
Stochastic optimization of a chain sliding mode controller for the
mobile robot maneuvering

Alexander V. Terekhov, Jean-Baptiste Mouret, Christophe Grand

Abstract— In this study we present a chain sliding mode
controller for the control of a four wheeled autonomous mobile
robot performing aggressive turning maneuver to 90 degrees on
a loose surface. The controller consists of a set of local sliding
mode controllers and the hyperplanes of switching between
them. The parameters of the sliding mode controllers and
the hyperplanes are obtained using methods of multiobjective
stochastic optimization applied to a model of the robot. The
obtained controller is used to drive the mobile robot. The results
show that is capable to control the robot during aggressive
maneuver. In particular, the steering radius obtained with the
controller was two times smaller then the minimal steering
radius admitted by the robot.

I. INTRODUCTION

As the results of DARPA Grand Challenge clearly show,
visual systems for unmanned vehicles make significant steps
forward [1], hence increasing the average speed of au-
tonomous vehicles. However, the path tracking algorithms
do not evolve significantly. It may be argued that further
increases of the vehicle speed will be delayed by the in-
ability of the path-tracking algorithms to cope with the task,
especially during the drift.

With significant progress in the quality of the sensors and
perception algorithms the necessity comes to develop the
controllers of the vehicle, capable to operate at high move-
ment speeds. Most of the current day controllers are essen-
tially based on the virtual vehicle algorithm [2]. In particular,
the vehicle is usually modeled as a non-holonomic system,
thus excluding the possibility of the drift and inevitably
limiting its maneuverability. Some efforts has been made
to enhance the performance of the virtual target algorithm
using a sliding mode controller [3] by taking the slippage
into account.

The general goal of the developing the new controllers
would be to achieve the performance comparable to pro-
fessional drivers. One of the promising approach is based
on recording the actions of human drivers and their fusion
with virtual vehicle-like algorithms. Impressive results were
recently reported for autonomous aggressive parking [4].
However, this approach is only limited to the autonomous
cars. In case of different vehicle mechanics (for example,
independently control motor wheels) the experience of the
rally racers cannot be directly exploited.

This work was supported by DGA, grant REI 2008.34.0018
The authors are with Institut des Systèmes Intelligents et de Robotique,

UPMC-CNRS, 4 Place Jussieu, 75005 Paris, France.
A.V. Terekhov: avterekhov@gmail.com
J.-B. Mouret: mouret@isir.umpc.fr
C. Grand: christophe.grand@isir.upmc.fr

Another way to approach the problem would be to use
the classical scheme, used, for example for the ballistic
rockets control. Namely, to split the control problem into
the combination of finding the optimal trajectory (using
dynamical model of the vehicle) and its stabilization it with a
presumably linear feedback system. Recently, we made few
steps in this direction for a four-wheels mobile robot per-
forming highly aggressive turning maneuver on loose surface
[5], [6]. We discovered that the use of stochastic optimization
can be very helpful in designing the optimal trajectory and
feedforward control inputs, but the problem of the feedback
stabilization may be difficult. The difficulties come from the
fact that during the aggressive turning maneuver there is
significant lateral component in the vehicle’s motion, while
the vehicle is locally non-controllable in this direction. It
means that from the local view point, the lateral movement
of the vehicle is ballistic, i.e. it is more like the flight of
a bullet, for which only initial speed and direction can be
controlled. It follows that if the stabilization is at all possible
it would probably require the feedback law, which would
be non-linear or time-dependent, or both. Our attempts to
use multilayer perceptron to approximate this law resulted
in control laws, which are hardly feasible to be implemented
in a real robot [6]

In the current paper we consider the problem of the control
of a four-wheeled mobile robot performing aggressive 90
degrees turn maneuver on a loose surface. We aim at finding
the controller, which would demonstrate the performance,
comparable to professional rally drivers. Based on our past
experience [5], [6] we search for a way to find the con-
troller that would combine optimal maneuver execution in
feedforward manner with feedback mechanisms, stabilizing
the execution.

A. Motivation

The ideal controller would follow the optimal trajectory
from any point of the state space. For such controller any
disturbance would be just a shift of the initial conditions,
while the movement would always remain optimal. However,
such controllers are possible to build only for the simple
systems, which can be solved analytically. This is definitely
not the case for the vehicle maneuver control, where the
wheel-road interaction can be described by a fast changing
significantly non-linear function of the vehicle state. One
might think of finding the solutions computationally for
all possible initial conditions and putting them in place on
demand. However, it is hardly feasible because of the high



dimension of the state space and the sensitivity of the wheel-
road interaction model.

Still for some classes of the optimal control problem
finding the optimal control law for every point of the state
space seems feasible. Thus, for example, it is known that
under some conditions the solution of the problem of the
movement time minimization has a bang-bang structure,
meaning that it switches between the maximum and mini-
mum admissible values of the control inputs. The switching
occurs when the state of the controlled object crosses a
specific hypersurface in the state space. For such systems the
problem of the synthesis of the optimal controller is limited
to finding the switching hypersurfaces. The latter is still not
so simple because they may be significantly curved. The form
of the optimal switching hypersurface is determined by the
particular dynamics of the controlled object. For the general
optimal control problems the situation is even worse because
the control inputs may take intermediate values.

Thus, the problem of the optimal control synthesis seems
hardly solvable. However, for our specific purpose it is not
necessary to know the optimal solutions for every point of
the state space. It may be sufficient to have them only inside
a domain of the state space surrounding the trajectory of
the maneuver and possible deviations from its execution.
In this case the switching surfaces may be approximated
by hyperplanes and the change of the control inputs may
be approximated by the piecewise linear functions. It must
be noted that the piecewise approximation of the optimal
control inputs was shown to be able to fit the actions of the
professional rally racers [7]. Moreover, the hyperplane-based
approximations of the switching hypersurfaces are vastly
used in the sliding mode control.

B. Chain sliding mode controller

The chain sliding mode controller is a set of sliding mode
controllers involved one after another. The idea is to have
different sliding mode controllers in different parts of the
state space and to switch between them when the object’s
state crosses a switching hyperplane.

Let ξ be the vector of the observations, appended with a
unit value:

ξ =

(
1
y

)
,

where y is the vector of the observations.
As the local controllers we use the second order sliding

mode controllers, whose advantages are described in [8].
Every local controller is given by the switching surface,
which can be defined by a vector η of the same dimension
as ξ. The rate of change of the control input u is given by
formula:

u̇ = k sign (η, ξ) , (1)

where k is a constant value, limiting the rate of change of
the control values; the brackets denote the scalar product.

Unlike classically used sliding mode controllers, the for-
mula (1) has integration. As a consequence the control
value u is a piecewise linear function, instead of piecewise

Sliding line #2

Sliding line #3

Switchihg line #1

Switching line #2

Sliding line #1

Fig. 1. Schematic representation of the chain sliding mode controller. The
trajectory of the object state is denoted with the dotted line. The initial
position is shown with the black dot.

constant. Moreover, the sliding surface is shifted from the
origin, since the first element of ξ always equals one. Of
course, in addition to (1) the values u must be bounded be
their maximum and minimum admissible values: umin ≤
u ≤ umax.

The formula (1) defines a local controller. The global
controller is defined by a set of local controllers, which are
interchanged when the point ξ crosses controller-switching
hyperplanes, which we call “switching hyperplane”. The
switching hyperplanes can also be defined by its normal
vector σ. The switching happens when the value

s = (σ, ξ) (2)

changes its sign.
The whole control scheme is illustrated in Fig. 1. Initially

the robot is controlled by the controller, defined by the vector
η1 and the coefficient k1. When the point ξ crosses the
hyperplane (line in the figure), defined by the vector σ1, the
scalar product (σ1, ξ) changes its sign. As soon as it happens
the control vector η1 and value k1 are substituted by the new
control vector η2 and the new control value k2, which are
used until the hyperplane, defined by σ2, is crossed. The
switching of the controllers is usually accompanied by the
jump of the control parameters, resulting from the fact that
the sliding mode controllers are not aligned at the switching
point.

In this paper we use the methods of stochastic optimization
in order to find a chain sliding mode controller to govern an
aggressive 90 degrees turning maneuver of a four-wheeled
mobile robot on a loose surface. We build a relatively
simple dynamical model of the robot for tuning the controller
and analyze its robustness based on a more complicated
dynamical model. In supplementary materials we present a
video of preliminary results of the robot control.



Fig. 2. Mobile robot “fastBot 2”, for which the controller is designed.

II. MATHEMATICAL MODEL

A. Short robot description

The controller is designed for the manually designed four
wheeled mobile robot “fastBot 2”, shown in Fig. 2. The
description of the previous version of the platform can be
found in [9].

Shortly, the robot represents a four-wheeled mobile plat-
form, whose approximate mass geometrical characteristics
are given in table I. The axles of the robot are equipped
with differentials. The front axle admits Ackerman steering
of the wheels. The breaking system is installed on the rear
axle. When the breaks are on the axle rotation is excluded,
while the differential admits the rotation of the wheels can
rotate in opposite directions.

The propulsion of the robot is performed by the brushless
motor, whose torque is transmitted to the front axle through
a gear set. The motor is controlled by a servo amplifier, using
the output of the encoder, installed on the motor shaft. The
servo amplifier works in velocity tracking mode. The steering
and the breaks are controlled by servomotors, working in
position tracking mode.

B. Mathematical model

The schematic representation of the simplified model of
the robot is given in Fig. 3. The position of the robot is
defined by the location of its center of mass x, y and the
heading angle ϕ between the x axis and the longitude axis
of the robot. The motion of the robot satisfies the equations:

ẋ = Vm cosϕ− Vl sinϕ,
ẏ = Vm sinϕ+ Vl cosϕ,
ϕ̇ = ω,

Jω̇ = T,

MV̇m = Fm +MωVl,

MV̇l = Fl −MωVm,

(3)

where ω is the angular velocity of the robot’s trunk, Vm and
Vl are the projections of the linear velocity of the robot’s
center of mass on the medial (longitude) and lateral axes
respectively, Fm, Fl and T are the total medial and lateral

Fig. 3. Schematic representation of the robot.

forces and the total torsion torque, defined as the following:

Fm = Fm1 cosα1 − Fl1 sinα1 + Fm2 cosα2−
Fl2 sinα2 + Fm3 + Fm4,

Fl = Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+
Fm2 sinα2 + Fl3 + Fl4,

T = L(−Fm1 cosα1 + Fl1 sinα1 + Fm2 cosα2−
Fl2 sinα2 − Fm3 + Fm4)+
d(Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+
Fm2 sinα2 − Fl3 − Fl4),

Fli, Fmi are lateral and medial projections of the tangential
forces of wheel-road interaction for each wheel reference
frame (see Fig. 3), α1, α2 are the steering angles of the left
and right wheels, respectively.

For the forces Fmi and Fli we use the brush model, which
is relatively simple computationally, but at the same time
captures the main features of the wheel-road interaction. The
details of the brush model can be found in [10]. Roughly, the
medial and lateral tangential forces are defined as nonlinear
function of the lateral and medial projections of the slippage
velocity, Vsmi and Vsli, that is the velocity of the contact
point of the wheel (in case of no sliding this velocity is
zero):

Fmi =µFnif(Vsmi/Vi),

Fli =µFnif(Vsli/Vi),
(4)

where Vi is absolute value of the velocity of the axle of i-th
wheel, Fni is the normal force at the i-th wheel contact point
and µ is the coefficient of Coulomb friction. The function f
depends on the tangential stiffness of the tire cp.

To determine the normal forces in (4) we used the method
described in [11]. The resultant normal forces for every
wheel is given by the equations:

Fn1 =
M

4dL
(dLg − hLal − hdam)

Fn2 =
M

4dL
(dLg + hLal − hdam)

Fn3 =
M

4dL
(dLg − hLal + hdam)

Fn4 =
M

4dL
(dLg + hLal + hdam)

(5)

where h is the height of the center of mass of the robot,
am and al are projections of the robot’s acceleration on the
corresponding axes.



The equation (5) describes weight redistribution caused
by the acceleration of the center of mass of the robot in
case when the pitch and roll angles of the robot are close to
zero. However, to compute the medial and lateral acceleration
one must provide the total medial and lateral tangential
forces, which, according to the brush model, depend on the
normal forces themselves. In order to solve this problem
we made an assumption that the weight redistribution (5)
does not happen instantly but with a characteristic time τ ,
which roughly correspond to the characteristic time of the
suspension system of the robot. We appended the dynamic
equations of the robot (3) with the following:

τ ȧl = Fl/M − al,

τ ȧm = Fm/M − am.
(6)

To determine the velocities in (4) we need to have the
angular velocities of the wheels, ωi. We represent of the
individual wheels velocities as a superposition of the axle
angular velocities ωf , ωr and the difference between the left
and write wheel velocities at each axles δωf , δωr allowed
by the differential:

ω1 = ωf + δωf , ω2 = ωf − δωf ,
ω3 = ωb + δωb, ω4 = ωb − δωb.

(7)

We assume that the servo amplified tracks velocity ideally
the desired angular velocity of the front wheels and thus ωf
becomes a control input. The angular velocity of the rear
axle ωr is assumed to appear from the interaction with the
ground reaction forces and the breaking toque Tb:

Jwω̇r + νwωr = −rw
2

(Fm3 + Fm4) + Tb, (8)

where Jw is the moment of inertia of the wheel and νw is the
friction in the axle. For the breaking torque we used dynamic
friction model instead of the Coulomb friction model, which
would be more appropriate in this case. We preferred the first
one because for the given set of parameters the performance
of two models is nearly the same, while the first one suits
better the numeric simulation.

Tb =

{
−νbωr breaks on,
0 breaks off.

(9)

The coefficient of the breaks friction νb was chosen
sufficiently high, but not threatening the stability of the
system.

Finally, we assume that the distribution of the wheels
forces within the same axle is determined by the ground
interaction forces:

Jwδω̇f + νwδωf = −rw (Fm1 − Fm2)
Jwδω̇r + νwδωr = −rw (Fm3 − Fm4)

(10)

For sake of simplicity we ignore the dynamics of the
steering system, assuming that it the servomotor tracks
ideally the desired steering angle, denoted as α. The steering

angles of each of the wheels were computed from Ackerman
formulas:

α1 = arctan
sinα

1− d
2L sinα

,

α2 = arctan
sinα

1 + d
2L sinα

.
(11)

On the whole the state of the system is 11-dimensional.
The system admits 3 control inputs: the desired angular
velocity of the front wheels ωf , the desired steering angle α
and the state of the breaking system b.

The parameters of the model used in the simulations are
presented in Tab. I. These parameters correspond approxi-
mately to those of the mobile robot “fastBot 2” shown in
Fig. 2.

TABLE I
PARAMETERS OF THE MODEL USED IN SIMULATION.

M 7.5 kg J 0.1 kg m2

L 0.20m d 0.175m
h 0.06m τ 0.05 s
µ 0.6 cp 105 N/m2

νw 0.01N m/s νb 0.1N m/s
Jw 0.0003 kg m2 r 0.075m

III. ESTIMATION OF THE CONTROLLER
PARAMETERS

We search for the optimal parameters of the presented
chain sliding mode controller to drive the robot making 90
degrees turn. We assume that the desired path is composed
of two orthogonal straight lines. The robot is located 6 m in
front of the turn, directed towards it and has initial velocity
of 3 m/s. The robot is then let to move for 4 seconds,
during which the steering angle, the front axle velocity and
the breaks command are controlled. The range of steering
angle change is fixed to ±25 degrees, the linear velocities of
the wheels are allowed to vary between 0.1 and 3 m/s, the
command to breaks was between 0 and 1. The breaks were
off if it was below 0.5 and they were on otherwise.

A. Controller

The controller assigns the steering angle, front wheels
velocity and the breaks command based on the observations.
We assume that the following information is available to the
robot:

1) s – the distance to the turn (negative before the turn
and positive after);

2) V – the magnitude of the velocity of the robot’s center
of mass;

3) ω – the angular velocity of the robot’s trunk;
4) δ – the signed distance from the trajectory to the

robot’s center of mass (positive when deviates left);
5) ψ – the signed angle between the heading direction of

the robot and the tangent to the trajectory (positive for
left turn).



The corresponding appended vector of the observations is

ξ = (1, s, V, ω, δ, ψ)
T
.

The controller with N local controllers is defined by the
set of the sliding mode vectors ηi with the corresponding
coefficients ki and by the switching surfaces vectors σj ,
i = 1, . . . , N , j = 1, . . . , N − 1. The dimension of each
of the vectors ηi and σj is equal to 6. On the whole, the
controller is parametrized by 7N − 3 scalar values. This
number corresponds to the controller of a single value, i.e.
the steering angle or the front wheels velocity, or the breaks
command.

In order to simplify the search of the control parameters
we assumed that before and after maneuver the robot was
controlled by an algorithm, resembling the virtual vehicle
controller. In other words, the first and the last sliding
mode vectors for the steering angle ηα and the front wheels
velocity ηV were set to predefined values:

ηα1 = (0, 0, 0, 0.5, 0.5, 1)
T

and
ηV1 = (3, 0,−1, 0, 0, 0)

T
.

The corresponding control laws are the following:

α̇ = −kα1 sign

(
1

2
ω +

1

2
δ + ψ

)
,

V̇F = −kV1 sign (V − 3) .

The breaks were set to “off”:

ηb1 = (−1, 0, 0, 0, 0, 0)
T
.

The first controller is the classical path-tracking feedback
with the exception that it uses integrated values. The second
controller stabilizes the velocity of 3 m/s, the third one brings
the breaks command to “off”.

In the current paper we restricted the number of the
local controllers to 3 per the control value, which results
in 33 unspecified parameters. In addition to that we ran
optimization for 5 local controllers per control value but
we discovered that the number of controllers along the
trajectory never exceeded 3 for each value. It means that
the hypersurfaces of the controllers switching were such that
they were never crossed by the state of the robot.

B. Stochastic optimization

We search for the controller parameters that allow the
robot to perform the maneuver as fast as possible with
the minimal deviation from the desired path. Instead of
arbitrarily aggregating these two objectives into a single
function to optimize, we rely on a stochastic multiobjective
optimization algorithm that search for the set of Pareto-
optimal trade-offs, that is solutions that cannot be improved
with respect to one objective without decreasing their score
with respect to the other one.

Numerous algorithms have been proposed in the literature
to optimize several objectives in this fashion [12]; most of

them rely on the concept of Pareto dominance, defined as
follows: a solution p∗ is said to dominate another solution
p, if two following conditions are satisfied: (i) the solution
p∗ is not worse than p with respect to all objectives, (ii) the
solution p∗ is strictly better than p with respect to at least one
objective. Typical algorithms starts with a set of M random
points, called a population, and evaluate the objectives for
each point; these points are then sorted according to Pareto
dominance; the best points are kept and they are perturbed
(e.g. by adding a Gaussian noise) to generate new points
that will replace the worst ones; the objective are evaluated
for each new point and the sorting/perturbation cycle starts
again.

We here used the algorithm NSGA-II [13]—which follows
the previously described algorithm outline—implemented
in the Sferes v2 framework [14]. We performed 10,000
iterations with a population size of 300.

C. Disturbances

In absence of external disturbances and for the fixed
reference trajectory the optimal control can be learned in
purely feedforward manner. In order to avoid this sort of
over-learning of the control parameters we introduce model
disturbances to the system. In addition to the clean simula-
tion we ran the controller under disturbed conditions. The
following changes of the simulation parameters were used
as disturbance:

1) Vmax = 9m/s,
2) Vmax = 11m/s,
3) µ = 0.55,
4) µ = 0.65,
5) J = 2.5 kg ·m2 and M = 30 kg,
6) J = 3.5 kg ·m2 and M = 50 kg,
The accuracy and the average speed of the robot were

computed as the worst case over all disturbances, i.e, the
maximum deviation from the path and the lowest average
speed were taken as the performance characteristics of the
given controller.

D. Optimization results

The outcome of the optimization algorithm is an approx-
imation of the Pareto front for the two objective functions:
average speed of maneuver and its accuracy (the worst
cases over 6 disturbances). In this case all solutions were
approximately the same, so we selected the one with the
best accuracy.

The trajectory of the selected solution is given in Fig. 4.
It can be seen that the controller is able to track the desired
trajectory with rather high precision (the maximum deviation
is below 6 cm). In the simulations the maneuver is performed
with significant understeering: the robot nearly stops close
to the turn apex, while slipping slightly in lateral direction.

The the velocity and the breaks control inputs are shown in
Fig. 5. It can be seen that the robots decelerate and breaks at
the same time, while approaching the turn apex. Short before
the turn it starts accelerating, but keeps the breaks “on”. At
the same time instance it starts steering (see Fig. 6).



1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

x (m)

y
 (

m
)

Model

Robot

Fig. 4. The trajectories of the model and the robot, controlled by the same
algorithm. In both cases the dashed line denotes the reference trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
, 

m
/s

Time, s

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
, 

m
/s

Time, s

 

Speed command

Model

Robot

Fig. 5. The velocity and breaks commands of the same controller executed
on the model and on the robot. The turn apex occurs at 2.5 sec in both cases.

The steering angle controller has 3 clearly marked phases:
the first and the last one coinciding with regular path-tracking
algorithm and the middle one, responsible for the steering
during maneuver.

In [6] for the same task we developed a controller com-
bining feedforward control inputs with the feedback based
on a multilayer perceptron. The resultant control signals
were rather ragged and unlikely to work on a real robot.
In contrast, the controller presented here, produced signals
resembling a lot the feedforward controller we used in
our previous study. Moreover, the control commands are
qualitatively similar to those reported for professional rally
racers [7].

0 0.5 1 1.5 2 2.5 3 3.5 4
−30

−20

−10

0

10

20

30

S
te

e
ri
n
g
 a

n
g
le

, 
d
e
g
re

e
s

Time, s

 

Model

Fig. 6. The steering outputs of the same controller executed on the model
and on the robot. The turn apex occurs at 2.5 sec in both cases.

E. Preliminary experiments with robot

The same controller was executed on the real robot. The
tests were performed in the university campus on the stone
floor. In order to make the contact more slippy we attached
plastic tape on the wheels of the robot. A representative
example of the robot movement is given in Supplementary
Materials.

The obtained trajectory is shown in Fig. 4. Clearly, in the
real robot the controller demonstrates much worse perfor-
mance than in simulations. Moreover, as it can be seen from
Fig. 5 and Fig. 6, the same controller produced significantly
different commands when applied to the model and to the
real robot. In reality the real robot decelerated significantly
less when approaching the turn than it did in the model. It
might happen because in the real robot the initial speed was
slightly above 2 m/s instead of 3 m/s used in simulations.
For the slippery wheels the robot had higher speeds were
impossible to achieve.

Yet, few details must be noted, which make us enthusiastic
about the controller. First of all, the robot actually performed
the maneuver. Moreover, under no-slippage condition the
robot’s steering system admits only turns with the steering
radius of 1 m and above. In contrast, in the experiment
the robot turned with about 0.5 m steering radius benefiting
significantly from the slippage and the breaking system. Both
in the simulation and in the experiment the maneuver was
performed with significant understeering. The slippage angle
was about 35 degrees in the experiment and close to 70
degrees in the simulations.

To be sure that the observed performance achieved due to
the proper controller we tried to find the parameters manually
on the real robot starting from the scratch, however we did
not succeed. Overall, we believe that the proposed control
scheme might be used for the robot control.

IV. CONCLUSION

In this paper we presented the chain sliding mode con-
troller, consisting of local sliding mode controllers and the
hyperplanes of switching between them. We applied the
controllers of this structure to the problem of aggressive
maneuver execution by a four-wheeled mobile robot. The
maneuver consisted in 90 degrees turn at velocity about



3 m/s. The parameters of the controller were determined
using the methods of stochastic multiobjective optimization.
The obtained controller produced reasonable commands in
the simulations and when working on the real robot.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the darpa grand
challenge: Research articles,” J. Robot. Syst., vol. 23, no. 9, pp. 661–
692, 2006.

[2] M. Bibuli, G. Bruzzone, M. Caccia, and L. Lapierre, “Path-following
algorithms and experiments for an unmanned surface vehicle,” J. Field
Robot., vol. 26, no. 8, pp. 669–688, 2009.

[3] E. Lucet, C. Grand, D. Salle, and P. Bidaud, “Dynamic yaw and
velocity control of the 6wd skid-steering mobile robot roburoc6 using
sliding mode technique,” in Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pp. 4220–4225,
May 2008.

[4] Z. Kolter, C. Plagemann, D. T. Jackson, A. Ng, and S. Thrun, “A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), (Anchorage, Alaska,
USA), 2010.

[5] A. V. Terekov, J.-B. Mouret, and C. Grand, “Stochastic multi-objective
optimization for aggressive maneuver trajectory planning on loose sur-
face,” in Proc. of the IFAC conference on Intelligent and Autonomous
Vehicles, (Lecce, Italy), 2010.

[6] A. V. Terekov, J.-B. Mouret, and C. Grand, “Stochastic optimization of
a neural network-based controller for aggressive maneuvers on loose
surfaces,” in Proc. of the IEEE Int. Conf. on Intelligent Robots and
Systems (IROS), (Taipei, Taiwan), 2010.

[7] E. Velenis, P. Tsiotras, and J. Lu, “Aggressive maneuvers on loose
surfaces: Data analysis and input parametrization,” in 15th IEEE
Mediterranean Control Conference, June 26-29, Athens, Greece, 2007.

[8] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input
chattering-free second-order sliding mode control,” Automatic Control,
IEEE Transactions on, vol. 45, no. 9, pp. 1711–1717, 2000.

[9] E. Lucet, C. Grand, A. Terekhov, and P. Bidaud, “Experimental study
of a fast mobile robot performing a drift maneuver,” in Proceedings of
Clawar’10: 12th Int. Conf. on Climbing and Walking Robots, (Nagoya,
Japon), 2010.

[10] H. Pacejka, Tyre and Vehicle Dynamics. SAE International, Elsevier,
2 ed., 2005.

[11] E. Velenis, P. Tsiotras, and J. Lu, “Modeling aggressive maneuvers
on loose surfaces: The cases of trail-braking and pendulum-turn,” in
European Control Conference, Kos, Greece, July 2-5, 2007.

[12] K. Deb, Multi-objectives optimization using evolutionnary algorithms.
Wiley, 2001.

[13] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Opti-
mization: NSGA-II,” in Proceedings of the Parallel Problem Solving
from Nature VI Conference, pp. 849–858, Springer. Lecture Notes in
Computer Science No. 1917, 2000.

[14] J.-B. Mouret and S. Doncieux, “Sferes v2: Evolvin’ in the multi-core
world,” in IEEE Congress on Evolutionary Computation, 2010 (CEC
2010), 2010.


