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ABSTRACT
In Evolutionary Robotics (ER), controllers are assessed in
a single or a few environments. As a consequence, good
performances in new different contexts are not guaranteed.
While a lot of ER works deal with robustness, i.e. the ability
to perform well on new contexts close to the ones used for
evaluation, no current approach is able to promote broader
generalisation abilities without any assumption on the new
contexts. In this paper, we introduce the ProGAb approach,
which is based on the standard three data sets methodology
of supervised machine learning, and compare it to state-of-
the-art ER methods on two simulated robotic tasks: a navi-
gation task in a T-maze and a more complex ball-collecting
task in an arena. In both applications, the ProGAb ap-
proach: (1) produced controllers with better generalisation
abilities than the other methods; (2) needed two to three
times fewer evaluations to discover such solutions.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics; I.2.6 [Computing Methodologies]: Artificial
intelligence—Learning

General Terms
Algorithms

1. INTRODUCTION
In many robotic applications, the robot has to handle a

lot of situations in its daily usage, which are different from
the situations used to design its controller: the controller
has to show sufficient generalisation abilities (GAb), so that
the robot can behave well in all the situations. For instance,
if the robot has to perform a task in a room, its performance
should not critically depend on the size of this room, nor on
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its initial position or orientation, and so on. As Evolution-
ary Robotics (ER) [24, 29] aims at automatically designing
controllers for robots, it has to address this need for GAb
of controllers: how can a controller be evaluated in only few
instances of a task and also be successful in different con-
texts? If a single (or a few) context is used to evaluate the
possible solutions, the performance value does not always
reward general behaviors compared to specific ones: there is
no guarantee that the best solutions are the most general.
For all practical purposes, the best evolved solutions often
achieve bad GAb and one can argue that the lack of a gen-
eral methodology to promote the GAb of controllers curbs
the application of ER to real-world robotic tasks [13].

The problem of promoting the generalisation ability has
been much studied in the framework of supervised machine
learning [1]. Most of the works in supervised learning deal-
ing with generalisation are based on a so-called three data
sets methodology [15], which consists in assessing and vali-
dating a model by splitting the learned contexts into three
different sets: 1) a training set used to fit the model; 2) a
validation set used to measure its generalization capability
and to prevent overfitting; 3) a test set used afterhand to
assess the GAb of the model on several contexts, which were
not used during the learning. This three data sets method-
ology, also applied in GP [15, 30], appears to be an efficient
and simple way to promote and assess the GAb of optimized
solutions.

Assessing the performance of each individual on each con-
text of the several sets leads to conduct a lot of experiments
with the robot, either in simulation or in reality. Such a
methodology is then difficult to adapt to ER, which deals
with a population of many solutions to evaluate. Conse-
quently, reducing the number of evaluations is a major issue
to take into account, as it concerns the most time-consuming
part of an ER experiment. To deal with this constraint, sev-
eral approaches have been previously proposed: optimizing
in a few situations [4], randomly generating a training set
from a larger set at each generation [18], adding noise on one
specific context to make the optimal controller not depen-
dent on some features [25, 19] or relying on neural networks
with dynamic structures, which should automatically adapt
to new contexts [20, 14]. However, these works can only
be used with a few contexts or if the evaluation context is
slightly modified.

The goal of this work is to introduce a generic method-
ology to Promote the Generalisation Ability, the ProGAb



approach, which aims at:

• finding more general controllers than state-of-the-art
methods in ER;

• minimizing the number of evaluations needed to dis-
cover such solutions.

A controller which is optimally general on a given task
should behave well in all the possible instances of this task.
For practical purposes, this generalisation ability (GAb) is
assessed on a large finite set of previously selected instances
of the task that have not been used when evaluating the so-
lutions, like the test set in supervised learning. A controller
is then optimally general, if it is optimal on both training
set and if it achieves similarly high performances on test set.

Promoting the GAb of controllers highlights the following
conflict: 1) while the performance value on a small train-
ing set is fast to compute, it can quickly lead to over-fitted
solutions with low generalisation abilities; 2) the GAb on a
larger set is more informative but cannot be computed for
each evaluated solution because of the computational cost.
In order to keep the number of evaluations on as low as
possible, we resort to a methodology based on three major
aspects: 1) all the evolved solutions are evaluated on a small
training set; 2) we build during the optimization process a
surrogate model which approximates the GAb on a larger set
with function interpolation techniques; 3) to update this sur-
rogate model, few controllers are assessed on this larger set
while optimizing. The solutions are optimized with a Pareto-
based Multi-Objective Evolutionary Algorithm (MOEA) in
which two goals are defined: maximizing the performance
value on the small training set and maximizing the approx-
imated GAb on the larger set. A similar methodology has
been successfully applied to the reality gap problem in [21].

The ProGAb approach has been tested on two robotic
tasks performed in simulation: a navigation task in a T-
maze inspired from [38] and [31] and a more complex ball-
collecting task in an arena, previously introduced in [12].

2. RELATED WORK

2.1 Formalising the Generalisation Ability
Before discussing previous works dealing with the GAb of

controllers, we propose a formal definition of this general-
isation ability to be used in our analysis of the literature.
Generalisation has been much studied in the field of super-
vised machine learning. Our definition is inspired from the
standard three data sets methodology [15] used in supervised
learning and is based likewise on three sets of contexts:

• a training set of contexts Ωtrain is used to optimize the
solutions;

• a validation set of contexts Ωvalid allows to estimate
the GAb of some meaningful solutions;

• at last, a test set 1 of contexts Ωtest is brought into
play to assess afterhand the GAb of the best found
solutions on some not yet encountered contexts.

1The literature in machine learning sometimes reverses the
meaning of “validation set” and “test set”.

In an ER experiment, a context ω is an instance of the
task to solve and corresponds to a set of specific values for
all the parameters of the task: initial position of the agent,
size of the environment, and so on. As the training set Ωtrain

and the validation set Ωvalid are both used to evaluate solu-
tions during the optimization, we also define the evaluation
set Ωeval = Ωtrain ∪ Ωvalid, which contains all the contexts
possibly used for evaluation.

Let F be the fitness function defined on the task, let x
be an individual of the controller space C, the generalisation
ability G of x on a set of contexts Ω is defined as follows:

G(x, Ω) =
X
ω∈Ω

F(x, ω)

An individual x is optimally general if it verifies the two
constraints below:

∀y ∈ C, G(y, Ωeval) ≤ G(x, Ωeval) (C1)

G(x, Ωeval)

|Ωeval|
' G(x, Ωtest)

|Ωtest|
(C2)

An optimally general solution has to behave at best on
all the evaluation contexts (both from Ωtrain and Ωvalid)
(C1) and to behave similarly well on the validation contexts
(C2). An additional constraint is that the solutions have
to be mainly assessed on the training set Ωtrain and as in-
frequently as possible on the validation set Ωvalid, although
the performance on Ωtrain and the GAb on Ωvalid can be
conflicting.

2.2 Promoting robustness
The very first method introduced in ER to deal with the

GAb of controllers consists in adding noise to the inputs
of the controller [33] in order to evolve solutions which can
exhibit robust behaviors to sensor uncertainties. Similar ap-
proaches have been used to evolve controllers in simulation
able to behave well on the physical robot [25, 19]. The main
idea is to hide the specificities of the environment with noise
during evaluation, so that controllers cannot exploit them
and show better GAb when tested in another context.

Some other methods rely on adaptive controllers, like dyna-
mically-rearranging neural networks [20] or plastic neural
networks, which encode learning rules [14]. Such structures
should adapt to environmental changes and be able to re-
trieve good behaviors when the context is slightly modified.

These works deal with robustness, which can be inter-
preted as a particular case of generalisation. It corresponds
to the GAb regarding only small variations of the environ-
ment or of the controller: for instance, adding noise to the
sensors or testing close initial positions. Contrariwise, gen-
eralisation does not make any assumption on the closeness
from a context to another: the size of the environment can
double or the starting position of the robot can radically
change. Consequently, the approaches described above are
not necessarily adapted to enhance the GAb of controllers.

2.3 Promoting generalisation
A review of some ER papers (table 1) indicates that, al-

though a lot of works tackle robustness issues, only a few
ones deal with the GAb of controllers in a more general
sense. On the whole, the most common method consists in



evaluating the controllers with a fixed set of arbitrary eval-
uation contexts, often less than 10 (table 1). For instance
in [12], three different initial positions are used to assess the
controller for a ball-collecting task. Similarly, in [38], con-
trollers are optimized for a navigation task in six contexts
depending on the shape of the maze and the initial position
of the robot. In these works, the generalisation abilities of
the optimized individuals are not assessed on new contexts.

Some other methods rely on a set of evaluation contexts,
which is not fixed during the optimization. For instance,
in [18], the individuals are evaluated on 10 contexts, which
are randomly picked up for each individual at each gener-
ation in a very large set of evaluation contexts. This eval-
uation set can also be co-evolved with the solutions as a
subset of all the possible contexts like in [3]. The best in-
dividual found at the end of the optimization is then tested
on all the possible contexts to assess its generalisation abil-
ity. Nevertheless, each context used for testing has possibly
been used for evaluation, although Ωeval and Ωtest should
be independent to ensure good estimations of the GAb.

In [2], vision-based controllers are evolved to avoid obsta-
cles in an arena. The individuals are evaluated on four con-
texts depending on the initial position of the robot (Ωeval).
The individuals of the last generation are re-evaluated on
four different contexts with a different configuration of ob-
stacles (Ωtest) and the best one is selected depending on its
performances on these new situations. It is more adapted to
truly assess the GAb of the controllers, but such an approach
cannot be straightforwardly used if Ωeval is large because of
high computational costs.

2.4 Reducing the number of evaluations
To deal with the constraint C1, a trivial approach boils

down to directly optimise solutions on the whole evaluation
set: each solution is evaluated on each context of Ωeval. But,
as the evaluation set can be very large, it is often infeasible in
a reasonable computational time. The problem of assessing
the GAb cannot be addressed in general without considering
the need to reduce the number of evaluations.

Several methods have been proposed to lower the number
of evaluations in evolutionary algorithms. The racing algo-
rithm [5, 16] consists in sequentially evaluating candidate
solutions and discarding the poor ones as soon as statisti-
cally sufficient evidence is gathered against them. The early
stopping technique [7] is similar, as it ends the evaluation
of a solution if further evaluations cannot allow it to escape
dominance by another solution. Such approaches require the
fitness function to meet some constraints regarding its sta-
tistical distribution with the racing method or its monotony
with the early stopping algorithm. Besides, it does not al-
low to quickly discriminate between the performances of two
sub-optimal solutions, which is necessary in the state-of-the-
art MOEAs.

Another method consists in building an approximate model
of the computationally costly fitness function, instead of
computing the exact fitness value for each solution [32, 17].
Such an approach could be used to approximate the GAb of
controllers on Ωeval by a so-called surrogate model, which
is updated by computing the exact GAb values of only few
individuals during the optimization. A similar methodology
has been developed in [21] to solve the reality gap problem.
It relies on a surrogate model to approximate the transfer
quality from simulation to reality of controllers evolved in

Table 1: summary of ER papers. x indicates which
papers deal with robustness and/or GAb and if
there is an evaluation during and/or after optimi-
sation process

Papers Robustness GAb |Ωeval| Ωtest?
Jakobi 1995 [19] x 1 x
Miglino 1995 [25] x 1
Jakobi 1997 [18] x x 10 x
Kondo 1999 [20] x 10 x
Di Paolo 2000 [11] x 1 x
Floreano 2001 [14] x 1 x
Berlanga 2002 [3] x 6 x
Ziemke 2002 [38] x 3
Barate 2008 [2] x x 4 x
Doncieux 2010 [12] x 3
Lehman 2010 [22] 1
Bongard 2011 [6] x 1 x

simulation. It makes it possible to find well-transferable con-
trollers with few computationally costly experiments on the
physical robot. Our methodology is inspired from this last
work.

3. METHOD
The ProGAb approach deals with two goals: 1) evolv-

ing controllers with good generalisation abilities regarding
several test contexts on a given task; 2) performing as few
evaluations as possible on all these contexts.

Our approach is based on the three data sets methodol-
ogy detailed in the section 2.1. As the performance on the
training set Ωtrain and the GAb on the validation set Ωvalid

can be conflicting, we propose a multi-objective formulation
of this methodology in which three objectives are optimized
via a Pareto-based MOEA: (1) the performance F on the
training set Ωtrain; (2) the GAb G on the validation set
Ωvalid; (3) the behavioral diversity objective. The addition
of this third objective will be discussed later.

The GAb on the validation set can be very computation-
ally costly to compute on every evolved solution. In order
to minimize the number of evaluations on the validation set,
we rely on a so-called surrogate model to approximate this
second objective during the optimization process.

3.1 Surrogate model of the GAb measure
Surrogate models [37, 17] are used in real engineering

problems when evaluating an individual on the target sys-
tem means very high computational costs or too long exper-
iments. Then, instead of a direct evaluation on the physical
system, solutions are optimized via an approximate model
of it. In evolutionary algorithms, surrogate models can be
used to approximate a computationally costly fitness objec-
tive. In order to build a surrogate model of the GAb function
during the evolutionary optimization, a few controllers have
to be assessed on Ωvalid during the run to obtain the cor-
responding exact GAb values and update the approximate
model.

To build the surrogate model, we rely on Inverse Distance
Weighting interpolation [35] (IDW). While very simple, this
technique has demonstrated to be competitive with more
complex methods, like Krieging methods [28].

We assume that a behavioral distance between controllers
bdist has already been defined on the task, which compares
the individuals based on their behaviors b(x) on Ωtrain. If
some controllers have already been assessed on Ωvalid (at
least 1) and the corresponding exact GAb values have been



computed, a surrogate model Ĝ of the generalisation abil-
ity can be interpolated by Inverse Distance Weighting from
these values.

Let C be the set of all the possible controllers, let Ctested

be the set of the controllers already assessed on Ωvalid and
G∗(ci) the exact GAb value corresponding to each controller

ci ∈ Ctested. The surrogate model of the GAb Ĝ is built as
follows:

∀c ∈ C, Ĝ(c) =

P
ci∈Ctested

G∗(ci) bdist(ci, c)−2

P
ci∈Ctested

bdist(ci, c)−2
.

The use of a surrogate model implies the choice of an up-
date heuristic that selects which test experiments have to be
conducted from Ωvalid in order to pertinently upgrade the
model. We choose a relatively simple heuristic that selects,
at each generation, the best controller on Ωtrain whose be-
havioral distance to the controllers of Ctested is maximal. It
should ensure that the surrogate model is not built on a too
localized part of the behavior space.

3.2 Evaluation objectives
Each controller is evaluated by three objectives to be max-

imized:

1. the performance F on Ωtrain, to find efficient con-
trollers on the training set;

2. the corresponding approximated GAb Ĝ on Ωvalid com-
puted with the surrogate model, to promote the GAb
of the solutions;

3. the behavioral diversity objective.

This last objective allows to maintain behavioral diver-
sity among the population, which efficiently enhances ex-
ploration of the controller state space [12, 26]. To quantify
the diversity of a controller from the controllers already as-
sessed on the validation set, we define a behavioral diversity
value as follows. Let Ctested be the set of the controllers
already assessed on Ωvalid and bdist the behavioral distance
between individuals, the behavioral diversity value div(x)
for a given controller x is:

div(x) = min
xi∈Ctested

bdist(x, xi)

This diversity value doesn’t depend on the genotype nor
on the phenotype of the controller being evaluated, as the
behavioral distance bdist is only derived from the behavior
of the agent on Ωtrain. It promotes solutions that show
the more different behaviors on Ωtrain from those of the
controllers already assessed on Ωvalid according to bdist.

3.3 Algorithm
To compute the approximated GAb Ĝ at the beginning

of a run, we assume that a controller x0 has already been
assessed on the validation set Ωvalid. AS the corresponding
exact GAb G∗(c0) is known, it permits the initialization of
the approximated GAb value for each controller.

MOEA

           : individuals
assessed on 

Population

Evaluating on
the test set

update
heuristic

G*(x)
G

G(x) G(x)
F(x)

F(x)b(x)

div(x)

div(x)

Evaluating on
the training set

A1

A2
B

C

Ωtrain

Ωvalidvalid

Ωvalid

Figure 1: Steps of the ProGAb approach at each
generation – A1. For each controller x of the cur-
rent population, the behavior b(x) and the perfor-
mance F (x) are evaluated on Ωtrain. A2. The simu-
lated behavior of a given controller allows the com-
putation of the corresponding approximated GAb
as predicted by the surrogate model Ĝ along with
the diversity value div(x) to the controllers of Ctested.
B. If this behavioral diversity value is high enough
for some controllers, one among them is randomly
picked up depending on the update heuristic to be
assessed on Ωvalid. The corresponding exact GAb
G∗(x) is computed and the assessed controller is
added to the set Ctested. C. The evolutionary op-
erators are applied to controllers and the selection
step builds the next population.

The algorithm (Figure 1) iterates the following steps:

A. evaluation of the controller x:

A1. computation of the behavior b(x) and the perfor-
mance F (x) of x on Ωtrain;

A2. evaluation of the 2 other objectives in relation to
the controllers of Ctested on Ωvalid (approximated
GAb on Ωvalid and diversity objective);

B. depending on the update heuristic, a controller with
high diversity is assessed on Ωvalid;

C. application of evolutionary operators and generation
of the next population.

4. TASKS

4.1 Task 1: Navigation in a T-Maze
The first task is an extension of the“roadsign problem”[38,

34]: an agent starts off at the bottom of a T-shaped maze,
encounters an instruction stimulus (e.g. a light) while mov-
ing along a corridor and, when it reaches the junction, it has
to turn left or right, depending on which stimulus has been
encountered (Figure 2).

To make this task more cognitive in our experiment, the
instruction stimulus is a combination of four stimuli (A, B,
X, Y) following the same rule as in the AX-CPT working
memory test [8, 31]. This task consists of a context cue
(A or B), followed by a probe (X or Y) after some delay.
The agent must turn to the left when the stimulus A is



distance sensors (IR)

(a)

A-X sequence
Other sequences

(a) (b)

Figure 2: (a) Simulated mobile robot used for the
T-maze task. The robot has four additional sensors,
one by letter. (b) Map employed for this task.

Table 2: Encoding parameters used in both tasks.
Parameters Task1 Task2
min./max. nb. of neurons2 3 / 20 10 / 30
min/max. nb. of connections1 5 / 50 50 / 250
prob. to add/remove a neuron 0.05 / 0.05 0.15 / 0.05
prob. to add/remove a connection 0.05 / 0.05 0.05 / 0.05
prob. to change the weight/bias 0.05 0.15

followed by the stimulus X, and to the right otherwise (for
AY, BX, BY). The AX-CPT task into a T-Maze has already
been implemented in neuroscience experiments, to test rat’s
discrimination performance [23].

Here, the agent is a simulated two-wheeled robot receiv-
ing sensory inputs from 6 infrared distance sensors and four
letter sensors, one sensor for each letter A, B, X, Y, which
receives 1 if the letter is presented, 0 otherwise. The robot
controls its speed through two output units corresponding
to its left and right motors. The agent is evaluated on each
letter sequence (A followed by X, AY, BX, BY). The fitness
increases by 1 if it turns to the correct side for the sequences
AY, BX, BY and by 3 for the sequence AX. The maximal
fitness value is 6.

To fit the experimental setup described in [23], both mo-
tors are disabled during the presentation of the letters. The
whole task lasts 300 steps and takes place as follows with t
the number of elapsed time steps:

• 0 < t < 40: presentation of the first letter (A/B);

• 40 ≤ t < 60: delay, all the sensors are set to 0;

• 60 ≤ t < 100: presentation of the second letter (X/Y);

• 100 ≤ t ≤ 300: the robot can move and must reach
the correct side of the T-maze.

4.2 Task 2: Ball-collecting robot
The ball-collecting task (Figure 3) has been introduced by

[12]. It requires basic navigation skills—obstacle avoidance,
navigation towards several goals—and the ability to change
its behavior depending on the context. The goal of this task
is to explore an arena, to find balls and to bring them to a
basket. A fitness point is granted each time a ball is put into
the basket. Before getting a point, the robot must therefore
learn to search for a ball, take it and keep it, search for
the basket, reach it and then, and only then leave the ball.
Furthermore, the task is not completely fulfilled when the
first ball is collected, as other balls have to be collected and
the robot cannot carry several balls at the same time. Four
balls can be collected during each experiment.

2Used for the initial random population.

(a)

distance sensors

pie-slice sensors

Initial ball position (4 balls by context)

Initial robot position and orientation
Balls

Basket

Robot

(b)

Figure 3: (a) Overview of the simulated mobile
robot for the ball-collecting task. The robot is
equipped with two pie-slice sensors that detect the
balls and two more that detect the basket. The view
range of the right sensors is depicted on the figure,
the left ones are symmetric. The robot is moved by
two motors, the neural network setting the speed of
each of them. (b) Map employed in this set of ex-
periments. Several initial positions and orientations
of the robot are depicted with a circle and an arrow.

The agent is a two-wheeled robot with ten sensors: three
wall distance sensors, two binary bumpers, two binary ball
detection sensors, two binary basket detection sensors and
one binary carry ball sensor. The effectors are left and right
wheel motors and a “catch ball” actuator, whose value must
be greater than 0.5 to pick up or keep a ball and lower than
0.5 to release it.

The fitness function is the number of balls in the basket
at the end of the experiment. The robot has 3000 time steps
to collect all the balls.

4.3 Control approaches
We compare ProGAb with four control approaches:

• Fit only : only one fixed context is used to assess the
controllers (|Ωtrain| = 1).

• Eval all : each individual is evaluated with all the con-
texts in Ωvalid (Ωtrain = Ωvalid).

• Fixed-Random-Initial (FRI): Ωtrain (|Ωtrain| > 1) is
randomly generated from Ωvalid at the beginning of
the run and remains fixed. This principle is described
in [30].

• Jakobi : this method has been developed by [18] to
provide robust controllers able to transfer well onto a
physical robot. Ωtrain is generated by randomly pick-
ing up a fixed number of contexts in Ωvalid at each
generation. It is the same principle as in the Random-
Per-Generation method (RPG) described in [30].

To be fair, all the five methods are tested with the same
budget of evaluations. For the four control approaches, all
the controllers of the population P are evaluated on Ωtrain

during ng generations. The number of evaluations E is:

E = size(P ) ∗ ng ∗ |Ωtrain|

In addition, for the ProGAb approach, one controller is
assessed on Ωtest at each generation:

EProGAb = size(P ) ∗ ng ∗ |Ωtrain|+ ng ∗ |Ωvalid|

All the parameter values used in both tasks are described
in Table 3. For ProGAb, we use the same Ωtrain as in



Table 3: Setup parameters for both tasks.

Method size(P )
Task 1: |Ωvalid| = 180 Task 2: |Ωvalid| = 30

ng |Ωtrain| ng |Ωtrain|
Fit only 200 19000 1 6000 1

FRI ” 1900 10 1500 4
Jakobi ” 1900 10 1500 4
Eval all ” 110 180 200 30
ProGAb ” 10000 1 5500 1

Fit only. A budget of 3,800,000 evaluations is arbitrarily
fixed for the T-maze task, which corresponds to 10,000 gen-
erations for ProGAb. A budget of 1,200,000 evaluations is
arbitrarily fixed for the ball-collecting task, i.e. 5,500 gen-
erations for ProGAb.

The parameters for each context ω in Ωtrain, Ωvalid, Ωtest

for both tasks are: 1) the map size; 2) the initial orienta-
tion of the robot; 3) the initial position of the robot. We
add another parameter in the ball-collecting task: the initial
positions of the balls. There are 6 ball positions for 4 balls
which means there are 15 different contexts (C6

4 ) for a given
map size and a given initial position. These parameters are
described in Table 4.

All the five approaches have been implemented using the
efficient state of-the-art MOEA NSGA-II [10] 3. Both tasks
are simulated in a simple 2D simulator without friction or
slippage.

Diversity objective.
To efficiently explore the controller state space, we add

a behavioral diversity objective to the fitness function in a
Pareto-based multi-objective optimization for all the four
control approaches: Fit only, Eval all, FRI and Jakobi.
According to the conclusions of [9], the behavioral diver-
sity objective to maximize obd(x) is the average behavioral
distance to the rest of the population P . Let bdist be the
behavioral distance used to compare the individuals and F
the fitness function, the controllers are optimized via the
following multi-objective scheme:

maximize


F (x)
obd(x) = 1

size(P )

P
y∈P bdist(x, y)

Neural networks.
Neural networks are evolved structurally and parametri-

cally to control a robot with a simple direct encoding [26],
inspired by NEAT [36]. Classic sigmoid neurons are used
with an output in [−5, 5] and a bias in [−5, 5].

In this encoding, a neural network is described as a di-
rected graph and five mutation operators are implemented:
adding or deleting a connection; adding or deleting a neuron;
changing a weight or a bias using polynomial mutation [10].
Cross-over is not employed. All the parameter values used
in both tasks are described in Table 2. Further details on
the neural encoding can be found in [26].

Behavioral distance.
We use Hamming distance as behavioral distance bdist.

This generic distance has been successfully used in [12],

3This work has been implemented within the Sferesv2 frame-
work [27]. The source code is available at http://www.isir.
fr/evorob_db

Table 4: Tasks parameters
Task 1 |Ωvalid| = 180 |Ωtest| = 180

map size 500 to 650 500 to 650
init. orientation -30◦to 30◦ -30◦to 30◦
variation on x -40 to 40 -20 to 20
variation on y -40 to 40 -20 to 20

Task 2 |Ωvalid| = 30 |Ωtest| = 600
map size 600 650

init. orientation 1 angle 4 angles
init. position 2 positions 10 positions

where the Hamming-based approaches generated the most
efficient controllers. The Hamming distance counts the num-
ber of bits that differ between two binary sequences. In both
tasks, we use the binarised sequence of all the sensor and ef-
fector values.

5. RESULTS
The following results are investigated: 1) the evolution

of the GAb on Ωvalid for the best controllers obtained with
each method (Figures 5 and 7); 2) the GAb on Ωvalid and
Ωtest of the best-of-run individual (Figures 4 and 6). All the
comparisons between the methods are made with Wilcoxon
rank-sum tests.

5.1 Task 1: navigation in a T-maze
For the ProGAb and Fit only approaches, the maximum

fitness on Ωtrain is reached quickly, with respective median
values of 55000 and 71000 evaluations (results not pictured).
The best controllers obtained with Fit only achieve a me-
dian of successful contexts on Ωvalid of 3 out of 180, while
a median of 170 successful contexts is observed for ProGAb.
Such results highlight that reaching the maximal perfor-
mance on only one context is not sufficient to obtain general
controllers, as it does not give any information on the GAb
on Ωvalid.

Performing a lot of evaluations is not necessary relevant:
there is no significant difference between the GAb on Ωvalid

after 1.9 and 3.8 millions of evaluations for all the methods
(p-values > 0.35).

Increasing the number of contexts in Ωtrain improves the
GAb: Jakobi and FRI perform better than Fit only (p-
values < 10−3). But assessing on a huge number of contexts
requires a lot more evaluations: with a budget of 3.8 millions
evaluations, Eval all performs clearly worse than FRI or
Jakobi (p-values < 2 · 10−5).

Randomly generating Ωtrain from Ωvalid at each genera-
tion does not improve significantly the GAb on Ωvalid: the
p-value obtained by comparing FRI and Jakobi is 0.15 after
3.8 millions of evaluations, with respective median values of
80 and 153.

Table 5: Successful runs and evaluations before con-
vergence for the T-maze task. There is “conver-
gence” when the best individual of the population
achieves at least 150 out of the 180 contexts of Ωvalid.

Methods Number of successful Nb. of evaluations before convergence
runs (out of 20) median (106) mean sd

Fit only 0 · · ·
Eval all 1 2.59 2.59 0
FRI 6 1.75 1.86 0.95
Jakobi 12 1.21 1.64 1.12
ProGAb 14 0.42 0.88 0.93
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Figure 4: Percentage of contexts in Ωtrain, Ωvalid

and Ωtest achieved by the best controllers found with
each method (20 runs) on the T-maze task.
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Figure 5: GAb on Ωvalid obtained with each method
on the T-maze task (median over 20 runs). Every
10,000 evaluations, the best individual is assessed on
Ωvalid. Ordinate represents the number of successful
contexts (|Ωvalid| = 180).

The ProGAb approach finds better general controllers than
the other methods with a median of successful contexts on
Ωvalid of 170 out of 180 (p-values < 4·10−2). Moreover, these
controllers are found quicker than with the other methods.
If we look at the runs where the individual’s GAb is greater
than 170 out of 180 contexts (Table 5), we see that ProGAb
needs about two to three times fewer evaluations than Jakobi
to converge, with respective median values of 0.43 and 1.20
millions of evaluations (p-value = 3 · 10−2). At last, there
is no significant difference between the GAb obtained with
the ProGAb approach on Ωvalid and on Ωtest (p-value =
0.45), with respective median values of 170 and 150 success-
ful contexts out of 180. It emphasizes the effective GAb of
the controllers obtained with ProGAb.

5.2 Task 2: ball-collecting task
The Figure 6 shows the average number of balls collected

by the best controllers on 20 runs obtained with each method
on the three sets. The Fit only approach does not always
reach the maximal performance on Ωtrain (the four balls
are collected in only 13 runs out of 20). It is consistent
with previous experiments on this setup [12] and reflects
the complexity of the ball-collecting task.

The ProGAb approach finds controllers with significantly
better GAb than the four other approaches, on Ωvalid (p-
value < 10−2) as well as on Ωtest (p-value < 10−2). More-
over, according to Figure 6, the GAb on Ωvalid (median =
2.63 balls) and on Ωtest (median = 2.23 balls) are not signifi-
cantly different (p-value = 0.11) for this approach. Contrari-
wise, the GAb significantly decreases for Jakobi ’s method,
as the median drops from 2.13 on Ωvalid to 0.74 on Ωtest

(p-value < 5 · 10−3).
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Figure 6: Average number of balls collected on
Ωtrain, Ωvalid, Ωtest by the best controllers found with
each method on the ball-collecting task (20 runs).
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Figure 7: GAb on Ωvalid obtained with each method
on the ball-collecting task (median over 20 runs).
Every 10,000 evaluations, the best individual is as-
sessed on Ωvalid. Ordinate represents the number of
collected balls (max = 4× |Ωvalid| = 120).

Several conclusions can be drawn from the results ob-
tained on both tasks:

• evaluating with a single context or a few fixed contexts
does not lead to general controllers;

• changing the training set from a generation to another
can lead to controllers with a good GAb if the number
of evaluations is sufficently high;

• the ProGAb approach obtains significantly better gen-
eral controllers, while requiring fewer evaluations.

6. CONCLUSION
This paper proposes the ProGAb approach wich promotes

the generalisation abilities (GAb) of controllers. It is based
on the three data sets methodology used in supervised ma-
chine learning and relies on a surrogate model for approx-
imating the GAb of the controllers in order to cope with
computational cost issues.

In the first experiment where a robot must turn to the cor-
rect side of a T-maze according to a previously encountered
stimulus, ProGAb converges quicker than the other meth-
ods. With the more complex ball-collecting task, where a
robot must explore an arena to find balls and take them to
a basket, ProGAb is both quicker to converge and provides
controllers with better generalisation abilities.

Based on these successful results, our approach appears
to be a simple and relevant method to efficiently evolve con-
trollers with good generalisation abilities.
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