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Abstract— This survey reviews computational algo-
rithms for generating 3D objects grasps with autonomous
multi-fingered robotic hands. Over the past 20 years,
grasping has been an increasingly active research area. Ex-
isting papers focus on reviewing the mechanics of grasping
and the finger-object contacts interactions [21] or robot
hand design and their control [4]. Robot grasp synthesis
algorithms has been reviewed in [17], but since then an im-
portant progress has been made toward applying learning
techniques to the grasping problem. This survey focuses on
analytical as well as empirical grasp synthesis approaches.

I. Introduction

Grasp means to seize and hold by or as if by clasping
with the fingers or arms. The first goal of every grasping
strategy is to ensure stability. A grasp is stable if a small
disturbance, on the object position or finger force, gener-
ates a restoring wrench that tends to bring the system back
to its original configuration [6], [24]. Nguyen in [43] in-
troduces an algorithm for constructing stable grasps. He
also proves that all 3D force-closure grasps can be made
stable. A grasp is force-closure when the fingers can apply
appropriate forces on the object to produce wrenches in any
direction [15]. In other words, the wrench or grasp matrix,
noted W , which column vectors are the primitive contact
wrenches, noted wi, resulted by contact forces at the con-
tact points, should positively span the entire 6-dimensional
wrench space. If ri denotes the position vector of the i− th
grasp point in the object coordinate system, a wrench wi,
which is the combination of the force and torque corre-
sponding to a grasp force fi, is given by the following equa-
tion:

wi =
fi

τi

)
=

fi

ri × fi

)
(1)

In the literature, force-closure condition may be confused
with form-closure. The latter induces complete kinematical
restraint of the object and is obtained when the positions
of the fingers ensure object immobility. Bicchi in [1] de-
scribes in detail these conditions. Obviously, stability is
a necessary but not a sufficient condition for a grasping
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strategy. When we reach out to grasp an object, we have
a task to accomplish. Thus, in order to successfully per-
form the task, the grasp should also be compatible with the
task requirements. Computing task-oriented grasps is con-
sequently crucial for a grasping strategy. Finally, because
of the variety of objects shapes and sizes, a grasping strat-
egy should always be prepared to grasp objects the robot
sees for the first time.

Fig. 1. Grasp strategy should satisfy three constraints: stability, task com-
patibility and adaptability to new objects.

Thus, a grasping strategy, as shown in figure 1, should
ensure stability, task compatibility and adaptability to novel
objects. In other terms, a grasp synthesis strategy should
always have an answer to the following question: where to
grasp a novel object in order to accomplish a task? Analyt-
ical and empirical approaches answer this question differ-
ently.

Analytical approaches choose the finger positions and
the hand configuration with kinematical and dynamical for-
mulations of the grasp stability or the task requirements.
On the other hand, empirical approaches use learning al-
gorithms to choose a grasp that depend on the task and on
the object’s geometry. In the following, we review these
two approaches applied to 3D objects grasps synthesis. The
reader should notice that many algorithms have been devel-
oped for 2D objects grasp planning [10],[13], but 3D ob-
jects grasp synthesis is still an active research area due to
the high dimensional grasp space and objects complex ge-
ometry.
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II. Analytical Approaches

Analytical Approaches consider kinematics and dynam-
ics formulation in determining grasps. The complexity of
this computation arises from the number of conditions that
must be satisfied for a successful grasp. We previously
showed that two main conditions identified in the grasp-
ing bibliography are force-closure and task compatibility.
The following paragraphs present strategies developed to
meet these conditions. The diagram of figure 2 summarizes
these strategies. A quick look at this diagram shows that
many works have been developed to compute force-closure
grasps but only few have addressed the problem of com-
puting task oriented ones. This shows the difficulty of the
latter. In the following, we present and discuss some rel-
evant works for generating force-closure and task-oriented
grasps.

A. Force-Closure Grasps

The works in this section present techniques for finding
force-closure grasps for 3D objects. For this purpose, two
approaches may be considered: (1) analyzing whether a
grasp is force-closure or not; or (2) finding fingertips lo-
cations such that the grasp is force-closure. The former
considers force-closure necessary and sufficient conditions.
The latter is the force-closure grasp synthesis problem, and
it is the one considered here since this survey discussed
grasp synthesis. Given the quantity of relevant work in
this field, we divide them into the following groups: (1)
force-closure grasps synthesis for 3D objects and (2) op-
timal force-closure grasps synthesis according to a quality
criterion.

A.1 Force-Closure Grasps Synthesis for 3D Objects

Depending on the object model, polyhedral or complex,
different grasps synthesis strategies have been proposed in
the literature. We present first those dealing with polyhe-
dral objects. These objects are composed of a finite number
of flat faces. Evidently, each face has a constant normal
and the position of a point on a face can be parameter-
ized linearly by two variables. Based on these properties,
grasp synthesis approaches dealing with polyhedral objects
reduce the force-closure condition to a test of the angles be-
tween the faces normals [43] or use the linear model to de-
rive analytical formulation for grasps characterization [46],
[11], [26]. Based on the property that each point on a plane
face can be parameterized linearly with two parameters,
Ponce et al. [46], [14] formulated necessary linear condi-
tions for three and four-finger force-closure grasps and im-
plemented them as a set of linear inequalities in the contact
positions. Finding all force-closure grasps is thus set as a
problem of projecting a polytope onto a linear subspace.

Liu et al. [11] discussed the force-closure grasp synthesis
problem for n fingers when n − 1 fingers have fixed po-
sitions and the grasp with the n − 1 fingers is not force-
closure. Using the linear parametrization of a point on
an object facet, they search locations on that facet for the
nth finger that ensure force-closure. Ding et al. [26] pre-
sented an algorithm to compute the positions for n fingers
to form a force-closure grasp from an initial random grasp.
The algorithm first arbitrarily chooses a grasp on the given
faces of the polyhedral object. If the selected grasp is not
form-closure or in other words if the origin O of the wrench
space lies outside the primitives wrenches convex hull, the
algorithm moves each fingertip position, using this linear
parametrization of a point on an object facet, at a fixed step
on its corresponding face so that the convex hull moves to-
wards the origin O and consequently the form-closure prop-
erty is ensured.

The previous analysis were limited to polyhedral objects
such as boxes. These approaches do not consider the is-
sue of selecting a grasping facet. An exhaustive search is
performed instead. They are efficient when the number of
faces of the object is low. However, commonly used objects
like mugs or bottles are not necessarily polyhedral and can
rarely be modelled with a limited number of faces. Hence,
when polyhedral grasp synthesis approaches are applied to
these objects, they need a huge computation effort to study
the combinations of their large number constituting faces.
Thus, new techniques are required for force-closure grasps
synthesis. Such general approaches place no restrictions
on the object model [7], [27]. Objects are modelled with
a cloud of 3D points or a triangular mesh. The authors
in [7] presented an algorithm for computing three finger
force-closure grasps for 2D and 3D objects. They assume
hard-finger contacts. Based on the intersection of the cor-
responding three friction cones, the authors compute three-
finger force-closure grasps of 2D objects based on geomet-
rical analysis. They simplify then 3D objects force-closure
problem to a 2D problem when the three contact points
constitute a plane and when this plane intersects each fric-
tion cone on a triangular area. Ding et al. [27] proposed
an algorithm to synthesize force-closure grasps with 7 fric-
tionless contacts. The grasped object is discretized so a
large cloud of points pi as well as their normals ni is avail-
able. Then, a large collection of contact wrenches gi can be
obtained. The algorithm starts with an initial set of seven
contacts randomly chosen among the set of points. If the
selected grasp is force-closure, the algorithm finishes. Oth-
erwise, the initial contacts are iteratively exchanged with
other candidate locations until a force-closure grasp is ob-
tained. The previous heuristic algorithm is extended in [5]
for any number of contacts with or without friction. The
authors in [32] demonstrate that wrenches associated to any
three non-aligned contact points of 3D objects form a basis
of their corresponding wrench space. This result permits
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Fig. 2. A synthetic view of existing analytical approaches for grasp synthesis of 3D objects. The diagram shows analytical strategies developed for satisfying
force closure and task oriented conditions.

the formulation of a new sufficient force-closure test. Their
approach works with general objects, modelled with a set
of points, and with any number n of contacts (n ≥ 4).

Such methods find contact points on a 3D object surface
that ensure force-closure. But what about computing good
force-closure grasps? For this purpose, different quality cri-
teria were introduced to the grasping literature. In the fol-
lowing, we present some relevant works on computing op-
timal grasps.

A.2 Optimal Force-Closure Grasps on 3D Objects

Optimal force-closure grasps synthesis concerns deter-
mining the contact points locations so that the grasp
achieves the most desirable performance in resisting exter-
nal wrench loads. These approaches are tackled between
optimizing and heuristical techniques.

Optimizing techniques compute optimal force-closure
grasps by optimizing an objective function according to a
pre-defined grasp quality criterion. When objects are mod-
elled with a set of vertices, they search all their combina-
tions to find the optimal grasp. For example, Mirtich and

Canny [42] developed two optimality criteria and used them
to derive optimum two and three finger grasps of 2D ob-
jects and optimum three fingers grasps of 3D polyhedra ob-
jects. Whether the first or the second criterion is used, the
maximum circumscribing or the maximum inscribing equi-
lateral triangle defines the optimum grasp of a 3D object.
The optimum grasp points must be vertices of the poly-
hedron. Thus, the authors test all triples of vertices of a
n-vertices polyhedron in order to find its corresponding op-
timum three fingers grasp. This corresponds obviously to
an O(n3) algorithm. On the other hand, when objects are
smooth, such as ellipsoids, the primitive wrenches of the
grasp are also smooth functions of the grasp configuration.
If the grasp configuration that specifies the positions of the
contact points is denoted by u, f(u) in [50] is a function that
provides a measure on how far the grasp is from losing the
closure property. Thus, a natural way to compute the force-
closure grasp is to minimize f(u). The optimization prob-
lem can be solved by descent search. Zhu and Wang [18]
proposed a similar algorithm based on the gradient descent
minimization of the derivative of the Q distance or Q norm.
The Q distance is the minimum sacle factor required for a
convex set to contain a given point a, i.e it quantifies the
maximum wrench that can be resisted in a predefined set of
directions given by the corresponging convex set.
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Searching the grasp solution space for an optimal grasp
is a complex problem requiring a large amount of comput-
ing time. Fast algorithms are required to integrate grasp
planners in on-line planning systems for robots. Hence,
heuristic approaches were applied to the grasp synthesis
problem. These approaches generate first many grasps can-
didates randomly [22], according to a predefined proce-
dure [31] or by defining a set of rules to generate a set of
grasp starting positions and pre-grasp shapes that can then
be tested on the object model [41],[40], filtered them with
a simple heuristic to exclude candidates which can not lead
to feasible grasps or that does not satisfy the force-closure
condition and then choose the best candidate according to
a quality criterion. However, such approaches suffer from
the local minima problem.

All these approaches have studied stable grasps and de-
veloped various stability criteria to find optimal grasps. But
what really dictates the choice of a grasp? After examining
a variety of human grasps, the authors in [25] conclude that
the choice of a grasp was dictated by the tasks to be per-
formed with the object. Thus, finding a good stable grasp
of an object is only a necessary but not sufficient condi-
tion. Therefore, many researchers addressed the problem
of computing task-oriented grasps which will be addressed
in the next paragraph.

B. Task Compatibility

A good grasp should be task oriented. Few grasping
works take the task into account. This is due to the difficul-
ties of modelling a task and providing criteria to compare
the suitability of different grasps to the task requirements.
Works that addressed task-oriented grasps computation are
reviewed in this paragraph.

Fig. 3. Illustration of different force distributions that produce the wrench
set of the OWS.

Li and Sastry [9] developed a grasp quality measure re-
lated to the task to be performed. They showed that the
choice of a task oriented grasp should be based on the ca-
pability of the grasp to generate wrenches that are relevant
to the task. Assuming a knowledge of the task to be exe-

cuted and of the workpiece geometry, they planned a tra-
jectory of the object before the grasping action in order to
model the task by a six-dimensional ellipsoid in the object
wrench space. The latter is then fitted to the grasp wrench
space. The problem with this approach is how to model the
task ellipsoid for a given task, which the authors state to be
quite complicated.

Nancy Pollard [45] designed a system that found grasps
that were within a certain percentage of the quality of a
given prototype grasp. A grasp prototype is defined as an
example object and a high quality grasp of that object. A
task is characterized as the space of wrenches that must
be applied to the object by the robot in order to complete
the task objective. Assuming that the probability for ev-
ery wrench direction to occur as a disturbance is equal,
the task wrench space is modelled as a unit sphere. The
grasp quality measure used is the amount the robot has to
squeeze the object in order to be capable of resisting all task
wrenches while maintaining the grasp. By accepting the
reduced quality, the contact points of the prototype grasp
can be grown into contact regions. Pollard’s system can be
considered one of the more general grasp synthesis tools
available, but it has a few difficulties. While the prototypes
allow her to greatly reduce the complexity of the search, a
system to choose the closest prototype grasp is not given.
Thus, the computed grasps are unlikely to be perfect for a
given task or object. Pollard introduced the Object Wrench
Space (OWS) which incorporates the object geometry into
the grasp evaluation. The OWS contains any wrench that
can be created by disturbance forces acting anywhere on
the object surface as presented in figure 3.

Borst et al. combined the idea of the task ellipsoid [9]
with the concept of the OWS to obtain a new description
of the task wrench space (TWS). The latter is the 6D ellip-
soid circumscribing the OWS [23]. The quality of a grasp
is obtained by comparing the TWS (which is no longer a
sphere) with the Grasp wrench space (GWS) of the grasp
that is actually evaluated. In other words, for a given TWS,
the largest scaling factor is searched to fit it into a GWS (fig-
ure 4).

Fig. 4. Approximating the OWS with an ellipsoid. 1. The sampled OWS.
2. Convex Hull over the sampled OWS. 3. Enclosing ellipsoid. 4. Linear
transformation of ellipsoid and GWS.

The authors in [38] proposed a method for computing a
task oriented quality measure. The approach is based on
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a linear matrix inequality formalism, treating friction cone
constraints without the pyramidal approximation. It evalu-
ates the grasp for a given task wrench along a single direc-
tion and specifies the largest applicable wrench along this
direction. Thus, It allows optimization of the maximal ap-
plicable wrench for a given task wrench direction. Instead
of finding a grasp and evaluating its suitability for the de-
sired task, the authors in [47] proposed an approach that
takes the task into account from the early grasp planning
stages using hand-preshapes. They defined four hand pre-
shapes along with an approximation of their grasp wrench
space. The hook power preshape is adapted for grasping
handles and pushing along a known direction. The hook
precision has the same preshape as the hook power one
but the contact is made with fingertips. The precision pre-
shape permit forces to be exerted along the two senses of
a same direction which enables turning a tap for example.
In cylindrical preshape, the fingers enclose the object and
make force towards the palm. Thus, to accomplish a task, a
robot has to align the appropriate hand’s task frame with a
target frame that is selected during task planning. The hand
preshape and its corresponding target frame are selected ac-
cording to the task direction and a simplified model of the
manipulated object. Objects are modelled as hierarchy of
boxes. This algorithm was tested for accomplishing a com-
mon task, turning a door handle.

Fig. 5. Task frames for the hook power (top-left), hook precision (top-
right), precision (bottom-left) and cylindrical (bottom-right) preshapes.

The task wrench space (TWS) models wrenches applied
on the grasped object in order to perform a task. Given an
object and a task to be executed, Li and Sastry proposed to
represent the TWS as a six-dimensional ellipsoid. The lat-
ter conforms well the task but it’s difficult to obtain. The
authors were conducted to pre-compute the trajectory fol-
lowed by the object to accomplish the task. Obviously, this
approach is not adapted to new tasks nor to new objects,
the whole computation procedure will be repeated. Pollard

models the TWS with a six-dimensional unit sphere. Thus,
it is assumed that the probability for every wrench direction
to occur is equal. This representation has no physical inter-
pretation since wrenches occurring at an object boundary
are not uniform. Consequently, the TWS is not uniform
as well. Borst approximates the OWS with an ellipsoid
in order to model the TWS. This representation takes into
account the object geometry and the wrenches it may en-
counter. But since this representation accounts for different
wrenches on the whole object boundary, it does not con-
sider task specific information. Thus, the computed grasp
is not the best adapted to a specific task. Haschke optimizes
the maximal applicable wrench for a given task wrench di-
rection. However, the paper does not include any informa-
tion about the corresponding task wrench direction compu-
tation. Prats approach is adapted for tasks occurring along a
specific direction such as opening a door or a drawer where
it is easy to model objects with boxes in order to determine
their corresponding target frame. Such approach fails to as-
sociate appropriate hand preshapes to more complex tasks.

C. Discussion on Analytical Approaches

The analytical methods described in the previous sec-
tions concentrate on the analysis of a particular grasp or
the development of force-closure or task-oriented criteria
to compare grasps. The size of the grasp solution space
is the most difficult obstacle to overcome in optimizing
the grasp. The presented criteria to compute force-closure
grasps may yield to optimal stable grasps adapted for pick
and place operations (figure 1). However, physical interac-
tion through manipulation in our daily life, even for simple
and common tasks, goes beyond grasping for picking and
placing. That’s why many researchers addressed the prob-
lem of task-oriented grasping.

The goal of task-oriented grasp planning is to solve the fol-
lowing problem: given an object and a task, how to grasp
the object to efficiently perform the task? Two main prob-
lems are encountered when addressing this issue:

• The difficulty of modelling a task.

• The computational effort to find a grasp suitable for the
corresponding task.

Different task-oriented criteria were introduced to the
grasping literature and a task-oriented grasp was obtained
by generating and evaluating lots of grasps according to
these criteria. But all the proposed approaches could
not overcome the problem of the task representation and
thus are computationally unaffordable. There are also not
adapted neither for new tasks nor for new objects. While
the selection of task-oriented optimal grasp is very easy for
a human hand, it is still a complicated process for a robot
hand. Hence, there is a need to a system that takes into ac-
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count aspects of naturals grasps by imitating humans rather
than modelling tasks.

In order to avoid the computational complexity of an-
alytical approaches, empirical techniques were introduced
to the grasping problem. By taking a further look at the di-
agrams of figure 2 and figure 6, we notice that most recent
works are based on empirical approaches. These techniques
are detailed in the next paragraph.

III. Empirical Approaches

Empirical grasping methods avoid the computational
complexity of analytical techniques by attempting to mimic
human grasping strategies. Empirical strategies for grasp
planning can be divided into two main kinds: (1) systems
based on the observation of the object to be grasped and (2)
systems based on the observation of a human performing
the grasp. The former techniques generally learn to asso-
ciate objects characteristics with a hand preshape, while in
the latter, a robot observes a human operator performing a
grasp and try then to imitate the same grasp. This tech-
nique is called in the literature learning by demonstration
approach. Figure 6 summarizes the developed approaches.

Romero et al. 08

Approaches

Empirical

Based on Based on

Object Observation Human Observation

Pelossof et al. 04

Li & Pollard 07

Saxena et al. 08

Aleotti & Caselli 08
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Fischer et al. 98

Oztop & Arbib 02

Ekvall et al. 04

Kyota et al. 05

Hueser et al. 06

Fig. 6. A synthetic view of existing empirical approaches for grasp syn-
thesis of 3D objects.

A. Systems based on humans observation: Learning By
Demonstration

Different Learning-by-Demonstration (LbD) frame-
works, where the robot observes the human performing a
task and is afterwards able to perform the task itself were
proposed in the literature. One of the problems arising in
human based learning settings is the one of measuring hu-
man performance. Some researchers use datagloves, map
human hand to artificial hand workspace and learn the dif-
ferent joint angles [35],[28], hand preshapes [39] or the

corresponding task wrench space [19] in order to perform
a grasp. Others use stereoscopy to track the demonstra-
tor’s hand performing a grasp [36] or try to recognize its
hand shape from a database of grasp images [48]. Mirror
neurones that fire not only when grasping but also when
observing an action were also introduced to the grasping
problem [12]. The following paragraphs discuss these ap-
proaches.

A.1 Magnetic trackers and datagloves based approches

The authors in [35] presented a setup to control a four-
finger anthropomorphic robot hand using a dataglove. In or-
der to measure the finger tip positions of an operator wear-
ing a dataglove, the fingertips were marked with round col-
ored pins. A calibrated stereo camera setup was used to
track the four color markers in real time. To be able to ac-
curately use the dataglove a nonlinear learning calibration
using a neural network technique was implemented. Based
on the dataglove calibration, a mapping for human and arti-
ficial hand workspace can be realized enabling an operator
to intuitively and easily telemanipulate objects with the ar-
tificial hand. A similar framework is proposed in [28]. The
human and the robot are both standing in front of a table, on
which a set of objects are placed. The human demonstrates
a task to the robot by moving objects on the table. The
robot is then able to reproduce the task performed by the
human, using magnetic trackers and Hidden Markov Mod-
els (HMM). Since objects may not be placed at the same
location as during the demonstration, more recently [29],
the authors addressed the problem of grasp generation and
planning when the exact pose of the object is not available.
Thus a method for learning and evaluating the grasp ap-
proach vector was proposed so that it can be used in the
above scenario. Aleotti and Caselli [19] also proposed a
method for programming task-oriented grasps by means of
user-supplied demonstrations. The procedure is based on
the generation of a functional wrench space which is built
by demonstration and interactive teaching. The idea is to
let an expert user demonstrate a set of task-appropriate ex-
ample grasps on a given target object, and to generate the
associated functional wrench space as the convex union of
the single wrenches. The grasp evaluation is obtained by
computing a quality metric Q, defined as the largest factor
by which the grasp wrench space (GWS) of the grasp to
be evaluated can be scaled to fit in the demonstrated func-
tional wrench space (FWS). Functional wrench space Grasp
demonstration is performed in virtual reality by exploiting a
haptic interface including a dataglove and a motion tracker
for sensing the configuration of human hand [20].

Although magnetic trackers and datagloves deliver exact
values of hand joints, it is desirable from a usability point of
view that the user demonstrates tasks to the robot as natu-
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rally as possible; the use of gloves or other types of sensors
may prevent a natural grasp. This motivates the use of sys-
tems with visual input.

A.2 Vision based approches

The authors in [36] proposed a vision and audio based
approach. The user demonstrates a grasping skill. The
robot stereoscopically tracks the demonstrator’s hand sev-
eral times to collect sufficient data. The accuracy of the
visual tracking is limited by the camera’s resolution and the
quality of the calibration procedure. Additionally, every
time a grasp is demonstrated, the user performs it differ-
ently. To compensate for these inaccuracies, the measured
trajectories are used to train a Self-Organizing-Map (SOM).
The SOMs give a spatial description of the collected data
and serve as data structures for a reinforcement learning
(RL) algorithm which optimizes trajectories for use by the
robot. The authors, in [37], applied a second learning stage
to the SOM, the Q-Learning algorithm. This stage ac-
counts for changes in the robot’s environment and makes
the learned grasping skill adaptive to new workspace con-
figurations. Another vision based Programming by Demon-
stration (PbD) system is proposed in [48]. The system con-
sists of three main parts: The human grasp classification,
the extraction of hand position relative to the grasped ob-
ject, and finally the compilation of a robot grasp strategy.
The hand shape is classified as one of six grasp classes,
labelled according to Cutkosky’s grasp taxonomy [25]. In-
stead of 3D tracking of the demonstrator hand over time,
the input data consists of a single image and the hand shape
is classified as one of the six grasps by finding similar
hand shapes in a large database of grasp images. From the
database, the hand orientation is also estimated. The rec-
ognized grasp is then mapped to one of three predefined
Barrett hand grasps. Depending on the type of robot grasp,
a precomputed grasp strategy is selected. The strategy is
further parameterized by the orientation of the hand rela-
tive to the object.

These approaches enable objects telemanipulation or
grasp type recognition. However, their learning data is
based on the hand observation, i.e the joint angles, the hand
trajectory or the hand shape. Thus the learning algorithm do
not take into consideration the manipulated object proper-
ties. Consequently, these methods are not adapted to grasp-
ing previously unknown objects.

A.3 LbD approaches taking into account object features

Oztop and Arbib [12] propose a grasping strategy based
on mirror neurones. The latter were identified within a
monkey’s premotor area F5 and they fire not only when

the monkey performs a certain class of actions but also
when the monkey observes another monkey (or the exper-
imenter) perform a similar action. It has been argued that
these neurons are crucial for understanding of actions by
others. In a grasping context, the role of the mirror system
may be seen as a generalization from one’s own hand to
an other’s hand. Thus, in a biologically motivated perspec-
tive, the authors propose a very detailed model of the func-
tioning of these neurones in grasp learning. They present
a hand-object state association schema that combines the
hand related information as well as the object information
available. This method is capable of grasp recognition and
execution (pinch, precision or power grasp) of simple ge-
ometric object models. The only object features used are
the object size and location. Kyota et al. [39] proposed a
method for detection and evaluation of grasping positions.
Their technique detects appropriate portions to be grasped
on the surface of a 3D object and then solves the problem
of generating the grasping postures. Thus, points are gener-
ated at random locations on the whole surface of the object.
At each point, the cylinder-likeness, that is the similarity
with the surface of a cylinder, is computed. Then, the de-
tected cylindrical points are evaluated to determine whether
they are in a graspable portion or not. Once the graspable
portions are identified, candidate hand shapes are generated
using a neural network, which is trained using a data glove.
Grasps are then evaluated using the standard wrench space
stability criterion.

Oztop and Arbib’s approach can determine the grasp type
of simple geometric objects. When facing new objects, it
will roughly estimate their sizes and locations in order to
identify the corresponding hand parameters and thus the
grasp type in order to pick them up. Kyota’s method finds
different possible grasping regions on the object surface.
However, it does not take into account object usage. Thus,
these approaches can find stable grasps for pick and place
operations but are unable to determine a suitable grasp for
object manipulation.

B. Systems based on the object observation

Grasping strategies based on the object observation an-
alyze its properties and learn to associate them with dif-
ferent grasps. Some approaches associate grasp parame-
ters or hand shapes to objects geometric features in order
to find good grasps in terms of stability [44],[8]. Other
techniques learn to identify grasping regions in an object
image [16],[49]. These techniques are discussed in the fol-
lowing.

Pelossof et al. [44] used support vector machines to build
a regression mapping between object shape, grasp param-
eters and grasp quality. Once trained, this regression map-
ping can be used efficiently to estimate the grasping param-
eters that obtain highest grasp quality for a new query set
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of shape parameters. The authors use simple object repre-
sentation in their learning algorithm, such as spheres, cylin-
ders etc. Since the grasp quality metric used, determines the
magnitude of the largest worst-case disturbance wrench that
can be resisted by a grasp of unit strength [30], the optimal
grasps computed by the algorithm are good stable grasps
adapted for pick and place operations.

A learning approach for robotic grasping of novel objects
is also presented by Saxena et al. [16]. By novel objects, the
authors mean ones that are being seen for the first time by
the robot. Based on the idea that there are certain visual fea-
tures that indicate good grasps, and that remain consistent
across many different objects (such as coffee mugs handles
or long objects such as pens that can be grasped at their
mid-point), a learning approach that uses these visual fea-
tures was proposed to predict good grasping points. The
algorithm predicts a point at which to grasp a 3D object as
a function of 2D images.

In a similar approach, Stark et al. [49] propose a sys-
tem for the detection of functional object classes, based
on a representation of visually distinct hints on object af-
fordances (affordance cues). Objects are classify based
on their affordances in two categories: handle-graspable
and sidewall-graspable. Thus, the classification itself deter-
mines how to grasp the object. When a complete 3D model
of the object is available, Li and Pollard [8] treated grasping
as a shape matching problem. Based on the idea that many
grasps have similar hand shapes, they construct a database
of grasp examples. Thus, given a model of a new object
to be grasped, shape features of the object are compared
to shape features of hand poses in the database in order to
identify candidate grasps. These shape features capture in-
formation about the relative configurations of contact po-
sitions and contact normals in the grasp. Figure 7 shows
contact points on the hand and object, and contact normals
on the object surface. Note that the inside surface of the
hand contains a great deal of information about the shape
of the mouse. If similar features can be found on a new ob-
ject, it may be possible to use the same grasp for the new
object. After shape matching, a number of grasps is ob-
tained. Some of these grasps may be inappropriate to the
task. They may fail to support the object securely or the
main power of the grasp may be aligned in the wrong di-
rection for the task. Thus, the authors used a grasp quality
that takes into account both the hand and the task require-
ments to evaluate the computed grasps. By applying such a
grasp quality, many grasps are pruned. Even though, the au-
thors stated that the user should select manually the desired
grasp from among the possibilities presented by the system
because some of the grasps are unintuitive. Thus a fully au-
tonomous system that generates natural grasps should take
into account aspects other than ability to apply forces. El-
Khoury et al. [33],[34] consider the problem of grasping

unknown objects in the same manner as humans. Based on
the idea that the human brain represents objects as volu-
metric primitives in order to recognize them, the algorithm
proposed predicts grasp as a function of the object’s parts
assembly. Beginning with a complete 3D model of the ob-
ject, a segmentation step decomposes it into single parts.
Each single part is fitted with a simple geometric model.
A learning step is then employed to find the object compo-
nent that humans choose to grasp this object with. Figure 8
shows several grasps obtained using DLR hand model and
GraspIT simulator on different object graspable parts.

Fig. 7. A mouse grasp: matching contact points on the hand/object and
contact normals on the object surface.

All these approaches learn to use objects features in or-
der to compute a corresponding grasp. Thus, these ap-
proaches are capable to generalize to new objects. But
what kind of grasps these techniques ensure? Pelossof’s
startegy can predict the quality of a grasp according to a
stability criterion. Saxena’s approach find grasping points
on mugs handles or on elongated objects mid-points. Such
contact points are adapted to some objects in terms of task-
compatibility but when this approach encounter elongated
objects such as screw-drivers or bottles, it will also identify
a grasping region situated at these objects middles. Such
grasps are not necessarily adapted to such kinds of objects.
Stark’s grasping strategy can only distinguish between two
objects classes: handle-graspable (adapted for mugs) and
side-graspable (adapted for bottles). This method does not
take into account the variety of objects shapes and thus the
variety of possible grasps. Li and Pollard strategy deter-
mine for one object different grasps and fail to choose the
one adapted to the task-requirements. El-Khoury et al. [3]
proposed to imitate humans choice of unknown objects
graspable components based on primitives such as objects
sub-parts shapes and sizes. But does the selected graspable
part convey any information about the object corresponding
task? In the following, we discuss in details the limitations
of the empirical approaches.

C. Discussion on Empirical Approaches

The main difficulty of analytical task-oriented ap-
proaches was task-modelling. Empirical approaches based
on a human demonstration can overcome this difficulty by
learning the task. For such approaches, when given an ob-
ject and a task, the teacher shows how the grasp should be
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Fig. 8. Generating 4-finger force closure grasps using DLR hand model
Graspit Simulator.

exactly performed. The robot is able afterwards to perform
the task for the given object by itself. However, these sys-
tems are not fully autonomous when they face a new object
or a new task. To ensure the latter ability, rather than try-
ing to reproduce humans grasping gesture, researchers de-
veloped systems that focus on objects observation. These
approaches learn to find good grasping region in an object
image or associate objects local features to different hand
shapes. These systems can generalize to new objects but
they find either stable grasps or generate for one object dif-
ferent grasps and fail to select automatically the one that
best suits the task.

This selection is done manually or use a task-oriented
quality criterion which is complicated to compute. Thus,
much research remains to be done to better understand hu-
man grasping and to develop algorithms that achieve natural
grasps.

IV. Conclusion

Autonomous grasping strategies aim to achieve stabil-
ity and task compatibility when grasping new objects. In
the literature, grasp synthesis, has been tackled with two
different approaches: analytical or empirical. If we sum-
marize these works, we can conclude that: Force-closure
analytical approaches can find stable but not task-oriented
grasps. Task-oriented analytical approaches suffers from a
major problem: computational complexity when trying to
model task requirements. Empirical systems based on the
observation of humans overcome task modelling difficulty
by imitating humans grasping gesture. However, these sys-
tems are not fully autonomous when they face an object
completely new. Empirical systems based on objects ob-
servation are adapted to new objects but generate a lot of
possible grasping positions and fail to select the one that
best suits the task. When trying to do this autonomously,
they encounter the same problem of analytical task-oriented
methods, which is task modelling. Consequently, we are
standing in front of a loop!

How to break the loop? What grasping strategy can en-
sure stability, task compatibility and adaptability to new
objects? Obviously, adaptability to new objects is en-
sured by learning objects characteristics that are relevant
to grasping. Stability can be obtained by computing force-

closure grasps. But what about the task requirements? On
one hand, task modelling is difficult; analytical approaches
fail to find a general mathematical formulation compatible
with different tasks. On the other hand, learning specific
task/hand performance works only on a particular object to
perform a particular task. Finding a task compatible grasp
for a new object is still an open problem. A possible so-
lution may be to learn tasks/features mapping, i.e learn to
identify object features that are immediately related to the
object corresponding task. Thus, when a robot encounters
a new object, it’ll be able to autonomously identify relevant
features and consequently identify the object corresponding
task.
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