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Abstract—Many controllers for complex agents have been
successfully generated by automatically desiging artificial neural
networks with evolutionary algorithms. However, typical evolved
neural networks are not able to adapt themselves online, making
them unable to perform tasks that require online adaptation.
Nature solved this problem on animals with plastic nervous
systems. Inpired by neuroscience models of plastic neural-
network, the present contribution proposes to use a combination
of Hebbian learning, neuro-modulation and a a generative map-
based encoding. We applied the proposed approach on a problem
from operant conditioning (a Skinner box), in which numerous
different association rules can be learned. Results show that
the map-based encoding scaled up better than a classic direct
encoding on this task. Evolving neural networks using a map-
based generative encoding also lead to networks that works with
most rule sets even when the evolution is done on a small subset
of all the possible cases. Such a generative encoding therefore
appears as a key to improve the generalization abilities of evolved
adaptive neural networks.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are now ubiquitous
in neuroscience, but also in computational intelligence; this
technological usefulness of ANNs and their links with their
biological neurons, make them natural candidates to design
bio-inspired controllers for intelligent agents. Nevertheless,
neural networks —and especially recurrent ones— are also
complex dynamic systems which are difficult to design with
conventional engineering methods. A sensible way to tackle
this challenge is to employ evolutionary algorithms, mainly
because they only care about the result and do not constrain
the inner workings of solutions. Additionally, these algorithms
can act both on the structure and the parameters of neuro-
controllers.

Evolved ANNs show impressive results as controllers for
autonomous robots and artificial agents [1]-[3]. But to be truly
efficient in non-stationary problems, ANNs should be not only
adapted to their task, but also plastic by adapting themselves
during their lifetime. Following this line of thought, several
papers proposed to add Hebbian learning rules to evolved
ANNSs [4]; this work has then been extended to include neuro-
modulatory neurons that can trigger Hebbian learning in their
adjacent neurons [5]. Despite promising results, these works
required the agent to learn one choice with only two options
(e.g. left or right in a maze) and each scenario was tested in
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the fitness function. This situation is not realistic for unknown
environments, in which the agent will have to learn to react
to situations for which it has not been selected. Moreover,
current successful setups for evolved ANNs involves only a
few outputs (less than 3) and a few inputs (less than 8).

The present paper aims at evolving plastic neural networks
with better generalization abilities and able to use more
input/outputs. Our approach relies on a neuroscience-inspired
generative encoding [6], neuro-modulation of heterosynaptic
Hebbian rules [5] and, to mitigate deception, an explicit
selective pressures for new behaviors [7]-[9]. To evaluate the
proposed approach, we used a simulated Skinner box [10], a
typical setup in operant conditioning in which an agent must
learn association rules between stimuli and actions.

II. BACKGROUND
A. Computational Neuroscience

Most animals critically rely on their ability to adapt their
behavior thanks to modifications of the strength of synapses in
their nervous systems, a phenomenon called synaptic plasti-
city [11], [12]. This process has been famously modeled by the
Hebbian rule [13], which states that the strength of a connec-
tion increases when both pre- and post-synaptic neurons have
a strong activity. Further researches extended this learning
rule to more general heterosynaptic rules that correlates the
modifications to more complex combinations of pre and post
synaptic activity [14]. A generalized heterosynaptic Hebbian
rule can be written as follows [15].

Awij:A-ai~aj+B-ai+C’~aj+D (D

where ¢ and j are neurons, Aw;; is the modification of
synaptic weight w;;, a; is the activation of neuron 7 and
A, B,C, D are four parameters of the rule.

Synapses changes are also modulated by the concentration
of some of the molecules emitted by other neurons [16].
Several of these molecules, like dopamin or serotonin, are
emitted by specific neurons of the brain and are involved in the
adaptation processes; for example, the activity of dopaminergic
neuron has been shown to be a critical for reinforcement
learning [17]. To model this phenomena, the equation (1) can
easily be extended to use a modulation factor m [5]:



Awj=m-(A-a;-a;+B-a;+C-a; +D) 2)

Researchers rely on these learning rules to build models
that use neurons to describe basic functions of the brain, like
action selection [18] or reinforcement learning [19], [20], [20],
[21]. Most of the time, these models do not arbitrarily connect
individual neurons; instead, artificial neurons are arranged in
organized structures, called neural maps, that projects to other
maps using a few connection schemes such as “one-to-one”
and “one-to-all” [6], [18]. In particular, neural maps and neuro-
modulation can be combined to model reinforcement learning
in the basal ganglia [20], [21]. Considering these neuron-
based models of basic brain functions, three main components
appears to be useful to define brain-like neural networks:
neural maps, heterosynaptic rules and neuro-modulation.

B. Evolution of Plastic Neural Networks

Neural networks have been recognized as a good build-
ing block for creating arbitrarily complex functions, both in
computational neuroscience and in machine learning [22].
This make them classic candidates to design controllers for
autonomous agents. Numerous methods have been proposed
to find efficient neural networks for a given task, such as
the one proposed by Kasabov [23], which incrementally adds
neural networks, used as modular solvers, in a complex, static
architecture. Another solution, Evolutionary Algorithms (EA),
are appealing because (1) they only require an evaluation of the
overall achievement of the task, and not a time-step by time-
step error signal (as in supervised learning), (2) they can define
both the parameters and the topology of the neural network
and (3) they can simultaneously optimize several conflicting
objectives. Many methods have been proposed to evolve neural
networks, from the direct application of real-valued evolution-
ary algorithms to the evolution of ‘“construction programs”
whose instructions are interpreted to build neural networks
(see [12], [22] for reviews).

In most works, synaptic weights are fixed by the EA and
can therefore not be changed during the lifetime of the agent,
whereas agents that adapt during their lifetime would be even
more useful than agents perfectly adapted to their task. In
the simplest cases, classic machine learning algorithms (e.g.
back-propagation or reinforcement learning) can be used but
they cannot be applied to networks of arbitrary topology.
An alternative way of thought is to take inspiration from
computational neuroscience by importing models of synaptic
plasticity into evolved neural networks. Some of the early
works relied on simple homeostatic rules [24], while more
recent works employed more complex rules from a set of
heterosynaptic primitives [4], [15], [25], [26] and introduced
neuro-modulation [5], [8].

More precisely, [15] evolved the synaptic weights and the
parameters A,B,C' and D of heterosynaptic Hebbian rules
(equation (1)) in a task which simulates bumblebees foraging
for nectar. To add neuro-modulation, [27] and [8] evolved the
parameters and the topology of neural networks to solve a

T-maze and double T-maze problem in which the reward was
alternatively placed in one of the branch. They proposed to dis-
tinguish two kinds of neurons: neuro-modulatory neurons and
“standard” neurons. Using the Hebbian rule of equation (2), a
neuro-modulatory neuron connected to a standard neuron will
change the factor m, thus modulating or even de-activating
the Hebbian learning rule. Hence, neuro-modulation allow to
potentially stop synapse changes when an optimal behavior
(according to the reward) is reached.

C. Behavioral diversity

Evolving plastic neural network raises a technical challenge
for any evolutionary algorithm: in most situations, there exists
a non-plastic (or non-adaptive) neural network that despite
being non-optimal, solves a significant part of the task. Un-
fortunately, it is often impossible for the algorithm to add
plastic synapses a posteriori without significantly degrading
the fitness. From the optimization point of view, this makes
most fitness functions that reward learning behaviors very
deceptive [7], [8]. A direct consequence is that most fitness
employed to evolve plastic neural network have to be precisely
crafted to make the adaptive behaviors very attractive, whereas
an ideal fitness function should be straightforwardly deduced
from the task.

One of the most efficient method to find solutions with
this type of fitness is to reward the exploration of the fitness
landscape by rewarding novel behaviors, either by using a
separate objective, or by removing the fitness objective entirely
in favor of a novelty or diversity score. To do so, we need to
be able to compute a distance between behaviors. We then use
this distance as an objective to maximize. This can be done
through the use of diversity where an individual is compared to
its nearest neighbors in the population, or using an archive of
the previous generations [9], [28], in which case we talk about
novelty. These methods have successfully been applied to the
problem of evolving adaptive neural networks by Stanley and
Risi [29] and Soltoggio [7] using novelty of behavior.

D. Limits of previous papers

Many of the previously presented works use plasticity as
a mean to solve tasks that change during the controller’s
lifetime [25]. However, it has been shown that fixed [30] or
recursive [31] networks can often perform better than adaptive
networks in these tasks, thanks to the internal dynamics created
by recurrent connections. Additionally, the task investigated
by these authors usually only requires a switch between two
alternatives, both of them being available during evolution. By
contrast, for many real tasks, we cannot test all the possible
variations during the evolution because this would require too
much time to evaluate each individual. Moreover, it can be
argued that the long term goal of designing such plastic neural
networks is to obtain neural networks which are able to cope
with completely unknown situations, and not only with those
which have been tried during the evolutionary process.

Other papers present adaptive networks as a solution for im-
proving the robustness of the evolved controller. For example,



in [15], a network is tested in a simulation, and the solution is
then implemented on a real robot. Nevertheless, even if some
papers present good results [15], recursive neural networks
can also perform better than adaptive networks in some of
these situations [31], for example when reducing the sensory
information available to the controller (reducing contrast).

Finally, many early works focused on evolving networks
with a fixed topology [26] or relatively small neural net-
works, whereas most of the real-world problems require many
effectors (e.g. legged robots) and complex sensory inputs
(e.g. cameras). Hence, all the successful previous experiments
involved from 1 [15], [27] to 3 [30] outputs and at most 8
inputs. Scaling up to more complex problems probably require
to evolve modular and/or repetitive networks, which in turn
need a complex encoding.

III. MAP-BASED ENCODING

A. Inspiration and Goals

An examination of the published neuroscience models [18]—
[21], and especially of those that could be employed in
artificial intelligence, allows to extract some regularities in
the design of models. The most striking feature is the main
building block: most models are based on N x M spatially
organized grids of identical neurons, called neural maps, and
not on individual neurons arbitrarily connected. Many models
employ only maps of the same size, arbitrary fixed to the
dimension of the input, and a few isolated neurons. Connection
schemes between maps are of two main kinds, one to one
connections with constant weights (neuron ¢ of map M is
connected to neuron j of map Ms, with a positive weight
identical for each connection) and one to all connections with
constant weights (neuron 7 of map M; is connected to each
neuron of map M, with identical weights for all connections).

Following the computational neuroscience practices, we opt
here for maps as the basic building block to evolve neural
networks. Our goal is threefold: (1) obtain neural network
similar to those used in neuroscience models to use the latter
as references or inspiration; (2) increase the scalability; and (3)
improve the generalization properties of evolved plastic neural
networks. Maps and regular connections schemes should in-
deed allow us to handle many similar inputs in the same way,
thus making it easy to scale up to many inputs; encouraging
preliminary results have already been obtained with a map-
based encoding and many similar inputs [6].

Such regular networks should be able to evolve general
learning rules because they must use the same modulation
scheme for each neuron in a map. This makes map based
neural networks better suited for situations that have not yet
been encountered during the evolution process.

We chose to use a transfer function which projects to [0 :
1] instead of the more classic [—1 : 1] commonly used in
machine learning. In this situation, a neuron with a strong
negative input will output 0, and therefore have no effect on
the post-synaptic neurons. This enables the neuromodulatory
mechanisms to selectively enable or disable parts of network.

Fig. 1.

Example of a controller genotype and phenotype using map encoding
for our setup. The view on the left shows the genotype with numerical
parameters, the center view shows an intermediate development, where maps
are instantiated but not the connections. The right view shows the developed
phenotype with maps and connections.

We further modified the links so that the sign of a connection
cannot be changed by neuromodulation.

B. Hebbian Synaptic Changes

We opt here for the modulatory rule of equation 2 and used
in [27] but we only set the parameter A at 1, while the four
other parameters are set to 0; in effect we therefore use a
modulated Hebbian rule. This choice was made because it
led to the best convergence rate on preliminary experiments.
Following [27] and [8], we distinguish two types of neurons:
“standard neurons” and modulatory neurons; to use the modu-
lation factor, inputs of each neuron are divided into modulatory
inputs I,,, (connections from modulatory neurons with activity
0;) and standard I, inputs (inputs from standard neurons with
activity p;). The output a; of a neuron i then defined as

follows:
a; = 801( Z w;;0;5 + bi) 3)
Jjels
where i is the identifier of a neuron, a; its output, b; its bias,
¢1(z) a sigmoid on [0, 1], w;; the synaptic weight between
neurons ¢ and j.
Additionally, each synaptic weight w;; is modified with
regards to the sum of modulatory inputs and a constant

coefficient n:
m; = 902( > wijpj) 4)
J€Im
Awij:n~mi-ai~0j (5)

min(max(w;;(t) + Aw;;, 0), 30)

if Wi (t) Z 0

min(max(w;;(t) — Aw;;, —30), —le — 5)
if Wi j (t) <0

w;j(t + ot) =

(6)

At the beginning of each learning episode, non-modulatory
synaptic weights are initialized with random values.

C. Evolving a Network of Maps

A network of neural maps can be efficiently represented
with a labeled graph whose labels describe the properties of
each map and of each connection (figure 1). Four parameters
are associated to each vertex of the graph:

1) neural map / single neuron (Boolean);



2) modulatory neuron(s) / standard neuron(s) (Boolean);
3) bias of the activation function(s) (real value).

Similarly, each edge of the graph is labeled with two param-
eters:

1) synaptic weight.
2) connection type (“one to one” or “one to all”);

The size of maps is not evolved; instead, it is a parameter
of the experimental setup; as a result, the same graph can be
interpreted for different map sizes.

Such graphs are evolved with a classic direct encoding,
broadly inspired by the NEAT encoding [2]. Mutations act
directly on the graph and cross-over is not employed; three
mutations are possible:

o add/remove a node;
o add/remove/change a connection;
e mutate one or several labels.

No constraint is put to restrict the topology of the networks;
in particular, recurrent connections are possible. More details
about the map-based encoding can be obtained in [6]. At the
first generation, the modulated weights in the network are
initialized randomly

D. Control experiments: direct encoding

The same graph can be interpreted while ignoring the first
label of nodes, resulting in a classic direct encoding for neural
networks, without maps. The same mutations are employed.

IV. EXPERIMENTS

A. Task Origin

To evaluate our approach, we selected a task based on
a setup used to study operant conditioning with animals,
commonly called a “Skinner box”. In this type of experiment
a caged animal, usually a mouse or a rat, is presented with
stimuli which can be either sound, light or a combination of
the previous elements. When the stimuli are presented, the
animal must perform a specific action to obtain a reward. The
typical action is the activation (push) of a lever and the reward
is usually food or water. If the action is performed without
the right stimulus, a punishment is given (electric shock). An
example is shown in figure 2.

This task was selected for two main reasons. Firstly, it pur-
posely does not involve delayed reward, a well known problem
in reinforcement learning [32] which require more complex
mechanisms than basic neuro-modulation [19], [33]. Secondly,
this task presents a choice with many possible combinations
for the answers. It is therefore different from a switch between
only two alternatives, as done by most previous authors [8],
[27]. Furthermore, as the number of stimuli and possible
actions can be changed, the task combinatorial complexity can
be arbitrarily increased or decreased. This feature will allow
us to test the generalization abilities of the evolved networks.

B. Formalization

An agent in a skinner box can be formalized as system
which associates an input vector of size N, to a particular
action among N, possible actions. To simplify the use of
neural maps, we consider here that Ny = N,. The goal of
the agent is to learn a set of association rules that links each
possible N, to an action that maximize its reward. To make
the task easier, we restricted ourselves to vectors N in which
only one input is active at a given time. Such a constraint
corresponds to classical reinforcement learning setups where
an input is equivalent to a state and in which two inputs cannot
be active at the same time. The final network topology is
shown in figure 2 (b).

Definitions

e a rule is an association between a neuron ¢ from the
input map of size N, and a neuron j from the output
map (which is of the same size N;). To answer correctly
to a rule, the neural controller must activate the output j
when input ¢ is presented.

e a rule set is a group containing N, rules: one for each
possible neuron in the input map. The same rule can
be in two different rule sets, but two rule-set cannot be
identical, they always have at least one rule different from
one to the other.

Depending on N, there are NV possible rule sets. If
Ny = 4, there are 256 rule-sets, which is different from the
bumblebee foragging task with two choices.

To evaluate the performance of agent, the neural network
is simulated with inputs which are not subject to random
processes or noise other than the weight initialisation. This
makes it difficult for the network to have an exploration be-
havior, whereas we know that this kind of exploration behavior
is necessary to test the different solutions. The controller
also cannot perform, multiple actions at once (if we take the
analogy of the rat in a cage, it cannot push more than one
lever at a time). The most elegant solution we found to solve
both of these problems is to add a softmax mechanism on the
outputs of the network. This softmax mechanism, described in
[32] and given in equation 7, has a probability of selecting an
output that is linked to the output level of this output compared

to the others:
exp(Ba;)

2= exp(fa;)

where P(i) is the probability of selecting output i, a; is the
activity of output ¢ and S is a fixed coefficient. From previous
experiments, we also observed that if we use only a max
function on the outputs instead of the softmax, the EA finds
solutions where the difference between outputs is around 1le—2
for a total range of 1. Using the softmax mechanism, we force
the network to differentiate its outputs by a significant value.

The softmax mechanism selects an output based on both
the output values and a random process, therefore, if we want
the network to adapt, we must add inputs that provides to the
network the decision of the softmax and the associated reward.
The inputs of the networks can therefore be organised in three

P(i) = (7
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groups. The first group contains the input pattern from the
rule. If we use the map encoding, it is a map of size Ny, else,
there are N, separate inputs. The second group consists in
the feedback information from the last softmax choice, these
inputs are also either a map of size Ng or Ny separate inputs.
Finally, there are two additional inputs which represent the
positive and negative rewards. Both are single neurons. This
setup is shown in figure 2.

The modulation rule we use (section III-B) can only modify
a weight efficiently if the postsynaptic neuron activity is
different from 0; else, the total modification is 0. This can
lead to situations in which an adaptation mechanism relies
on both an adaptation rule with specific initial parameters
as well as a precise initial weight value. We need to avoid
these situations, because they create unstable behaviors. To do
so, the connections of the controller which are modulated are
randomly initialised before learning each rule set, as shown in
3. The objective is to obtain network which are more robust
to various weight values.

In our algorithm, the evaluation procedure of each controller
is described on figure 3. Each controller is evaluated against a
number of rule sets. Each rule sets consists in a N, rules. For
each rule sets, the modulated weights are randomly initialised.
Then, each rule from the set is presented in a pseudo random
order to the network. Each presentation is done in two parts.
During the first part, the pattern is presented to the network
while the other inputs are at O. After k1 cycles, the output
is read from the output and fed to the softmax mechanism,
which selects the active output. The score of the network is
then updated if it is a late trial. For the second phase, the
same pattern is left on the first group of input, while the
second group of input is fed the softmax output, which gives
information to the network about which output was selected.
At the same time, the reward input are set according to whether
or not the selected output and the correct output match. After
ko cycles, another rule is selected.

The neural network required to solve this may seem trivial
at first sight. However, the simplest solutions using our simple
building blocks require at least one hidden layer of neurons
with non-trivial connectivity. The challenge raised by this
problem is threefold: (1) identifying and correctly connecting
the reward inputs, (2) gating the reward with the softmax
choice to modify only the connections corresponding to the
chosen action, and (3) applying the resulting reinforcement to
a link between the inputs and the output. In classical rein-
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(a) Example of a typical skinner box used in operant conditioning. (b) formalization using an evolved neural network setup.

forcement learning implementations, the softmax mechanism
integration as well as the delay tuning between an action
and the associated reinforcement are not implemented using
neurons. This makes the problem simpler to solve.

C. Objectives

The fitness of each individual depends on the process shown
in figure 3. For each controller, we record, at the end of each
rule set training session, the number of rules the controller
was able to answer correctly out of the total number of rules.
This gives us the performance of the controller for a set of
rule. When we compute the fitness score, we use the same set
of rules as the one used during the evolution process. When
we test the generalisation abilities of a network, we use either
a rule set different from the training set (a rule set cannot be
in both sets) or the complete set of possible rule sets (in this
last situation, the rule sets used during evolution represent a
small fraction of the total).

For the training sessions, we present all the rules in a prede-
fined pseudo-random order. Eeach rule from a set is presented
multiple times so that the probability to select at least once all
the correct associations is superior to 0.99 for a network with
all outputs at a zero value. This random probability is possible
thanks to the softmax mechanism previously described.

As explained in II-C, using the behavioral differences to
force the EA to explore can improve results with deceptive
fitnesses. In the present setup, we describe the behavior of a
network with a vector containing the post-learning output val-
ues of the network for each rule set. This both partially reduce
the softmax mechanism impact on the measure and reduces
the importance of the random initialisation of the modulated
weights. The distance between behaviors is computed with
an Euclidean distance. The diversity score of each individual
is its distance from its 15 nearest neighbors. We use the
diversity score as a second objective in a multi-objective EA.
Objectives are shown in equation 8 where the first objective is
the performance with ¢ being the Kronecker distance between
the given (A4,) and correct answer (A.) while % is the total
number of rules tested. The second objective is the diversity,
which is the sum of the distance between behaviors with
respect to the 15 nearest neighbors.

Fit(z) = 18 8(Ay, Ac)

Maximi »
aximize Div(z) = Y12, d(B., Bj)
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D. Parameters

The evolved networks have 2 - Ng + 2 inputs, where Ny is
the size of the map:

e a map of size N, (INs inputs with a direct encoding)

providing the rule input pattern;
e a map of size N, (IN; inputs with a direct encoding)
providing the softmax choice previously done;

« a single neuron providing the positive reward;

« a single neuron providing the negative rewards.
The output is a map of size Ny (/N5 outputs with a direct
encoding). A sample network is shown in figure 1. Simple
McCulloch and Pitts neurons are used. The modulation values
are computed using a sigmoid projecting to [—1 : 1]. The
sigmoid on the modulating inputs is used to normalize the
modification inputs. If the input weights are sufficiently high.
The sigmoid functions can be considered as a binary switch.
Therefore, we allowed a maximum weight of 30 for our
connections. In our problems, each map is a unidimensional
list with a constant size. Therefore, the number of stimuli and
possible actions is always the same. We used 3 or 4 elements
in our experiments. For a map size of 3, we present 40 rules to
each controller per rule-set and 90 for a size of 4. This number
would allow a network with a constant output to select every
correct rule at least once with a probability superior to 99 per
cent (a constant output is a regular random when a softmax
mechanism is used). The evolutionary algorithm we use is the
state of the art NSGA-II [34] with 2 objectives. We used a
population size of 400 and 2000 generations. We then use the
median, as well as the upper and lower quartiles over 30 runs
to have statistically significant results (the distribution of the
results is not normal).

E. Setups and Expected Results

The first experiment tests whether or not maps perform
better than direct encodings in setups where the number of
similar inputs / outputs increases. Our setup was tested both
with and without maps with an input / output size of 3 (8
inputs, 3 outputs) and 4 (10 inputs, 4 outputs). With a map
size of 4, we further tested the importance of other parameters
such as the modulation mechanism and the diversity. If our
hypothesis is right, maps should perform better than direct
encodings, especially for the bigger size. The second exper-
iment tests if maps create structures which generalize better

Flowchart of the evaluation procedure.
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Fig. 5. Test of the impact of different evolutionary parameters on the EA
performance on a problem with 4 inputs and 4 outputs. The values are the
median (red bar), the box extends from the lower to the upper quartile and
the whiskers show the range of the data over 30 runs.

than direct encodings when the fitness on difficult setups: the
evolution fitness is computed on a few examples only. We
evolve controllers with a fitness containing 1 to 5 rule tests,
while the usual number is 10. The best controllers from each
run are then tested against all the possible rule sets. If our
hypothesis is correct, maps should have better performance
than a direct encoding on the complete sets even when evolved
on a few rule sets.

V. RESULTS
A. Increase of fitness when using maps

Left part (a) of figure 4 shows that, with a 3 inputs and
3 outputs, both the direct encoding and the map encoding
provide equivalent results. The reason may be that while
the map encoding simplifies the target network topology, it
also adds multiple parameters to the genotype, which in turn
increase the search space. This could explain why the results
are similar.

By contrast, the results in part (b) of figure 4 show that, in a
problem with a 4 inputs and 4 outputs, a map-based encoding
is required to obtain the perfect fitness; with a direct encoding,
the best individual can only learn 80 per cent of all rules.

As medians do not provide all the possible information, the
additional information provided by figure 5 shows that a single
run managed to reach the maximum fitness without maps. This
proves that our generative encoding scales-up better than a
basic direct encoding.
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Figure 5 also shows that a diversity objective speeds up
the search for solutions. These results are similar to the ones
obtained by Risi [29] and Soltoggio [7]. In our experiment,
using diversity enabled us to half the number of generation
necessary to converge in many variants of these experiments.

Finally, these results show that a modulation rule is nec-
essary to solve this task. We further show that maps without
modulation have lower fitnesses (compared to a direct encod-
ing without modulation) in this task where differentiation of
the outputs is necessary.

B. Better generalisation when maps are used

Figures 6(a) show that the map-based encoding performs
better than the direct encoding when tested on all the rule sets
(most of which are not used during the evolutionary process).
The better fitness of map encodings can be explained in two
ways. The first way is that both encodings manage obtain
similar maximum fitnesses during evolution. In this situation, it
means that the direct encoding creates overlearning networks,
which are performing well only on the training examples,
while the maps create networks which are able to generalize
and learn rule sets different from the ones used during training.
This would confirm our hypothesis. The second solution is
that the generative encoding always outperforms the direct
encoding. The difference then comes only from the difference
in the fitness between generative encoding and direct encoding.

To show that both encodings generate solutions, we consid-
ered only the networks which reach a fitness of 1 (all training
rule sets perfectly learned). These results are shown on figure
6(b). In this situation, we show that the direct encoding only
finds solutions when the evolution tests a few rule sets. In
these situations, The map based encoding offer significantly
better generalisation results. This confirms our hypothesis that
using a map based encoding only generates networks which
generalize better.

When we consider only the generative encoding, we see that
we cannot differentiate results for two or more training rule
sets. Though, when only one rule set is used during evolution,
the generalisation score is low. After analysis, some networks

were able to generate a fixed pattern with different values
for each output of the map. This was done by exploiting
the constant pseudo random order in which the patterns are
presented which is always the same.

CONCLUSION

This paper investigated the combination of Hebbian learn-
ing, neuro-modulation and a neuroscience-inspired map-based
encoding to evolve adaptive neural networks. We applied
the proposed approach on a toy problem inspired from a
classic operant conditioning setup in which numerous different
association rules can be learned.

Results show that the map-based encoding scaled up better
than a classic direct encoding on this task. With few inputs,
our generative encoding led to similar performance as a
direct encoding. However, the best networks evolved with
the direct encoding have lower fitnesses if we increase the
number of inputs / outputs, while the map based encoding
performance does not change depending on the number of
inputs / outputs. Evolving neural networks using a map based
generative encoding also led to networks that can learn most
rule sets even when the evolution is done on a small subset
of all the possible cases. Such a generative encoding therefore
appears as a key to improve the generalization abilities of
evolved adaptive neural networks.

While the present setup was a toy example, it can be
assimilated to the actor in an actor-critic architecture. We
hope to be able to evolve such an architecture in future
work because it’s both powerful in machine learning and has
similarities to what can be observed in animals. Nevertheless,
such an achievement will most probably require the addition of
more advanced mechanisms, for instance based on eligibility
traces [35], [36].
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