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Abstract—This paper introduces a hierarchy of concepts to
classify the goals and the methods of works that mix neuro-
evolution and synaptic plasticity. We propose definitions of “be-
havioral robustness” and oppose it to “reward-based behavioral
changes”; we then distinguish the switch between behaviors and
the acquisition of new behaviors. Last, we summarize the concept
of “synaptic General Learning Abilities” (sGLA) and that of
“synaptic Transitive learning Abilities (sTLA). For each concept,
we review the literature to identify the main experimental setups
and the typical studies.

I. INTRODUCTION

The abilities of animals to adapt to new environments is
one of the most fascinating aspects of Nature and it may be
what most clearly separates animals from current machines.
Natural adaptive processes are classically divided into three
main categories, each of them having been a continuous
source of inspiration in artificial intelligence and robotics [1]:
evolution, development and learning. While studying each of
these processes independently have been widely successful,
there is a growing interest in understanding how they benefit
from each other.

In particular, a large amount of work has been devoted
to understand both the biology of learning (e.g. [2], [3])
and the design of learning algorithms for artificial neural
networks (e.g. [4]); concurrently, evolution-inspired algorithms
have been successfully employed to automatically design small
“nervous systems” for robots [5]–[10], sometimes by taking
inspiration from development processes [8]–[11]. A compara-
tively few papers proposed to combine the artificial evolution
of neural networks with synaptic plasticity to evolve artificial
agents that can adapt their “artificial nervous system” during
their “lifetime” [6], [11]–[19] (Fig.1). However, the analysis of
these works shows that they often address different challenges
in very different situations, while using the same terminology
(e.g. “learning”, “robustness” or “generalization”).

The goal of the present paper is to provide a set of defini-
tions to make as clear as possible current and future work that
involve the evolution of such plastic artificial neural networks
(ANNs) to control agents (simulated or real robots). While
some definitions and some distinctions are novel, the main
contribution of the present paper is to isolate each concept and
to present them in a coherent framework. For each definition,
we will provide examples of typical setups and current results.
Figure 2 displays the hierarchy of the concepts that will be
introduced; it can serve as a guide to the paper.
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Fig. 1. The artificial evolution of plastic neural networks rely on the
classic evolutionary loop used in neuro-evolution. The algorithm starts with
a population of genotypes that are thereafter developed into plastic neural
networks. The topology of the neural network is sometimes evolved [14]–
[20]. Typical plastic neural networks use a variant of the Hebb’s rule to adapt
the weight during the “lifetime” of the agent. The fitness of the agent is
most of the time evaluated in a dynamic environment that requires the agent
to adapt its behavior. The agent is therefore usually directly selected for its
adaptive abilities.

II. SYNAPTIC PLASTICITY

In neuroscience, plasticity (or neuroplasticity) is the ability
of the brain and nervous systems to change structurally and
functionally as a result of their interaction with the envi-
ronment. Plasticity is typically observed during phases of
development and learning. Trappenberg [2] defines two kinds
of plasticity: structural plasticity and synaptic (or functional)
plasticity.

Definition 1 (Structural plasticity): Structural plasticity is
the mechanism describing generation of new connections and
thereby redefining the topology of the network.

Definition 2 (Synaptic plasticity): Synaptic plasticity is the
mechanism of changing strength values of existing connec-
tions. It is sometimes termed “functionnal plasticity” [2].

Nolfi et al. [11] investigated structural plasticity in a system
in which the genotype contained developmental instructions
for the construction of a neural network. Genes specified
(1) the position of each neuron and (2) instructions that
described how axons and branching segments grew. These
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Fig. 2. Hierarchy of concepts described the present paper. See text for a definition of each gray box.

instructions were executed when a neuron was sufficiently
stimulated by its surrounding neurons and by the agent’s
environment. The authors observed different phenotypes when
the same genotype was used in two different environments
and concluded that their approach increased the adaptive
capabilities of their organisms. Several other authors evolved
neural networks while letting them grow axons depending on
their location (e.g. [8], [9]) but the enviroment was not taken
into account.

Most works on the evolution of plastic neural networks
instead focused on synaptic plasticity [13], [21]–[23], maybe
because of the prominence of learning algorithms in the neural
network literature. Most of the works that do not rely on
machine learning algorithms (e.g. the backpropagation algo-
rithm) [12], [24] use variants of the “Hebb’s rule” [13], [18],
[19], [22], [23], which posits that the simultaneous activation
of two neurons strengthens the synapse that link them.

Definition 3 (Hebb’s rule): Let us denote by i and j two
neurons1, ai and aj their respective activation level, wij the
synaptic weight of the connection from i to j and η a learning
rate that describes how fast the change occurs. According to
Hebb’s rule, wij should be modified as follows:

wij(t+ 1) = wij(t) + ∆wij (1)
∆wij = η · ai · aj (2)

1We focus our discussion on classic neurons (as used in classic machine
learning) and popu1lation-based models of neurons (e.g. leaky integrators)
because they are the neuron models that are used by most of the community.
Spiking neuron models can make use of other plasticity mechanisms (e.g.
STDP) that will not be described here.

Hebb’s rule is often extended to include more complex
combinations of pre- and post-synaptic activities [2], [13],
[18], [22], [23].

Definition 4 (Extended Hebbian rule):

∆wij = f(ai, aj , wij) (3)

Many different f() have been investigated; one of the simplest
extended Hebbian rule consists in linearly combining pre- and
post-synaptic activities [15], [18], [21]:

∆wij = A · ai · aj +B · ai + C · aj +D (4)

where A,B, C and D are four real numbers. Several rules can
be mixed in the same neural networks, as Urzelai and Floreano
did it when let evolve the kind of rules for each synapse in a
fully connnected, fully plastic neural networks [13].

A synapse can also be strengthened or weakened as a result
of the firing of a third, modulatory inter-neuron (e.g. dopamin-
ergic neurons) [14], [21], [25]. To reflect this phenomenon, two
kinds of neurons can be distinguished: modulatory neurons
and modulated neurons. Inputs of each neuron are divided
into modulatory inputs and signal inputs; the sum of the
modulatory inputs of j governs the modulation of the all non-
modulatory connections to j:

Definition 5 (Modulated Hebbian rule): Let us denote by
I
(m)
j the set of modulatory inputs of neuron j and by I

(j)
s

the set of non-modulatory inputs. Each incoming connection



of neuron j is modified as follows:

mj = tanh
( ∑

k∈I(m)
j

wkjak

)
(5)

∀i ∈ I(j)s , (6)
∆wij = mj · f(ai, aj , wij) (7)

In addition to its biological realism, this weight adaptation rule
makes easier to use rewards signals (for instance, plasticity
could be enabled only when a reward signal is on). It also
leads to networks in which only a part of the synapses are
changed during the day-to-day life of the agent. These two
features make such networks match more closely some of the
current actor-critic models of reinforcement learning used in
computational neuroscience [3].

Modulated Hebbian plasticity has been used several times
when evolving plastic neural networks [14], [15], [17], [21],
[26]. In these simulations, experiments in reward-based scenar-
ios where modulatory neurons were enabled achieved better
learning in comparison to those where modulatory neurons
were disabled [15].

III. ROBUSTNESS AND REWARD-BASED SCENARIOS

A major goal when evolving neuro-controllers is to evolve
neural networks that keep performing the same optimal (or
pseudo-optimal) behavior when their morphology or their
environment change. For instance, a robot can be damaged,
gears can wear out over time or the light conditions can
change: in all these situations, it is desirable for an evolved
controller to compensate these changes by adapting itself; we
will call this ability behavioral robustness.

Definition 6 (Behavioral robustness): An agent displays
behavioral robustness when it keeps the same qualitative
behavior, notwithstanding environmental and morphological
changes. Behavioral robustness does not usually involve a
reward/punishment system.

In a typical work that combines synaptic plasticity, evo-
lution and behavioral robustness, Urzelai and Floreano [13]
evolved neuro-controllers with plastic synapses to solve a
light-switching task in which there was no reward; they then
investigated whether these controllers were able to cope with
four types of environmental changes: new sensory appear-
ances, transfer from simulations to physical robots, transfer
across different robotic platforms and re-arrangement of en-
vironmental layout. The plastic ANNs were able to overcome
these four kinds of change, contrary to a classic ANN with
fixed weights.

However, as highlighted by Urzelai and Floreano, “these
behaviors were not learned in the classic meaning of the
term because they were not necessarily retained forever”.
Actually, synaptic weights were continuously changing such
that the robot performed several sub-behaviors in sequence;
the evolutionary algorithm therefore opportunistically used
plasticity to enhance the dynamic power of the ANN. These
high-frequency changes of synaptic weights appear different
from what we observe in natural system (in particular in the
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Fig. 3. Learning the best-rewarding behavior in a discrete T-maze is
equivalent to a Skinner box (Operant Conditioning Chamber, left): in both
cases, the challenge is to associate the right stimulus to the right action.

basal ganglia), in which synaptic weights tend to hold the same
value for a long period, once stabilized [27], [28].

Besides robustness, an even more desirable property for an
evolved agent is the ability to change its behavior according
to external stimuli and, in particular, according to rewards and
punishments. For instance, one can imagine a robot in a T-
maze that must go to the end of the maze where a reward has
been put [15], [17], [18]. The robot should first randomly try
different trajectory. Then, once the reward would have been
found a few times, the robot should go directly to the reward.
Nonetheless, if the reward is moved somewhere else, the robot
should change its behavior to match the new position of the
reward. Once the robot will have found the optimal behavior
(the behavior that maximizes the reward), the synaptic weights
of its controller should not change anymore. This ability to
adapt in a reward-based scenario can be more formally defined
as follows:

Definition 7 (Behavioral change): A plastic agent is capa-
ble of behavioral changes in a reward-based scenario if and
only if:
• a change of reward makes it adopt a qualitatively new

behavior;
• the synaptic weights do not significantly change once an

optimal behavior has been reached.
Notable setups in which authors evolved plastic neuro-
controllers for behavioral changes are the T-maze [15], [17],
[18], the bumblebee foraging task [21], the “dangerous forag-
ing task” [20] and the Skinner box [19].

IV. LEARNING ABILITIES IN DISCRETE ENVIRONMENT

The main challenge when evolving plastic agents for be-
havioral change is to make them able to learn new behaviors
in unknown situations and, in particular, in situations that
have never been encountered during the evolutionary process.
Put differently, selecting agents for their abilitities to switch
between alternatives is not sufficient; the evolved agent must
also be placed in completely new situations to assess its ability
to find an optimal behavior in a situation for which it has never
been selected.

We previously introduced a theoretical framework to char-
acterize and analyze the learning abilities of evolved plastic
neural networks [19]; we will rely on this framework in the



remainder of this paper. For the sake of simplicity, we focus on
a discrete world, with discrete stimuli and discrete actions. The
canonical setup, inspired by experiments in operant condition-
ing, is the Skinner Box [29]: an agent is placed in a cage with n
stimuli (lights), m actions (levers), positive rewards (food) and
punishments (electric shocks). The goal of the agent is to learn
the right associations between each stimulus and each action.
This task encompasses most dicrete reward-based scenarios
(Fig. 3). For instance, the dicrete T-maze experiment [14]–
[18] can be described as a special case of a Skinner box.

More formally, an evolved neural network N(I, λ) must
adapt several synaptic weights λ ∈ Rz such that each input
pattern I ∈ [0, 1]n is associated to the best rewarded output
vector K ∈ [0, 1]m. The adaptation is performed by a learning
function such that λ = g(λr, I, RI,K), where λr is a random
vector in Rz and RI,K the reward function. These notations
lead to the following definitions:

Definition 8 (Association set): An association set A ={
(I1,K1), · · · , (In,Kn)

}
is a list of associations that covers

all the possible input patterns. The set of all association sets
is denoted A.

Definition 9 (Fitness associations set): The fitness associa-
tions set FA = {A1 · · ·Ak} is the set of the association sets
that are used during the fitness evaluation.

Definition 10 (Learnable set): Given a suitable reward
function RI,K , an association set A ∈ A is said to be learnable
by the neural network N , if and only if ∀λr ∈ Rz and
∀(I,K) ∈ A, ∃λ = g(λr, I, RI,K) such that N(I, λ) = K.
The set of all learnable sets for N is denoted LN .

Definition 11 (sGLA): A plastic ANN is said to possess
synaptic General Learning Abilities (sGLA) if and only if
∀A ∈ A, A ∈ LN .

To evolve a plastic ANN with sGLA, the simplest method
is to check the learnability of each association set during the
fitness evaluation, that is the fitness associations set is equal
to the set of all the association sets; this approach has often
been followed by the authors who evolved agents to solve the
T-maze task [14]–[18]. We propose to call such approaches
the evolution of behavioral switches to distinguish it from the
evolution of more general learning abilities.

Definition 12 (Evolution of behavioral switches): FA = A
However, a plastic ANN that can cope with unknown

situations must have sGLA while only a subset of the possible
association sets (i.e. a subset of problems from the same
problem class) has been used during the evolutionary process.

Definition 13 (Evolution of sGLA for unknown situations):
card(FA) < card(A) and ∀A ∈ A, A ∈ LN .

At first sight, Nature relies on the long lifetime of animals
(compared to the “lifetime” of artificial agents) and on the
large size of the populations to obtain a stochastic evaluation of
virtually every possible scenarios. This probably explains why
most authors tried to obtain agents with sGLA by using a large,
often randomized subset of the association sets in the fitness
association set. In supervised learning, Chalmers [24] assessed
how well an evolved plastic ANN can cope with situations
never encountered during the evolution. In his experiments,

he evolved the learning rule for a small single-layer ANN (5
inputs, 1 output) and his analysis showed that at least 10 sets of
input/output patterns (among 30 possible sets) were required
to evolve an algorithm that correctly learns on 10 unknown
sets. In reinforcement learning, Niv et al. [21] evolved plastic
ANNs to solve a bumblebee-inspired foraging task in which
simulated bees must select flowers by recognizing their color.
To promote general learning abilities, they randomly assigned
rewards to colors at each generation and they showed that the
resulting ANNs successfully learned unknown color/reward
associations. In the “dangerous foraging task”, Stanley et
al. [20] similarly randomized the parameters of the fitness
function to avoid overspecialized behaviors.

However, the encoding and the development process may
also play a key role in allowing the adaptation to situations
which have never been encountered before [19]. Intuitively, a
very regular network may repeat the same adaptation structure
many times whereas it was only required once by the fitness;
it could therefore “propagate” the adaptation structure. Since
most developmental encoding are designed to generate very
regular structures [10], [19], [30], using such encodings could
substantially reduce the number of evaluations required to
obtain general learning abilities. In the ideal case, we should
be able to show that the developmental process implies that if
a few association sets have been successfully learned, then all
the other sets have a high probability of being learnable. Such
networks will be said to possess “synaptic Transitive Learning
Abilities”.

Definition 14 (sTLA): Let us denote by TN denote a subset
of the learnable association set A. A plastic ANN is said to
possess synaptic Transitive Learning Abilities (sTLA) if and
only if ∃TN ⊂ A such that the following implication is true:

TN ⊂ LN ⇒ LN = A

p = card(TN ) will be called the “sTLA-level”.
Definition 15 (Optimal-sTLA): A plastic ANN is said

to possess Optimal synaptic Transitive Learning Abilities
(optimal-sTLA) if and only if it possesses sTLA and
card(TN ) = 1.

The sTLA-level of certain families of topologies (i.e. topolo-
gies generated by a specific genetic encoding) can possibly
be computed theoretically. It can also be easily evaluated
by a succession of evolutionary experiments: (1) select p
association sets; (2) evolve ANNs that successfully learns the
p association sets; (3) check the sGLA of optimal ANNs; (4)
if optimal ANNs do not possess sGLA, then increase p and
start again.

Using this method, Tonelli and Mouret [19] showed that
a very regular map-based encoding proposed in [10] have a
TLA-level or 1 or 2. Preliminary experiments suggest that
other generative encodings such as HyperNEAT [9], [30]
could also possess a low TLA-level. Overall, the concept of
sTLA highlights how evolution, learning and development are
interwoven.

Last, the authors are not aware of any definition that would
of an equivalent of the concept of GLA for continuous world



and behaviors.

V. CONCLUDING REMARKS

With the rise of computing power, it is now easy to
simulate artificial agents for enough time for them to learn
and to evolve; this allows the study of well-defined scientific
questions with modern experimental and statistical techniques.
Nevertheless, future work in this direction will have to pre-
cisely define what they work on: do they aim at behavioral
robustness or at behavioral change? how do they evaluate the
general learning abilities of the evolved agents? do the evolved
neural network manage to learn in unknown situations? what
is the role of the encoding in the final result? The definitions
proposed in the present paper will hopefully help to design a
methodology to answer such questions.
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