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Abstract— This paper describes a robust identification
method of the kinematic parameters of robot manipulators,
with minimal instrumentation, in order to demonstrate its
validity in practical cases of use and especially in indus-
trial environments. It is an autonomous, closed-loop and
planar self calibration method. It is characterized by its ef-
ficiency, low cost and generic technique. It relies on the use
of simple physical restraints applied to the effector. Practi-
cal ways to implement this method were carried out in EDF
R&D laboratories on the Stäubli TX90 robot, a 6-axis in-
dustrial manipulator robot robot, in order demonstrate its
convergence and effectiveness. The only data needed are
the values of the joint positions of the robot, whose end-
points should reach 4 faces of a calibrated block. The rea-
son for which this method is chosen is based primarily on
the ease of its implementation, its speed and its accuracy.
This study focuses on the identifiable parameters, the ob-
servability of the parameters, and the values of the kine-
matic parameters errors.

Keywords: calibration, kinematic parameters, identifiable param-
eters, identification, robot manipulators

I. Introduction

The absolute accuracy of a robot is affected by different
sources of disturbance and especially by the kinematic pa-
rameters errors whose nominal values, intervening in the
kinematic models, were defined during the design of the
robot. Despite the careful design of the robot, the nomi-
nal values are different from the real values, and the main
errors are due to manufacturing tolerances and assembly.
The solution is to establish a robot calibration which aims
to identify the difference between nominal and real values.

Several methods have been proposed in the literature to
calibrate the kinematic parameters of industrial robot ma-
nipulators. Most of them use a linearized model, and solve
the system using least squares techniques. In this paper, it
is shown that the use of sensors that measure the location
of the terminal frame can be avoid. Instead, one can use
simple physical restraints applied to the effector and still
achieve fast, accurate and robust results, which makes it in-
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dustrially interesting.
The calibration method described in this paper is based

on the use of a touching probe that is very simple to use
and on a calibrated block whose dimensions and proper-
ties are chosen optimally, in order not to cause a problem
of observability. The reason for which this method is cho-
sen is due to its simplicity, accuracy and its low cost. It
certainly has some limitations and disadvantages, however,
with about 95% accuracy improvement, it is among the best
calibration methods and the best industrially.

The paper is organized as follows: the parameters defin-
ing the robot are presented in Section 2. Section 3 describes
the calibration method. The experimental application is
presented in Section 4. Section 5 describes the experimen-
tal results as well as the validation methods. Section 6 is
the conclusion.

II. Kinematic description of the Stäubli TX90 robot

The TX90 robot is a serial manipulator robot with six ro-
tational joints. A frame Rj is defined fixed on a link j (for
j = 0, . . . , n = 6), following the notations of the mod-
ified Denavit and Hartenberg method proposed by Khalil
and Kleinfinger [1]. Two additional frames are defined:
R−1 is the reference frame fixed relative to R0 and R7 is
the end-effector frame fixed relative to R6.

The transformation matrix j−1Tj from Rj−1 to Rj can
be obtained as a function of the following kinematic param-
eters: αj , dj , θj , rj , βj [2], (for j = 0, . . . , n + 1), except
for the first frame for which α0, β0, and d0 are null. The
joint angles are expressed by:

θ = K · θc + θoffset (1)

• Kj : the gains of joints transmissions assumed all equal
to 1, because the values of joint angles θj are given directly
in Stäubli controller system
• θoffset =

[
0−π2

π
2 000

]T
: represents the zero configuration

of the TX90 robot (when θc = 0)
The aim of this paper is to identify the errors of the

kinematic parameters which are the difference between
their real and nominal values. The initial number of pa-
rameters to identify is 37: ∆αj;(j=1,...,7), ∆dj;(j=1,...,7),
∆θj;(j=0,...,7), ∆rj;(j=0,...,7), ∆βj;(j=1,...,7).

In the following tables, units are given in millimeters
(mm) for the lengths and radians (rad) for the angles. The
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Fig. 1. The link frames and the D-H parameters of the TX90 robot.

j αj dj θj rj βj Kj

0 0 0 0 149.6 0 0
1 π

2 −625 θ1 120.8 0 1
2 −π2 50 θ2 0 0 1
3 0 425 θ3 50 0 1
4 π

2 0 θ4 425 0 1
5 −π2 0 θ5 0 0 1
6 π

2 0 θ6 0 0 1
7 0 0 −0.256 318.9 0 0

TABLE I. The kinematic Parameters of the TX90 robot

nominal values of the kinematic parameters of the TX90
robot are given in Table I. The link frames, the kinematic
parameters of the TX90 robot, and the zero configurations
before and after the addition of the θoffset are shown in
Fig. 1. The choice of −1T0 and 6T7 will be explained in
section 4.

III. Formulation of the calibration method

In this section, we present the calibration method, its for-
mulation, and its resolution.

A. Calibration methods
A large variety of kinematic calibration methods of serial

manipulators have been studied ( [3], [4]). They are divided
into two main groups based on the knowledge of the values
of joint angles:
• Open-loop calibration based on the use of an external
sensor to external measures such as measuring the location
of the terminal frame ( [5], [6]).
• Closed-loop/autonomous calibration based on a strain
of at least one degree of freedom of the effector with a phys-
ical link with the outside environment ( [7] - [11]).

A comparison study between the calibration methods of
serial robots was done in [12].

Planar Calibration Method is a closed-loop calibration
method based on using the values of the joint positions of
a set of configurations of the robot whose endpoints are in
the same plane. The most important advantages that make
this method industrially interesting are: easy to implement,
quick to apply, much cheaper than the methods with ex-
ternal sensor. Nevertheless, it has poverty of information,
poor conditioning of the observation matrix, and needs high
number of iterations to achieve the convergence, etc.

Several theories have been developed in this method to
find solution to these drawbacks. The most important the-
ory was to multiply the number of planes (3 to 4 planes). It
was shown that if the robot has a prismatic joint, 3 planes
will be sufficient ( [8]- [9] ). But if it consists of only rev-
olute joints, one must apply the calibration using 4 planes,
3 of which are mutually orthogonal and the third chosen
arbitrarily. An application of this method is carried out in
[13] using a rectangular parallelepiped to get the 4 planes
of contact. The chosen method in this paper is based on the
use of a calibrated block to calibrate the TX90 robot.

B. The general equation of calibration methods

The kinematic calibration operation is very delicate: the
numerical problem to be solved is nonlinear and the num-
ber of parameters is high (in the case of the TX90 robot it is
equal to 37). The most robust procedures are those based on
a linearized model that assumes low kinematic errors. The
use of the linear model is much easier to carry, and it is the
only way that can get accurate and robust results. In rare
cases, when the resolution of the linearized model diverges
or does not converge to an acceptable solution, the nonlin-
ear optimization criterion in a least-squares method can be
used. The linearized differential equation is presented in
eq.(2).

∆y (q,x, ξ) = φ(q, ξ) ·∆ξ + ρ (2)

• x: the cartesian variables of the situation of Rn
• q: the joint variables vector
• ∆ξ: the vector of the errors between the vector of real
values (unknown)ξr and the nominal values ξ of the kine-
matic parameters
• ∆y: the output error between the model and the robot
• φ: (Jacobian matrix) =∂f/∂ξ(f is the general formulation
of the equations of calibration which was linearized for the
differential equation)
• ρ: the vector of observed errors due to modeling errors

To solve this system and estimate ∆ξ, a set of a suffi-
cient number of configurations Q = {q1, q2, . . . , qm}
is applied in order to have an over-constrained system of
equations.(eq.(3)).

∆Y (Q,X, ξ) = W (Q, ξ) ·∆ξ + ρ (3)
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∆Y =

 ∆y1(q1, x1, ξ1)
. . .
∆ym(qm, xm, ξm)

X = {x1, . . . , xm}

W =

Φ(q1, ξ)
. . .

Φ(qm, ξ)

 ;
W ∈ IRr×Np the observation matrix
r �� Np

C. Formulation of the calibration method using 4 planes
equations of a calibrated block

The general equation of a plane not passing through the
origin is:

a′i · x+ b′i · y + c′i · z + d′i = 0 (4)

By normalizing this equation, each point of coordinates
(x, y, z) satisfies the standard equation of a plane:

ai · x+ bi · y + ci · z + 1 = 0 (5)
ai, bi, ci are the coefficients of the plane i

The differential equation model shown in eq.(6) is cal-
culated by using a first-order development while neglecting
the second order terms and considering that the values of
the coefficients are known without any error.

[ai · ψx(q, ξ) + bi · ψy(q, ξ) + ci · ψz(q, ξ)] ·∆ξ =

− 1−
[
Px(q, ξ) Py(q, ξ) Pz(q, ξ)

]
.
[
ai bi ci

]T
(6)

• ψx, ψy , and ψz are respectively the first three rows of
the jacobian matrix defined in eq.(2). The calculation of the
columns of the Jacobian matrix (ψβi, ψαi, ψdi, ψθi, ψri)
can be done as in [13]. They represent the displacement
in translation and/or rotation of R7 due to an error in the
corresponding kinematic parameter.
• Px, Py and Pz are the cartesian coordinates of the end-
point in the reference R−1.

Applying eq.(6) for a large number of configurations of the
same plane, we will have:

W (Q, ξ, ai, bi, ci) ·∆ξ = ∆Y (Q, ξ, ai, bi, ci) (7)

Applying eq.(7) on each of the 4 planes:
W1(Q1, ξ, a1, b1, c1)
W2(Q2, ξ, a2, b2, c2)
W3(Q3, ξ, a3, b3, c3)
W4(Q4, ξ, a4, b4, c4)

∆ξ =


∆Y1(Q1, ξ, a1, b1, c1)
∆Y2(Q2, ξ, a2, b2, c2)
∆Y3(Q3, ξ, a3, b3, c3)
∆Y4(Q4, ξ, a4, b4, c4)


(8)

Which is equivalent to:

W (Q, ξ) ·∆ξ = ∆Y (Q, ξ) (9)

W =
[
W1 W2 W3 W4

]T
∆Y =

[
∆Y1 ∆Y2 ∆Y3 ∆Y4

]T
This brings back to the general calibration equation from
which ∆ξ can be calculated.

D. Resolution of the calibration equation
If the rank b of W is maximum, a unique solution can be

identified through the following relationship:

∆̂ξ = W+
w · Y ;W+ = (WT .W )−1.WT (10)

W+
w : the weighted pseudo-inverse of the observation ma-

trix W. The reason for which the weighting is applied is
explained at the end of this section.

Otherwise, it can be seen that some columns of W are
dependent, and consequently this system of equations can
be reduced so that the new observation matrix Wb contains
only b independent columns chosen arbitrarily [14]. ∆ξb
combine the errors of the parameters that correspond to
these columns and called identifiable parameters:

∆Y (Q,Xt, ξ) = Wb(Q, ξ) ·∆ξb (11)
It is absolutely necessary to go through a step of determi-

nation of the identifiable parameters before computing the
errors on kinematic parameters. First, the zero columns of
W and the corresponding parameters should be eliminated
because they have no effect on the model. And then a QR
decomposition of the matrix W should be applied as fol-
lows:

W = Q.
[
R 0

]T
(12)

• W ∈ IRr×c the observation matrix
• Q ∈ IRr×r an orthogonal matrix
• R ∈ IRc×c an upper triangular matrix
Theoretically, the non-identifiable parameters correspond
to the elements of the diagonal of the matrix R whose abso-
lute value is less than a tolerance τQR:

τQR = r · Epsilon ·max |Rii| (13)
And consequently, the number of identifiable parameters

can be calculated as follows:

b =
∑
i

|Rii| � τ (14)

Several methods can be used to calculate ∆ξb including
the least squares method that seeks to minimize the differ-
ence ∆Y between the model and the robot. It is based on
calculating the weighted pseudo-inverse of the observation
matrix as shown in eq.(15):

∆ξb = W+
b,w ·∆Y (15)

The equation will be solved to get the least squares er-
ror solution to the current parameter estimate. Successive
iterations should be carried out until the error ∆ξb becomes
sufficiently small. After each iteration, the kinematic pa-
rameters should be updated in Wb and ∆Y . The condition
number of Wb is considered as the most accurate and sen-
sitive index of the observability of the parameters in the
calibration system of equations:

cond(Wb) = ||Wb|| ·
∣∣∣∣∣∣
W+
b

∣∣∣∣∣∣
(16)

To find it, simply divide the largest singular value to the
smallest (σmax/σmin). Ideally, the condition number must
be close to one. Note that the value of the condition number
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Fig. 2. Calibration Test of the TX90 robot.

and consequently, the final accuracy depends on the unit of
the kinematic parameters. In fact, the kinematic parameters
are of different natures (lengths and angles) and the calcu-
lation of ∆ξb is based on inversing the observation matrix
Wb whose elements depends on the units of the kinematic
parameters. In order to get accurate results and to prevent
the condition number to tend towards very high values, it is
so important to choose wisely the unit of the kinematic pa-
rameters. In section 5, it is shown that the use of meter for
lengths and radians for angles can get the best results. To
avoid making a choice of units, one can apply the weighted
pseudo-inverse of the observation matrix (Wb,w) in order
to get dimensionless columns without affecting the errors
values.

IV. Experimental application

In order to carry out this method and have an over-
constrained system of equations, the robot should reach a
high number of configurations per plane, and consequently
the largest possible number of parameters among the 37
kinematic parameters could be identified. The chosen num-
ber of configurations per plane is 37. The only data needed,
which is the values of the joint positions of the robot, are
collected from the industrial Stäubli control system (ver-
sion CS8). In order to achieve successfully the calibration,
one must respect the following descriptions of equipments
and recommendations. Note that the trials were conducted
in laboratories and with equipments of EDF R&D.

A. The choice of the calibrated block
In order to have three adjacent planes that are mutually

and perfectly orthogonal and a fourth plane also perfectly
parallel to the first plane, a calibrated block is used so that
four of its faces are used for the calibration contacts. The
choice of the block properties is very important and must
satisfy the following needs:

1. The dimensions must be practical and should not pose a
problem of reachability. In other terms, the robot should
be able to reach easily the largest possible area of each
of the 4 faces of the bloc and to change its configurations
while touching the different samples on the block. The opti-
mal choice of the dimensions (for the TX90 calibration) is:
150x150x150 (mm3), with 0.02 mm dimension accuracy.
2. The choice of the configurations on each face is also of
great importance. Because of choosing a low-dimensional
block, the configurations should be well distributed over the
entire face of each of the 4 planes of the block so that it does
not create an observability problem.
3. The calibration properties of the block should be care-
fully chosen, otherwise, the results will not be satisfactory
and reliable. The calibration properties are: perpendicu-
larity tolerance of 0.1 mm/m, flatness tolerance of 0.04
mm/m and surface roughness Ra of 0.8 µm (very smooth).
4. It should be cheap while respecting the properties men-
tioned previously, therefore, aluminum is chosen.

B. The choice of the sensor tool
Each of the four faces of the block will be touched with

about 37 different configurations and well distributed over
the entire surface. The control of the contact between the
effector and the plane will be carried out using the LP2 Ren-
ishaw touching probe shown in Fig. 2. It will be mounted on
the tool changer. It is a dynamic triggering probe that con-
sists of a body and a stylus with a ball connected to a LED
that lights up whenever there is a contact. This sensor is
used because it is very accurate, efficient, and fast measur-
ing while being so simple to use and not expensive which
is also industrially important. It has a sense of directions
along x, y and z and does not have a degree of freedom, and
therefore, R7 is considered fixed relative to R6.

6T7 =


cos(−14.7◦) −sin(−14.7◦) 0 0
sin(−14.7◦) cos(−14.7◦) 0 0

0 0 1 318.9
0 0 0 1


C. The block position relative to the robot

The quality of the results varies from one position to an-
other, therefore, the choice of the block position relative to
the robot is also very important. The optimal position of
the block, so that the robot reach the maximum surface of
the 4 faces, is shown in Fig. 3. Multiple choices of the ref-
erence frame R−1 are possible. The normal to the faces
define the axes and the origin O−1 is located in the cen-
ter of the bottom face. In this way, the frame R−1 will be
at equal distance from all the faces of the block in order to
eliminate the possibility of additional errors. Its coordinates
(in mm) relative to the frame R0 are shown in Fig. 3. The
coefficients of the 4 planes of the calibrated bloc, in R−1,
according to the equation eq.(5) are shown in Table II.
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Fig. 3. The axes of the reference frame R−1 on the block.

Plane j aj bj cj

Plane 1 0 0 13.33
Plane 2 13.33 0 0
Plane 3 0 6.67 0
Plane 4 0 0 −13.33

TABLE II. The coefficients of the 4 planes in R−1

V. Results and validations

A. Experimental trials
Several tests were made in order to reach the best results.

The quality of the results was affected by the following el-
ements:
• the number of configurations per plane
• the tolerance of the QR decomposition τQR
• the unit of the kinematic parameters if the weighting is
not carried

The elements that judges the quality of the result are:
• The number of identifiable parameters which ideally
should be as large as possible.
• The condition number of the observation matrix which
ideally should be as small as possible (and especially in cal-
ibration case it should be in the order of 103 or less).

Test results are noted below:
1. At first, the 37 configurations per plane were used while
using the tolerance τQR as defined in (13). The use of meter
as the unit for the lengths (if the weighting is not carried)
leads us to the best results among all units (convergence
of the iterations, lower condition number). As a result, the
number of identifiable parameters was 25 with a condition
number in the order of 104 which is not a satisfactory result.
2. To optimize the results, several criteria were changed
(unity, tolerance, etc.). The value of τQR was increased,
in order to eliminate the parameter(s) whose singular value
is very low and has a bad influence on the results. Finally,

with τQR = 10−1 and meter as unit, a condition number
of the order of 103 was reached with 24 identifiable pa-
rameters. The results were not acceptable because the error
of the r3 parameter was slightly high in comparison to its
nominal value (r3=50 mm, ∆r3 ≈ 8 mm).
3. Even by reducing the number of configurations to 27 per
plane, and so the remaining ten configurations can be used
to validate the results, the same problem was found: the
only value that was not reasonable was ∆r3. If the param-
eter α4 is not considered among the parameters to identify,
the number of identifiable parameters is 23 and ∆r3 is now
reasonable. The parameter α4 was chosen, because it can
have an influence on r3 and it is the parameter that has the
lowest singular value among the 24 identified parameters.
4. As a result, instead of not taking into account α4, the
fourth test was in reducing the number of configurations per
plane to 25 with τQR = 10−1. The number of identifiable
parameter is 23. The evolution of the condition number
of the observation matrix during the different iterations is
shown in Fig. 4. Convergence is reached after 4 iterations
with 7.5 × 103 as the condition number of the observation
matrix which is a satisfactory result as a start.

Fig. 4. The evolution of the condition number of the observation matrix.

The kinematic parameters errors are shown in Table III.
One can notice that the number of identifiable parameters
and the value of the condition number of the observation
matrix are related to many parameters including: the num-
ber of configurations selected per plane, the value of tol-
erance of the QR decomposition set, the unit of kinematic
parameters, etc. In the case of the TX90 robot, the maxi-
mum number of identifiable parameters, but not necessarily
the best value of the condition number of the observation
matrix was obtained by choosing more than 30 configura-
tions per plane, with the value of tolerance that was set by
definition. The best result was obtained with 25 configu-
rations per plane, a tolerance of 0.1. Choosing such toler-
ance, the parameters whose singular values are the lowest
and have a negative effect on the result of calibration can be
eliminated.
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In Tables III, IV, V:
• ’-’ represents the parameters that are not considered
among the parameters to identify
• ’×’ represents the parameters that have no effect on the
model
• ’/’ represents the parameters whose effect is grouped in
other parameters

B. Validation procedures
In this section, different practical methods of validation

are presented to prove that this calibration method is accu-
rate and precise. The errors are added to the nominal values
of the kinematic parameters and therefore, they are consid-
ered as the new initial parameters.

B.1 Validation using the same set of configurations
New calibration iterations are conducted by using the

same set of 25 configurations per plane and the new initial
parameters. The new identified kinematic errors are very
low (*10−11) as shown in Table IV.

B.2 Validation using a different set of configurations
Calibration iterations are conducted by using the set of 10

different configurations per plane (well distributed over the
surfaces), and the new initial parameters. The new identi-
fied kinematic errors are as shown in Table V. The values of
the identified errors are very low in comparison to the nom-
inal values and the errors initially identified, which proves
that the calibration method is robust whatever the points
used for the calibration and provide a precision discussed
later.

B.3 Validation by comparing nominal and calibrated dis-
tances to their measured values by using the same set
of points

Validations can be done in the cartesian space by using
the tool in possession which is the probe. Since the distance
between O−1 and each face of the block have been already
measured (with a precision of 0.02 mm), the distance be-
tween O−1 and the configurations of each of the 4 planes
can be calculated numerically along the axis perpendicu-
lar to each face. Consequently, a comparison between the
the mean of the theoretical/measured values to the numeri-
cal/calculated values can be established.

The kinematic model of the 25 configurations per plane
is calculated, with respect to R−1. At first the nominal
parameters and then the calibrated parameters are used as
shown in Fig. 5–8. The vector that defines the position of
R7 which is the end of the probe, with respect to R−1 is:
−1P7 = [Px, Py, Pz]

T . The comparison between the mea-
sured values to the mean of the calculated values is shown
in Table VI. The calibrated values of the distances are quite
close to the measured values. The rate of improvement be-
tween the nominal and the calibrated distances with respect

j ∆αj ∆dj ∆θj ∆rj ∆βj

0 − − 0.0050 −8.3836 −
1 −0.0046 −0.8920 0.0083 −0.9588 /
2 −0.0012 0.9559 −0.0017 / /
3 0.0004 3.2636 0.0044 0.6675 0.0006
4 / −2.2895 0.0027 3.1939 /
5 / −1.1318 −0.0036 −0.4481 /
6 / / / / /
7 0.0027 −1.3547 × 3.7510 /

TABLE III. The kinematic Parameters errors of the TX90 robot

to the measured distances is� 94%. Note that the measure-
ment errors (sensor, position and dimensions of the block)
are very low compared to the errors on the kinematic pa-
rameters. This validates the results.

B.4 Validation by comparing nominal and calibrated dis-
tances to their measured values by using a different set
of points set of points

The kinematic model of 10 different configurations per
plane is calculated, with respect to R−1, by first using
the nominal parameters and then the calibrated parameters
(Fig. 9–12). The comparison between the measured values
to the mean of the calculated values is shown in Table VII.
The calibrated values of the distances are very close to the
measured values, and the rate of improvement between the
nominal and the calibrated distances is � 94%.

j ∆αe
−11

j ∆de
−11

j ∆θe
−11

j ∆re
−11

j ∆βe
−11

j

0 − − 0.00 −0.06 −
1 0.00 0.46 −0.00 −0.18 /
2 −0.00 −0.39 0.00 / /
3 0.00 −0.62 −0.00 −0.12 /
4 / 0.60 −0.00 −0.53 /
5 / 0.31 −0.00 0.14 /
6 / / / / /
7 / −0.02 × −0.57 /

TABLE IV. The errors after validation using the same set of points

j ∆αj ∆dj ∆θj ∆rj ∆βj

0 − − 0.0005 −0.1552 −
1 / 0.2523 −0.0001 −0.0448 /
2 / 0.7211 −0.0006 / /
3 / 0.0629 0.0004 0.1697 /
4 / 0.3444 −0.0008 −0.0595 /
5 / 0.3444 −0.0015 0.1492 /
6 / / / / /
7 / / × / /

TABLE V. The errors after validation using a different set of points
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Fig. 5. The nominal and calibrated d1 using the 25 points. Fig. 6. The nominal and calibrated d2 using the 25 points.

Fig. 7. The nominal and calibrated d3 using the 25 points. Fig. 8. The nominal and calibrated d4 using the 25 points.

Fig. 9. The nominal and calibrated d1 using the 10 points. Fig. 10. The nominal and calibrated d2 using the 10 points.

Fig. 11. The nominal and calibrated d3 using the 10 points. Fig. 12. The nominal and calibrated d4 using the 10 points.
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dj measured nominal calibrated %
d1 = Pz −75 −71.14 −74.99 94.85
d2 = Px −75 −79.5 −75.00 94.00
d3 = Py −150 −152.3 −150.00 98.46
d4 = Pz 75 78.75 74.99 95.00

TABLE VI. Comparison between the measured, nominal and the cali-
brated distances for the 25 configurations/plane

dj measured nominal calibrated %
d1 = Pz −75 −71.26 −75.41 94.45
d2 = Px −75 −79.03 −74.95 94.57
d3 = Py −150 −151.9 −149.92 98.68
d4 = Pz 75 78.62 74.66 94.72

TABLE VII. Comparison between the measured, nominal and the cali-
brated distances for the 10 configurations/plane

VI. Conclusion

This paper presents a study of an autonomous calibra-
tion method using 4 planes equations of a calibrated block.
The method is easy and quick to implement and its ability
is proved in industrial environments. It was carried out on
the Stäubli TX90 robot in EDF R&D laboratories. It is a
low cost method, robust and able to get a precise knowl-
edge of the kinematic parameters values. The estimation
of the identifiable kinematic parameters is carried out using
QR decomposition and weighted iterative-pseudo inverse
technique. It is fast to converge (3 to 5 iterations) and the
number of identifiable parameters is high (23 to 25). Nev-
ertheless, one should remember that the kinematic calibra-
tion does not give a perfect knowledge of the position of
the end effector (rate of knowledge improvement is about
94 %) that is why the effect of deformation must be taken
into account afterwards.
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Doctoral disseration, Nantes, France, September, 2000.

[14] Khalil W. and Gautier M. Calculation of the identifiable parameters
for robots calibration. In 9th IFAC/IROS Symposium on Identifica-
tion and System Parameter Estimation,pp. 888–892, Budapest, 1991.

8


