of data structures required for both approaches, depending on B, the test corresponds to the one of Fig. 4.

B 2 4 8 16 32 64 128 256

IH (�105) 1.76 3.52 7.04 14 28.1 56.3 112 225
TH (�105) 0.091 0.18 0.3 0.45 0.45 0.45 0. 453 0.453

Table 4
Size (number of elements) of data structures required for both approaches, depending
on the number s of changing pixels between two images generated as random
1024 � 1024 matrices, for B = 16. Percentage (%) of changing pixels are reported in the
second line of this table.

s 102 103 104 105 106

% 0.01 0.1 1 10 100
IH 1.6 � 107 1.6 � 107 1.6 � 107 1.6 � 107 1.6 � 107

TH 1.3 � 103 3.8 � 103 2.9 � 104 2.8 � 105 2.8 � 106
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time of the other approach drastically increases with B. The con-
struction of the Integral Histogram as well as Bhattacharyya dis-
tance computation, depending on B, play a major part in this
increase.

Analyzing Tables 5 and 6 permits to establish that (IH + Bhat.)
approach best performs for B and N minimal, and worst performs
for N and B big. Let’s compare these two special cases (100% of
the pixels have changed between the two frames, that only does af-
fect our approach results, and moreover is the worst case):



Table 5
Computation times of the Bhattacharyya distance between two histograms for both approaches (in ms) with B = 16 bins depending on the size of the region in which the
histograms are computed and on the percentage of changing pixels s between these two regions (this only affects our approach).

N 16 32 64 128 256 512 1024 2048

(IH + Bhat.) 0.19 0.76 3.1 12.3 49 196.2 784.7 3138.7
TB (0%) 0.0007 0.0029 0.02 0.05 0.21 0.74 3.1 12.2
TB (25%) 0.0051 0.024 0.089 0.36 1.4 5.7 23 92
TB (50%) 0.009 0.035 0.14 0.57 2.3 9.2 36.8 147.1
TB (100%) 0.017 0.068 0.27 1.1 4.4 17.6 70.5 282
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� B = 2, N = 16, (IH + Bhat.) approach takes 0.028 ms, when TB
takes 0.017 ms.
� B = 256, N = 2048, (IH + Bhat.) approach takes 49.82 s, when TB

takes 0.27 s.

These test have shown the advantages of our approach to accel-
erate distance between histograms computation times. Note that
on color images, where B becomes larger (each color channel is
quantized), Temporal Histogram is also very effective, especially
compared to Integral Histogram, whose histogram construction
becomes very slow. In the next section, we are considering a clas-
sical tracking problem, involving the computation of multiple dis-
tances between histograms in a same frame.
6. Integration into a particle filter: fast particle weight
computation

A good tracker should be able to predict in which area of a new
frame the object is. Among all the methods, one can cite probabi-
listic trackers. In such approaches, an object is characterized by a
state sequence {xk}k=1,. . .,n whose evolution is specified by a dy-
namic equation xk = fk(xk�1,vk). The goal of tracking is to estimate
xk given a set of observations. These observations {yk}k=1,. . .,m, with
m < n, are related to the states by yk = hk(xk,nk). Usually, fk and hk

are vector-valued, nonlinear and time-varying transition functions,
and vk and nk are white Gaussian noise sequences, independent
and identically distributed. Tracking methods based on particle fil-
ters (Gordon et al., 1993; Isard and Blake, 1998) can be applied un-
der very weak hypotheses and consist of two main steps:

1. a prediction of the object state in the scene (using previous
information), that consists in propagating particles according
to a proposal function (see Chen (2003));

2. a correction of this prediction (using an available observation of
the scene), that consists in weighting propagated particles
according to a likelihood function.

Joint Probability Data Association Filter (JPDAF) (Vermaak et al.,
2004) provides an optimal data solution in the Bayesian framework
filter and uses a weighted sum of all measurements near the pre-
dicted state, each weight corresponding to the posterior probabil-
ity for a measurement to come from an object. Between two
observations, the set of particles evolves according to an underly-
ing Markov chain, following a specific transition function. Given
a new observation, each particle is assigned a weight proportional
to its likelihood of belonging to a tracked object. New particles are
Table 6
Computation times (in ms) of the Bhattacharyya distance between two histograms dependi
the two considered 512 � 512 size images.

B 2 4 8 16

(IH + Bhat.) 24.5 49 98.1 196.2
TB 9.2 9.21 9.19 9.2
randomly sampled to favor particles with higher likelihood. A clas-
sical approach consists in integrating the color distributions given
by histograms into particle filtering (Pérez et al., 2002), by assign-
ing a region (e.g. target region) around each particle and measuring
the distance (e.g. the Bhattacharyya distance) between the distri-
bution of pixels in this region and the one in the area surrounding
the object detected in a previous frame (e.g. reference region). This
context is ideal to test and compare our approach in a specific
framework.

For this test we measure the total computation time of process-
ing particle filtering in the first 60 frames of the ‘‘Rugby’’ sequence
(240 � 320 frames, see a frame in Fig. 6): we are just interested in
the B = 16 bin histogram computation time around each particle
location, then the particle’s weight computation using the Bhatta-
charyya distance, that is the point of our paper. In the first frame of
the sequence, the validation region (of fixed size 50 � 70 pixels)
containing the object to track (one rugby player) is manually de-
tected. JPADF is then used along the sequence to automatically
track the object using Np particles. Then, the total computation
times needed for each method is detailed below:

� For (IH + Bhat.): one Integral Histogram Hi in each frame
i = 1, . . ., t of the sequence, then Np target histograms (one for
each particle) are computed using four operations on Hi, and,
for each one, its Bhattacharyya distance to the reference histo-
gram is evaluated.
� For TB: one Integral Histogram H (only in the first frame), one

tree Ti construction in each frame i = 1, . . ., t of the sequence,
then, the update of the computed Bhattacharyya distances for
each of the Np regions surrounding the particles.

Computation times are reported in Table 7 for different numbers
Np of particles used. Computation times are lower with our
approach until Np = 5000 (tests have shown that for Np = 8500,
computation times are the same for both methods). Note that, in
practice, we do not need so much particles in a classical problem.
Our approach permits real-time particle filter based tracking for
a reasonable number of particles, which is a real advantage. Note
that the purpose of this test was not to deal with tracking perfor-
mances, we then do not give any results about tracking quality:
we just want to show that integrating TH instead of IH into particle
filter correction step can accelerate the process. Moreover, we have
shown that for similar computation times, we can use more
particles into the framework integrating TH. As it is well-known
(Gordon et al., 1993) that the particle filter converges with a high
number of particles Np, we can argue that integrating TH into a par-
ticle algorithm improves visual tracking quality. Note that we have
ng on the number B of bins of the histograms: 50% of the pixels have changed between

32 64 128 256

392.3 784.7 1569.3 3138.7
9.2 9.21 9.2 9.18



Fig. 6. Example frame of the ‘‘Rugby’’ sequence: the red rectangle is the validation
region, the green one the target region associated to one particle. Blue crosses
symbolize particle positions in the frame around which we compute histograms.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 7
Total computation times (in ms) and gain (in %) between both approaches for all
histograms (B = 16) in the particle filter framework, depending on the number Np of
particles.

Np 50 100 1000 5000 10,000
IH 47.2 47.4 47.5 50.48 53.59
TH 12.5 13.6 28.31 40.4 76.24
Gain +73.5% +71.3% +40% +19.9% �42.3%

Table 8
Total computation times (in ms) and gain (in %) between both approaches for all
Bhattacharyya distance computations in the particle filter framework, depending on
the number Np of particles.

Np 50 100 500 1000 5000
IH 55 55.4 55.7 60.48 73.59
TH 14 19.6 28.31 45.4 96.24
Gain +74.5% +64.6% +49.1% 24.9% �30%
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obtained the same kinds of results on different video sequences
(people tracking on ‘‘Parking’’ sequence and ball tracking on ‘‘Ten-
nis’’ sequence). Table 8 shows the total computation times (in ms)
for all Bhattacharyya distance computations in the particle filter
framework in one frame, depending on the number Np of particles
(B = 16), for both approaches. Here again, our approach gives better
results. As the update of the Bhattacharyya distance requires more
operations, the time computing for this test quickly increases with
our approach, but keeps good results comparing with the other
approach until Np = 2500.
7. Conclusion

We have presented in this paper a new method for fast histo-
gram computation, called Temporal Histogram (TH) and its exten-
sion to fast Bhattacharyya distance computation. The principle
consists in never encoding histograms, but rather temporal
changes between frames, in order to update a first preprocessed
histogram. This technique presents two main advantages: we do
not need a large amount of information to store whole histograms
and it is less time consuming for histogram or distance between
histograms computation. We have shown by theoretical and
experimental results that our approach outperforms the well-
known Integral Histogram in terms of total computation time
and quantity of information to store. Moreover, the introduction
of TH into the particle filtering framework has shown its usefulness
for real-time applications in most common cases. Integral Histo-
gram requires the computation of the accumulator array in each
new image which takes a lot of time (never taken into account in
the evaluation of computation times of the classical approaches).
TH computes histogram only if necessary (i.e. some changes be-
tween images have been detected). We also have extended this
reasoning to fast Bhattacharyya distance computation by defining
a new incremental definition of this distance that does not neces-
sitate the computation of histograms. Future works will concern
the study of other distances (or similarity measures) between
histograms to determine if we can use temporal information (i.e.
differences) to update them. We also work on an incremental
spatio-temporal definition of the Bhattacharyya distance that
could be employed for spatial filtering.
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