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Abstract. This article presents a feature-based framework to automat-
ically track 18 facial landmarks for emotion recognition and emotional
dynamic analysis. With a new way of using multi-kernel learning, we
combine two methods: the first matches facial feature points between
consecutive images and the second uses an offline learning of the facial
landmark appearance. Matching points results in a jitter-free tracking
and the offline learning prevents the tracking framework from drifting.
We train the tracking system on the Cohn-Kanade database and ana-
lyze the dynamic of emotions and Action Units on the MMI database
sequences. We perform accurate detection of facial expressions temporal
segment and report experimental results.
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1 Introduction

A current challenge in designing computerized environments is to place the user
at the core of the system. To be able to fully interact with human beings, robots
or human-centered interfaces have to recognize user’s affective state and interpret
gestures, voice and facial movements.

While several works have been made to recognize emotions, only few extract
the emotional dynamic. In particular, the emotion temporal segment, which is
the limit of the emotion display, is crucial for a system waiting for a specific re-
action from its user. But it is even more important for complex facial expression
detectors which need to know when and how an expression appears before actu-
ally recognizing it. We propose here a facial feature tracking system dedicated
to emotion recognition and emotional dynamic analysis.

There is much prior work on detecting and tracking landmarks. Appearance-
based methods use generative linear models of face appearance such as Active
Appearance Models [1] used in [2] and [3], 3D Morphable Models [4] or Con-
strained Local Models [5]. Although the appearance-based methods utilize much
knowledge on face to realize an effective tracking, these models are limited to
some common assumptions, e.g. a nearly frontal view face and moderate facial
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expression changes, and tend to fail under large pose variations or facial defor-
mations in real-world applications. These models introduce too strong constraint
between points. Features-based tracking methods [6, 7] usually track each land-
mark point by performing a local search for the best matching position, around
which the appearance is most similar to the one in the initial frame. Tian et al [8,
9] use multiple-state templates to track the landmarks. Landmark point tracking
together with masked edge filtering is used to track the upper landmarks. Over
short sequences, features-based tracking methods may be accurate and jitter-
free. Over long ones, these methods often suffer from error accumulation, which
produces drift, and cannot deal with severe aspect changes.

As we want to track landmarks during display of facial expressions, we have
to take into account the high deformation of facial shapes like eyes, brows and
mouth. Hence, we try to localize 18 landmarks independently (4 per eye, 3 per
brow and 4 for the mouth). In a sequence, we use the detection in previous images
to detect landmarks in the current one by matching patches from precedent
images with patches of the current image. But the main problem is that if a
given detection is not really accurate, the following matching will lead to poorer
detection resulting in a drift like other features-based tracking method. To solve
this problem, we propose to incorporate prior knowledge on the appearance of
the searched landmark. In this goal, we use multi-kernel algorithms in an original
way to combine the temporal matching of patches between consecutive images
and the hypothesis given by a static facial feature detector.

To check performances of the tracking system, two tasks are achieved. We
recognize emotion on the Cohn-Kanade database [10] and we detect temporal
segment of emotions and Action Units (AUs) on the MMI database [11]. Com-
parison with state-of-art method for AUs temporal segmentation are provided.

The paper is organized as follows. Section 2 describes the tracking method.
Section 3 details the setup to train and test the system. Section 4 reports exper-
imental results for the emotion recognition task. Section 5 deals with emotion
and AUs temporal segmentation. Finally, section 6 concludes the paper.

2 Facial features tracking method
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Fig. 1. Overview of the proposed method.
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2.1 Overview

Fig. 1 gives an overview of the proposed system. To detect landmarks in a
sequence image, we first use the previous detection to define a region of interest
(ROI) containing candidate pixels that may belong to a given landmark. Then,
we create two sets of features for each candidate pixel. The first set of features is
called static as it just considers patch (region surrounding the candidate pixel)
extracted from the current image. The second one consists of dynamic features.
It measures how much this given patch matches with those extracted in the
previous images. These two sets fed a Multi-Kernel Support Vector Machine
(SVM). Hence, for each candidate pixel, the SVM output gives a confidence
index of being the searched landmark or not. Finally, we check information
arising from the confidence index of each candidate pixel for each landmark
with statistical models. We use five point distribution models: two four-points
models for the eyes, two three-points models for the brows and one four-points
model for the mouth. Model parameters are estimated on expressive faces.

2.2 Features

Two information are extracted on each candidate pixel i as shown in fig. 2:

– Static features are the intensities gi of the neighboring pixels. We extract an
11x11 patch centered on the candidate pixel from facial images that have an
inter-ocular distance of 50 pixels. Patch intensity is normalized after mean
and standard deviation estimation.

– Dynamic features are the correlations between a patch of the current image It
with patches extracted in each previous image (It−1, It−2, It−3, ...It−N ) and
centered on the landmark detected. In this way, we compute N correlation
maps. Features are the (X,Y ) coordinates (pt−1

i , pt−2
i , pt−3

i , ...pt−N
i ) of each

candidate pixel in relation to the maximum of each correlation map. Thus,
the best matching point has the position (0,0).
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Fig. 2. Static and dynamic features extraction.

With αi the dual representation of the hyperplane’s normal vector [10]. k
is the kernel function resulting from the dot product in a transformed high-
dimensional feature space.

In case of multi-kernel SVM, the kernel k can be any convex combination of
semi-definite functions. In our case, we have one kernel function per features.

k = βgkg(gi, g) +
N�

j=1

βjkj(p
t−j
i , pt−j) with βj ≥ 0,

K�
j=1

βj = 1 (2)

Weights αi and βj are set to have an optimum hyperplane in the feature
space induced by k. This optimization problem has proven to be jointly-convex
in αi and βj [11]. Therefore there is a unique global minimum and can be found
efficiently.

βg represents the weight accorded to the static feature and β1...βN are the
weights for the dynamic ones. Thus, using a learning database the system is
able to find the best combination of these two types of feature that maximize
the margin.

This is a new way of using multi-kernel learning. Instead of combining dif-
ferent kinds of kernel functions (for example, radial basis with polynomial), we
combine different features corresponding to different kinds of information. The
first one, represented by the function kg, corresponds to a local landmark detec-
tor which is able to localize these points without drift but can sometimes leads to
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2.3 Multi-kernel learning

The system has to discriminate target samples (candidate pixel that belong to
the searched landmark) from non-target samples (candidate pixel which does
not belong to the searched landmark).

Given xi = (gi, p
t−1
i , ...pt−N

i ) samples associated with labels yi ∈ {−1, 1}
(target or non-target), the classification function of the SVM associates a score
s to the new sample (or candidate pixel) x = (g, pt−1

i , ...pt−N
i ):

s =

(
m∑

i=1

αik(xi, x) + b

)
(1)

With αi the dual representation of the hyperplane’s normal vector [12]. k
is the kernel function resulting from the dot product in a transformed high-
dimensional feature space.

In case of multi-kernel SVM, the kernel k can be any convex combination of
semi-definite functions. In our case, we have one kernel function per features.

k = βgkg(gi, g) +
N∑

j=1

βjkj(pt−j
i , pt−j) with βj ≥ 0,

K∑
j=1

βj = 1 (2)

Weights αi and βj are set to have an optimum hyperplane in the feature
space induced by k. This optimization problem has proven to be jointly-convex
in αi and βj [13]. Therefore, there is a unique global minimum than can be found
efficiently.

βg represents the weight accorded to the static feature and β1...βN are the
weights for the dynamic ones. Thus, by using a learning database, the system
is able to find the best combination of these two types of feature that maximize
the margin.

This is a new way of using multi-kernel learning. Instead of combining dif-
ferent kinds of kernel functions (for example, radial basis with polynomial), we
combine different features corresponding to different kinds of information. The
first one, represented by the function kg, corresponds to a local landmark detec-
tor which is able to localize these points without drift but can sometimes leads to
inaccurate detections. The second one, represented by the functions k1...kN , tries
to match hypotheses between consecutive images. It is much more stable and
will rarely results in bad detections but a drift can appear along the sequence.
Combining both information leads to accurate detections with no drift.

Among all candidate pixels, we need to choose one representing the searched
landmark. In the perfect case, we should have a positive SVM output s if the
candidate pixel is close to the landmark and negative otherwise. In the general
case, when we have zero or more than one candidate pixel with a positive score,
we use the value of s to take a decision. This score can be seen as a confidence
index of the candidate pixel belonging to the landmark.
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2.4 Statistical validation

We estimate five Gaussian Point Distribution Models (PDM) representing eyes,
brows and the mouth by using EM algorithm on the training dataset. For each
of these models, we tune a threshold T such as 95% of the training shapes
have a distance to the model lower than T . During tracking, the SVM scores
each candidate pixel. Then, we have to choose among these candidates, for each
landmark, the one that leads to a valid facial shape. The first hypothesis is the
shape having the highest SVM scores. It is considered as valid if its distance to
the model is lower than T . Otherwise, another hypothesis is built considering
the next best combination of SVM scores and so on.

3 Experimental setup

The tracking system has been trained using the Cohn-Kanade database [10]. This
is a representative, comprehensive and robust test-bed for comparative studies
of facial expression. It contains 486 sequences (during from 10 to 50 frames)
starting with the neutral expression and ending with the expression apex.

3.1 Training database

We have manually labeled landmark positions for the first and last images of
each sequence. Yet, we need the facial feature position for all the images of
the sequence to compute correlation maps. Instead of manually labeling it, we
trained a special detector using as prior knowledge the first and last images.
This has the advantage of being less time consuming. Moreover, it leads to a
more robust tracker because it is trained with correlation maps computed using
noisy detections. To build the training database, for each landmark, we proceed
as follows:

– We resize all images to have an interocular distance of 50 pixels.
– For each sequence, we use the last image and the position of the given land-

mark (ground truth) to create training samples.
– We compute correlation maps between the ROI extracted in the last image

and patches surrounding the ground truth in previous images.
– We choose as target samples the 9 closest points to the ground truth and as

non-target samples 8 other ones distanced from 5 pixels to the ground truth.
– We repeat this process with the first image of each sequence, using the next

images to compute correlation maps (as though the sequence was reversed).
This way we train the tracking system with sequences in which the expression
disappears from the face.

This results in 18 target samples and 16 non-target samples per sequence.
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3.2 Multi-kernel learning

We use a SimpleMKL [14] algorithm to train multi-kernels SVMs. For the gray
level patches, we use a linear kernel. For the position of candidate pixels in
relation to correlation map maxima, we use a second order polynomial kernel.
We choose this kernel because of the good samples closeness with the maximum
of the correlation maps so the border between good and wrong samples looks
like a circle.

The algorithm found that matching with previous images It−4, It−5, ... is not
useful for the detection and set β4, β5... to zero. So we train the SVMs using
only kg, k1, k2, k3 and we find one set of weights βg, β1, β2, β3 for each facial
landmark. Mean weights learned for the points belonging to the same landmark
set are reported table 1.

Facial features βg β1 β2 β3

Brows (6 points) 0.1300 0.6314 0.1774 0.0612

Eyes (8 points) 0.3142 0.4625 0.1477 0.0756

Mouth (4 points) 0.6918 0.1730 0.0822 0.0529
Table 1. Mean weights of points belonging to the same facial feature.

We first notice that we always have β1 > β2 > β3. This means a more impor-
tant weight is associated to the matching with most recent images. Moreover the
points that are difficult to detect on static images have the weakest coefficient
kg, meaning the system does not overly use the static features. The brows are
the most difficult to detect because the ground truth is not well-defined. The
eyes, particularly in the Cohn-Kanade database, have some illumination prob-
lems and the eye contour is not always very clear for the tracking system. On
the contrary, the mouth has the most salient points. Therefore, weight values
tined by the SimpleMKL algorithm are in agreement with our intuition.

3.3 Testing phase

To test the tracking system, we use a 2-fold validation setup in which half of
the sequences is used for training and cross-validation, and the other half is
used as an independent set. We take care not to have sequences of the same
subject in the training and testing set. This way, we have experimental results,
i.e landmarks coordinates given by the tracking system for all the sequences.

During the test phase, we start by detecting landmarks on the first image
with a facial landmark detector [15]. The following image is resized using the
interocular distance computed by considering the previous detections. For each
landmark, we perform as follows. First, we select a ROI of 15x15 pixels (30% of
the interocular distance) surrounding the last detection. This allows the land-
mark point to move quickly from one image to another. Then, we test each
candidate pixel of the ROI with the SVM classifier, leading to one score per
candidate. Finally, we combine candidate pixels to create shape hypotheses and
use the PDM to validate them, as described in section 2.4.
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4 Experiments on the Cohn-Kanade database

4.1 Performance measures

As a first performance measure, we compute the localization error on the last
image of each sequence. This is the mean Euclidian distance between the 18 de-
tected points and the true (labelled) landmark points, normalized by the inter-
ocular distance. The Mean Localization Error is then computed over the whole
test dataset. But the main objective of our system is to track an emotion. Some
detection inaccuracies can reduce the emotion intensity and be harmful to emo-
tion recognition. On the contrary, they will be harmless if they amplify the
emotion intensity.

Hence, the second performance measure is the Emotion Recognition Accu-
racy. 400 sequences of the Cohn-Kanade database are labeled by one of the five
basic emotions (anger, fear, joy, relief, sadness). We want to verify that the track-
ing system can accurately recognize these emotions. To do so, we compute the
difference between the 18 detected landmarks at the beginning and the end of
each sequence. These feature vectors are used to train five one-versus-all binary
classifiers, each one dedicated to an emotion, using as positive all the samples
corresponding to this emotion and all the other samples as negatives. During
testing, at the end of the sequence, the feature vector is computed and fed the
five classifiers. The emotion belonging to the classifier with the highest decision
function value output is assigned to the sequence. To test the generalization to
new subjects, we use a leave-one-subject-out cross-validation setup in which all
the data from one subject are excluded from the training database and used for
test.

4.2 Experimental results

Table 2 details the accuracy when of the tracking system. If we only use the static
features (function kg), the Mean Localization Error (MLE) does not overtake
11% of the interocular distance. Using only the dynamic features (functions
k1, k2, k3), error decreases to 5.7%. Combining both features achieves better
result with an error of 5.3%. Finally, the PDM mainly corrects the outliers and
reduces the error standard deviation (SD). These local models do not unduly
constraint points allowing expressive shapes and do not change the emotion
recognition performance.

We can notice that even if the function kg does not achieve good results, it is
still useful combined with other functions using matching with previous images.
It provides information about the searched landmark and prevents the tracking
system from drifting. Moreover the Cohn-Kanade sequences are relatively short
and the kernel kg would be even more useful on longer sequences.

Emotion recognition accuracy (ERA) increases in the same sense, from 60.2%
with the sole static information to 78.0% when using the full tracking system.
Finally, let us notice that the detections reached by the tracking system at the
end of the sequences lead to an emotion recognition score (78%) close to the one
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MLE SD ERA

Using kg only 11.4% 2.81% 60.2%

Using k1, k2, k3 only 5.7% 1.91% 76.2%

Without stat. validation 5.3% 1.86% 78.0%

Full tracking system 5.1% 1.81% 78.0%

Ground truth 0% 0% 80.0%
Table 2. Experimental results achieved on the Cohn-Kanade database.

reached when using the ground truth (80%). This shows that the system is well
suited to track emotions through sequences.

4.3 Sensitivity to initialization

In fig. 3, we investigate the robustness of the tracking system to initialization
(detection on the first image). In this experiment, we do not use a facial landmark
detector but the ground truth of the first image to initialize the tracker. We add
artificially to this ground truth a uniform noise. As some shapes cannot be
statistically possible, we choose the closest shape within the noisy detections
validated by the PDM. The mean localization error of this shape normalized by
the interocular distance is reported as the initialization error.
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Fig. 3. Sensitivity to the initialization error: localization error and emotion recognition
accuracy.

We notice that for an initialization error greater than 4% of the interocular
distance, the localization error increases. It means that landmarks are tracked
with less accuracy. But even with these inaccurate detections, the emotion is
still correctly detected. With an initialization error of 8% the emotion recogni-
tion score only decreases from 78% to 74%. To measure the influence of poor
detections in the first image, we perform another experiment. We use the labeled
landmarks (ground truth) of the last image. We notice that the tracking system
leads to landmark localizations on the apex expression image more useful for the
emotion recognition task than the ground truth.
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5 Temporal analysis of expressions

Since the first image og Cohn-Kanade sequences represents the neutral face and
the last, the expression apex, dynamic analysis of these sequences can be biased.
In this section, we will evaluate the ability of the proposed system to detect an
emotion temporal segment. We call onset the temporal beginning of the facial
movement and offset its ending. To evaluate the trackers ability to (1) follow
subtle facial movements and (2) generalize on other sequences, we decide to test
the tracking system on another challenging database.

5.1 MMI database

The MMI Facial Expression database [11] holds videos of about 50 subjects
displaying various facial expressions on command. We apply our tracking system
on the 197 sequences labeled as one of the six basic expressions and, to compare
with other works, 256 AUs labeled sequences. In these sequences, AU can appear
alone or in combination. We have chosen the AU-sequences in which the onset
and offset are already labeled. We also manually labeled the onset and offset
of the basic expression sequences. Contrary to the Cohn-Kanade database, the
subjects can wear glasses and beard. Sequences last several seconds recorded at
a rate of 25 frames per second.

5.2 Temporal segment detection

Our goal is to detect the temporal segment using only landmark detections
along the sequence. In this way, we can check if the system is accurate enough
to track subtle movements. To detect the onset and the offset in each sequence,
we proceed as follow (Fig. 4):

– For each frame, we express the landmark coordinates in a barycentric basis.
To detect emotions, we use the coordinates Xp

i , Y
p
i of all the landmarks p and

frames i. To detect upper Aus, we only use the brow and eye landmarks (14
points). To detect lower Aus, we use only the mouth landmarks (4 points).

– We first try to separate each sequence in half, each half containing either
the onset or the offset. We compute the euclidian distance D(i) between the
coordinates in the frame i and the coordinates in the first frame and its
derivative d(i).

D(i) =
∑

p

√
(Xp

i −Xp
1 )2 + (Y p

i − Y p
1 )2 (3)

d(i) = D(i)−D(i− 1) (4)

We cut the sequence in the frame ic such that we maximize:

max
ic

ic∑
i=1

d(i)−
end∑
i=ic

d(i) (5)
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This way the onset of the expression is likely to be before ic and the offset
after ic.

– We compute G(i), the sum of the gradient magnitudes over 6 frames. This
represents the global movement of the facial landmark.

G(i) =
∑

p

√√√√(
2∑

k=0

Xp
i+k −

3∑
k=1

Xp
i−k)2 + (

2∑
k=0

Y p
i+k −

3∑
k=1

Y p
i−k)2 (6)

– The expression onset corresponds to the maximum of G(i) for i < ic and the
expression offset corresponds to the maximum of G(i) for i > ic.
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Fig. 4. Detection of the start and the end of the emotion.

5.3 Segmentation of basic emotions

We report the mean difference between the true label and the detected label in
table 3. We detect the temporal segment of the emotion with an accuracy of 5
frames or 0.2 second. As the emotion in these sequences lasts between 40 and
120 frames, we can say that the tracking system leads to a good segmentation
of the emotion.

Mean error Standard deviation

Onset 4.5 5.1

Offset 5.5 4.9
Table 3. Detection of the emotion temporal segment: mean error and standard devi-
ation in number of frames (record speed: 25 frames/second).
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5.4 Actions Units segmentation: comparison with other works.

To the best of our knowledge, there is no tracking system specifically addressing
the problem of emotion temporal segmentation. We decide to compare our work
with appearance-based system to check if the tracking of facial landmarks is
accurate enough to lead to accurate temporal segmentation. The only results
are reported by Valstar & Pantic [16] and Koelstra et al. [17]. In the last one,
they detect the AU segment on 264 sequences of the MMI database. They report
temporal error (in frames) for onset and offset for AU detection. In the same
way, we report results in fig. 5 for each AU to perform a fair comparison. But as
we do not know the sequences they used for their experiments, we are not able
to straightly compare.

We can notice that the proposed tracker reaches the same overall accuracy as
an appearance-based system. Such results can be obtained only if we can track
very subtle facial movements. The worst results are for upper AUs, particularly
AU5 (upper lid raiser), AU6 (cheek raiser) and AU7 (lid tightener) coding the eye
movements. These AUs are more visible with appearance features in the higher
cheek region (like wrinkles) than the eyelids motion. So, it is not surprising that
the tracker on these AUs is less accurate. Good detections are reached for the
lower AUs (AUs 10, 12, 15, 20, 23, 24, 25, 27). Using only the mouth points, we
can detect temporal segments more accurately than state-of-art.
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Fig. 5. Mean error in number of frames for the detection of the AU temporal segment.

6 Conclusion

We present in this paper a fully automatic tracking system of 18 facial landmarks.
Advanced Multi-kernels algorithms are applied in an original way to combine
point matching between consecutive images with a prior knowledge of facial
landmarks. The system is suited for real-time application as we are able to treat
five frames per second with a non-optimal Matlab code.
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This system tested on the Cohn-Kanade database has been able to track
facial emotions even with inaccurate facial feature localizations. Its localizations
lead to an emotion recognition performance almost as good as the one achieved
with ground truth. This confirms that our tracker is well-suited for facial feature
tracking during emotional display.

Successful temporal segmentation of emotion and AUs on the MMI database
has been realized. Experiments show lower AU temporal segments are as well as
by state-of-art methods. Results for the upper AUs are promising too, but seem
to need more than eyelid movements to be detected accurately. In future works,
we will combine the landmark coordinates with texture around these points to
increase results.
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