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Abstract—Computational neuroscience uses networks of arti-
ficial neurons to model cognitive functions of animals. Neuro-
evolution uses the same abstract models of artificial neurons
with the goal to control the behavior of artificial agents or real
robots and make them exhibit adapted behaviors. Despite these
similarities, neural networks obtained in these two fields are
surprisingly different. The approach developed in the EvoNeuro
project aims at reducing this gap to build via Neuro-evolution
cognitive functions studied in a Computational Neuroscience
context. This article summarizes the first results of this project
on this topic, results focused on the inclusion of a feature that is
absent from Neuro-evolution and ubiquitous in Computational
Neuroscience: the structuring in maps of neurons with regular
connection schemes instead of isolated neurons and connections.

I. INTRODUCTION

Computational neuroscience [1], [2] and neuro-evolution
[3]–[6] both produce “artificial nervous systems” that aim
at reproducing on a machine some of the abilities found
in animals. Models produced in computational neuroscience,
however, display almost no similarities with evolved neural
networks. In particular, neuro-evolution usually involve up
to a few dozens of neurons with finely tuned topology and
synaptic weights; by contrast, computational neuroscience
often manipulate hundreds of neurons in a very organized
fashion.

An analysis of published models (especially [7]–[13]) re-
veals that the basic building blocks make at least one fun-
damental difference: evolutionary methods mostly use indi-
vidual neurons, ideally organized in modular and repetitive
fashion [5], [6], [14]–[16], but many neuroscience models rely
on the concepts of maps (a 1D or 2D grid of identical neurons)
connected by regular connection schemes (either one to one
connections or one to all with a regular assignation of weights).
This allows such neural networks to scale up to larger maps
(e.g. to handle higher-dimensional inputs) while maintaining
the same overall structure. This description of neural networks
as connected maps can be seen as the result of a developmental
process in which a network of maps is developed to form a
neural network.

Besides this analysis, computational neuroscience can also
provide an efficient approach to benchmark neuro-evolution
methods in the context of cognitive functions. On one hand,
neuro-evolution ended up with substantially good results to
control non-linear systems [4], [16], [17], but despite Beer’s
preliminary proposals [18], [19], no clear benchmark has
been widely accepted to evaluate their potential for generating
more cognitive functions. On the other hand, experimental

neuroscience isolated several modules of the nervous systems,
and precisely described their inputs and outputs such that
computational neuroscience can model them. On the road to
automatically design artificial nervous systems, the minimum
benchmark for any neuro-evolution method should be to
reproduce the functions modeled by neuro-scientists and to
equal the efficiency of hand-designed neural networks.

The EvoNeuro project builds on this inspiring parallel
and the present paper showcases a few salient results from
this project1 [20]–[23]. After an introduction to the map-
based encoding, we summarize the studies made around the
properties of the encoding on the three following aspects:
scaling, versatility and learning abilities.

II. MAP-BASED ENCODING

Many computational neuroscience models can be described
as a graph of neural maps in which each map and each
connection is described by a set of parameters (figure 1). In
our model, each edge is associated with three parameters:

• connection type (1 to 1, 1 to all with uniform synaptic
weights, 1 to all with Gaussian weights);

• synaptic weight (all connections between maps have the
same strength) or parameters of the Gaussian (if the
connection is of Gaussian type).

Similarly, three parameters describe each node:
• isolated neuron or map of neurons (a Boolean value);
• inhibitory or excitatory (the whole map will be inhibitory

or excitatory);
• parameters of the neuron (time constant, threshold).

In this work, all maps have the same size. Such a graph
of neural maps is developped into a full neural network by
analyzing each node and each edge of the graph to create the
corresponding neurons, maps and connections.

Mutation can modify such a graph structurally (add/remove
a connection or a node) and parametrically (change of a label).

III. SCALING: WINNER-TAKES-ALL INSPIRED BY THE
BASAL GANGLIA

The basal ganglia are a set of interconnected subcortical
nuclei [24], that are thought to be involved in action selec-
tion [25], [26], i.e. the problem, for an agent, of choosing
which action to perform within a repertoire, given internal
and external sensory information, in order to achieve its goals.
The BG performs the two main aspects of action selection:

1Parts of the current text and all the figures have been previously pub-
lished [20]–[23].



Fig. 1. Overview of the development process. From left to right: (1) the genotype is a labeled graph with evolvable labels; (2) the labels are interpreted to
a neuroscience-inspired description of the neural network; (3) for a given size of maps, this neural network can be fully developed into a neural network (for
instance to evaluate its fitness).
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Fig. 2. Proportion of runs that satisfy the constraints (fitness > 0) after
200, 000 evaluations and average fitness of those runs (10 runs of each vari-
ants have been launched). All differences are statistically significant (Student
T-test, p < 0.01) except between map-based (6) and map-based (15). CBG
corresponds to a computational neuroscience model [9] whose parameters are
optimized by an evolutionary algorithm.

the central process of selection of one action only among
conflicting ones, similar to a winner-takes-all (WTA), and
the learning process necessary to bias the selection process
towards the most profitable option. We focus here on the WTA-
like process for which various models have been proposed [8],
[9], [27].

As a first test of the map-based encoding, we wanted to
know (1) if this new encoding can reproduce an important
function of the brain (the WTA), (2) if the new encoding
outperforms a classic direct encoding for this task and, (3)
how the new encoding can scale up to many inputs/outputs.

The objective function (fitness) counts the number of correct
outputs vectors for 1000 random inputs: for each input vector,
if the maximum salience corresponds to input i, then output
i must be the lowest output. Furthermore, the fitness rewards
the contrast between outputs, so that the selected action is as
desinhibited as possible and the others actions are as inhibited
as possible.

Results (Fig. 2) show that evolving neural network with
the proposed map-based encoding leads to efficient networks
which are at least as efficient as the optimized reference
model [9]. The new encoding also outperforms the classic
direct encoding when 6 or 15 input channels are used. Since

the neural network description is independent of the size of
the map, results obtained with 6 or 15 channels are statistically
not different. This result demonstrates that the map-based
approach can potentially generate very large, functionnal and
organized neural networks. More details about these results
are to be found in [20].

IV. VERSATILITY: WORKING MEMORY CIRCUIT

Defined as “the ability to transiently hold and manipulate
goal-related information to guide forthcoming actions” [28],
working memory is a basic cognitive ability that has motivated
lots of modeling research in computational neuroscience [28]–
[30].

The synthesis of a neural network exhibiting this function-
ality was studied to first check whether the proposed encoding
can generate it or not. The chosen setup is the AX-CPT
task [29], [31], [32]. In this setup, the network has four inputs:
A, B, X and Y and two outputs: target and non-target. The
target output should be above the non-target one each time
an A is followed by a X. The rest of the time, the non-target
output should be above the target one. To solve the task, the
network should then memorize each A and trigger the target
output if and only if an X follows.

In a second step, we considered the case in which the signal
to keep in memory, i.e. A in the original setup, is changed.
To mimic a learning mechanism, we tried to evaluate whether
the generated networks can be adapted to a new situation by
means of a parameter optimization only, i.e. without change
in the structure of the network. The goal of this experiment
was to evaluate the versatility of the networks generated by
the proposed encoding. It should be highlighted here that
we did not reward versatility during the topology evolution
experiment, the goal was to evaluate whether the proposed
encoding had a tendency towards versatility or not.

The questions that were investigated in this work are then
the following: (1) does the map based encoding facilitate
the synthesis of a working memory functionality? (2) are
the networks generated with the map based encoding more
versatile?
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Fig. 3. (a) Example of a neural network obtained with map-based encoding for the AX-CPT working memory task. In this case, each map is composed of 4
neurons. 1-1 represents one to one connections between maps, 1-all, one to all connections, gauss., weights following a gaussian distribution; (b) Minimalist
canonical model of cognitive control proposed by Braver [32]

o1o0

7

Y B 6

A X

-3.50
-2.33

-2.29-4.30
4.51

1.36

2.55

4.82

4.46

-2.40

1.98

-3.43

0.29

Fig. 4. Minimalist neural network obtained by direct encoding for the AX-
CPT working memory task. In this case, each circle represents one single
neuron.

For the first question we compared the synthesis capability
of the map-based encoding to that of a simpler direct encoding.
The map based encoding reveals to be able to generate working
memory networks with a similar success rate (5 out of 10 runs
versus 4 out of 10 runs), although it requires more generations
(1016 generations on average versus 656 generations).

The networks generated with the map based encoding look
more generic and even are, sometimes, similar to computa-
tional neuroscience models (fig. 3), while those generated with
a direct encoding are specific to the sequence to recognize
(fig. 4). To validate this impression and answer the second
question, the topologies of those solutions were kept and
their parameters optimized to solve a task in which the target
sequence was BY instead of AX. None of the topologies
generated with the direct encoding succeeded in solving this
new task, while 4 out of 5 networks generated with the map
based encoding lead to solutions.

These results show that the map-based encoding generates
networks that exhibit the desired functionality while remaining
much more adaptable than a simple direct encoding. The
regularity included in the encoding results in a versatility “for
free”, i.e. without the need to explicitly reward it during the

evolutionary process. For further details, see [21].

V. LEARNING ABILITIES: THE SKINNER BOX

Synaptic plasticity underlies most models of learning, mem-
ory and development in animals [33], [34]. It has been
described at many levels of detail, but studies on the evolution
of plastic artificial neural networks for intelligent agents are
mainly focused on Hebbian-like adaptation rules, according
to which the strength of connection is modified with regard
to pre- and post-synaptic activity [35]–[40]. Here we rely on
modulated Hebbian plasticity [38]–[40], i.e. for each synapse,
Hebbian plasticity is modulated by the output of special mod-
ulatory neurons, whose activation depends on the particular
circuit of the evolved neural network.

Nonetheless, evolving plastic ANNs currently requires long
fitness evaluations because one must ensure that each possible
learning scenario (e.g. different positions of reward or difffer-
ent sizes of robots) can be learned. The number of scenarios
tends to grow exponentially with the number of alternatives,
therefore testing most of them when evaluating the fitness
arguably prevents the evolution of plastic ANNs for anything
else than toy problems. Besides this computational issue, one
of the goals of designing plastic ANNs is to make agents able
to react to unknown situations which will obviously not be
known during the evolutionary process. Put differently, a lot
of computation time is employed to encourage the evolutionary
process to find a general learning system and not adaptation
rules that are specialized for the situations tested during the
fitness evaluation.

We hypothesized that using a map-based encoding will
drastically reduce the number of tests required to evolve neural
networks with synaptic general learning abilities (sGLA): if a
learning system is found to work for a few sample situations
(ideally one situation), the regularity implied by the map
system should have replicated this system to make a generic
structure that will be able to learn any similar task.
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Fig. 5. Success rate (30 experiments) on learning association sets different
from the ones used in evolution with the map-based encoding (green bold
boxes) and with a direct encoding (blue thin boxes). Only successful runs
(Fit(x) = 1) are taken into account and numbers show the proportion of
runs that reached this perfect fitness.

We tested this hypothesis in a simulation of the classic
Skinner box used in operant conditioning [41]: an agent is
placed in a cage with four stimuli (lights), four actions (levers),
positive rewards (food) and punishments (electric shocks). The
goal of the agent is to learn the right associations between each
stimulus and each action (for each light, the agent must press
the matching lever; since we only allow one to one matches,
there are 256 possible sets of 4 associations). The goal of the
experiment is to evolve an agent that is able to learn any set
of stimulus/action associations, without having to test each of
them during the evaluation of the fitness function. We call the
number of tests required to obtain such neural networks with
GLA the “sTLA-level” (synaptic Transitive Learning Abilities
level) and the proportion of successfully learned association
set the “sGLA score”.

We launched 7 sets of experiments, each one using a dif-
ferent number of association sets during the fitness evaluation
(from 1 to 7). After 2000 generations of 200 individuals, we
tested the ability of the individuals with a perfect fitness to
learn each of the 256 possible association sets.

Experimental results validate our hypothesis (figure 5):
when the map-based encoding was used, individuals that
perfectly learned 1 or 2 association sets during the fitness
evaluation were able to learn about 90% of the other, unknown
sets. By contrast, using a direct encoding led to networks with
significantly lower sTLA scores, even when a large number of
sets were used.

VI. CONCLUSIONS

Taking inspiration from some computational neuroscience
models, we proposed a new encoding based on the evolution
of a graph of neural maps. Using such maps instead of
individual neurons makes this encoding a very simple model of
a developmental encoding. Successive works to evaluate this

encoding [20]–[22] demonstrated that it allows the evolution
of networks that are (1) scalable [20], (2) versatile [21]
and, if Hebbian plasticity is added to the neural networks,
(3) with good general learning abilities [23]. These results
show how fruitful the interactions between neuro-evolution
and computational neuroscience can be.
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