
Nonlinear Filter Design for Pose and IMU Bias Estimation

Glauco Garcia Scandaroli, Pascal Morin.

INRIA Sophia Antipolis-Méditerranée
2004 route des Lucioles, Sophia Antipolis 06902, France.

Glauco.Scandaroli@inria.fr, Pascal.Morin@inria.fr

Abstract— This paper concerns the problem of position and
attitude estimation based on the fusion of complementary
sensors. Nonlinear observers are proposed in order to obtain
high-quality and high-rate estimates from raw position/attitude
data, and measurements obtained from an inertial measurement
unit. Estimates are improved through the online identification
of diverse measurement biases, and a novel method for con-
current position estimation and accelerometer bias estimation
is presented. Almost global asymptotic convergence of the
pose observer is proved based on a Lyapunov-like approach,
and several implementation issues are addressed. Comparison
with classical existing methods illustrate the relevance of the
proposed approach.

Index Terms— Inertial Estimation, Nonlinear Observers,
Lyapunov Function.

I. I NTRODUCTION

This work deals with pose (i.e. position and attitude)
estimation via the fusion of sensory measurements. Given
pose and inertial measurements, the objective is to obtain
estimates that best exploit the different measurements charac-
teristics, while coping with measurements biases. This issue
is fundamental in ground or aerial robotic applications, where
a precise knowledge of the robot location is often required.
In general, high frequency measurements, typically from
50 Hz up to 1 kHz, of rotational velocity and specific trans-
lational acceleration are provided by an inertial measure-
ment unit (IMU). As a result of micro-electro-mechanical
sensors (MEMS) manufacturing characteristics, IMU mea-
surements are corrupted by additive noise and offset, also
known as measurement bias. Therefore, the solution of such
problem using solely IMU data integration drifts after a few
seconds. The reduction of such drift can be achieved after
a good calibration of sensor’s bias, still, the time invariant
model for bias is only an approximation, additionally it does
not consider effects from temperature variation. Therefore,
the consideration of an online method for bias estimation
is indeed positive. Other sensors, that provide explicit or
implicit attitude and position measurements, must be em-
ployed in order to cope with the calibration, and bound
the resulting drift from IMU data integration. Examples are
given by the global positioning system (GPS) and/or visual
sensors. These sensors can provide a fair measurement of
position, however at low frequencies, typically from5 Hz
up to 25 Hz. GPS provides position with respect to earth,
or to a ground fixed station for differential GPS. However,
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this system needs a direct sight to the satellites (or to the
stations), therefore it is not suitable for several types of
environments. Visual systems are able to relate the rotation
and translational displacement from two different views, thus
providing incremental measurements.

Since early works on attitude estimation, the extended
Kalman filter (EKF) is the incipient solution to this esti-
mation problem [1]. However, EKF provides no assurance
of convergence, which can be seen from its similarity to the
first step of Gauss-Newton optimization method [2]. Other
Kalman-based solutions have been proposed to overcome the
nonlinear nature of the problem [3], [4]. Despite the fact
that these methods improve significantly the propagation of
the probability distribution, up to the authors knowledge,
the achievement ofalmost global convergence using such
methods remains to be achieved. To overcome such nonlinear
propagation of the distribution the use of uncertainty ellip-
soids [5] have been proposed in the literature. Additionally,
the problem can be rewritten as estimation of two non-
collinear unconstrained vectors instead of the attitude matrix
or some parametrization, hence becoming a linear time-
varying system estimation problem [6].

In the past years, some effort has been put in the devel-
opment of nonlinear observers for attitude, attitude-heading
reference (AHR) and pose estimation. Nonlinear observers
are application-specific estimators that take advantage of
structural properties of the models. Although some technical
differences can be noticed between different nonlinear ob-
servers, this class of estimators commonly share the benefits
of global, or at least semi-global, stability proofs. Some state-
of-the-art results are Lyapunov-function based observers[7]–
[9], complementary filters forSO(3) [10], and invariant-
observers [11], [12]. Concerning online bias estimation, an
AHR estimator that accomplishes gyroscope and (partial)
accelerometer bias estimation is presented in [12].

In order to solve the full pose estimation using nonlinear
observers, the decoupling of the attitude and translational
displacement is often considered. An observer for attitude
and position using inertial data and visual line features, is
presented in [13], despite the fact that biases are considered
for the presented simulation results, there is no procedure
for bias estimation in the observer. The estimation using
the SE(3) representation by means of IMU and bearing
measurements is addressed in [14], but online IMU bias
estimation is not performed. A cascaded nonlinear observer
for attitude and position is presented in [15] exploiting



IMU measurements together with GPS measurements. Ex-
ponential convergence for attitude and position is achieved,
together with gyroscope bias estimation. Chevironet. al [16]
presents a solution for full pose estimation, however due to
misconceived hypothesis on the accelerometer measurement
definition the convergence proof for position estimation is
only valid for small angular velocities.

This paper presents the development of a nonlinear ob-
server that employs the passive complementary filter for
attitude estimation, and a novel method for concurrent posi-
tion and accelerometer bias estimation. While the present
approach bears resemblance with [16], in the sense that
a position and accelerometer bias observer is presented,
the observer form is different due to the definition of the
system. This article also presents a global exponential sta-
bility proof for the position and accelerometer bias observer
independently of the angular velocity, andalmost global
asymptotic stability for the nonlinear pose and IMU bias
observer. Recall that, due to a topological obstruction, global
stability on SO(3) cannot be achieved. A method for gain
tuning based on settling time estimates is also presented.
In addition to the guarantee ofalmost global convergence,
the implementation of the proposed method is simpler than
Kalman-based estimators. Simulation results illustrate the
performance of the method, and a comparison with the
EKF is presented. While the simulations are developed using
inertial and visual data, the proposed method can be used
with any measurement system that is able to recover attitude
and position.

II. BACKGROUND

A. Mathematical Notation and Identities

The special orthogonal group is denoted asSO(3). Its
associated Lie algebra is the set of anti-symmetric matri-
ces denoted asso(3). For the sake of design and anal-
ysis, the following properties and definitions are recalled
from [10]. The cross-product can be represented by the
productS(u)v = u× v, ∀ u, v ∈ R

3, whereS(·) ∈ so(3).
The inverse of theS(·) operator is denotedvex(·), i.e.,
vex(S(u)) = u, u ∈ R

3, S(vex(A)) = A, A ∈ so(3).
With A ∈ R

3×3, the symmetric and anti-symmetric opera-
tors are defined asPs(A) = A+AT

2
, Pa(A) = A−AT

2
. The

following properties hold:

S(Ru) = RS(u)RT , u ∈ R
3, R ∈ SO(3),

R vex
(
Pa(R)

)
= vex

(
Pa(R)

)
, R ∈ SO(3) .

(1)

At a few places in this paper, parametrizations ofSO(3)
will be used, and willing further information the interested
reader is conducted to [17]. Consider any parametrization
Θ such thatR ≈ I3 + S(Θ) at first order around the3 × 3
identity matrixI3. Examples are given byΘ = [φ, θ, ψ]T , the
vector of roll, pitch and yaw Euler angles, orΘ = 2qv with
qv the vector part of the unitary quaternion representation.
From the general rotation dynamicsd

dt
R = RS(u), it follows

that aroundR = I3,

d
dt

Θ ≈ u, vex
(
Pa(R)

)
≈ Θ (2)

B. System description

Denote by{I} an inertial frame defined as appropriate.
Coordinates of a vector expressed in this frame are written
with the subscriptI. Similarly,{B} denotes a frame attached
to a target rigid body, and coordinates of a vector expressed
in this frame are written with the subscriptB. The attitude is
defined as the rotation matrixR ∈ SO(3) : {B} → {I}, and
the current positionpI

B
∈ R

3 as the translational displace-
ment of{B} in {I} coordinates. Throughout the text,pI

B
is

referred asp for only the displacement of{B} in inertial
coordinates is considered. The dynamics for the system
comprising attitude and translational displacement writes

d
dt
R = RS(ωB), d

dt
p = v, d

dt
v = aI = RaB, (3)

wherev ∈ R
3 is velocity of the body in inertial coordinates;

ωB ∈ R
3, aB ∈ R

3 are the rotational velocity and transla-
tional acceleration in body coordinates, andaI ∈ R

3 is the
translational acceleration represented in inertial coordinates.

Assumption 1 There exist three positive constantsca, cv,
and cω such that∀t ∈ [0,∞): |ωB(t)| ≤ cω,|aB(t)| ≤
ca,|v̈(t)| ≤ cv.

This assumption indicates that the body rotational velocity
is bounded, also the body acceleration and its first order
time-derivative are bounded. This technical assumption isnot
restrictive for applications, all the more that the upper bounds
ca, andcv are not used in the observer’s design.

For the sake of rotational velocity and translational accel-
eration measurement, an IMU consisting of rate gyroscopes
and accelerometers is employed, and without loss of gener-
ality it is assumed that the IMU reference frame and{B}
coincide. Gyroscopes measure the angular velocityωB, and
accelerometers measure thespecific translational accelera-
tion, which is the expression of the body’s acceleration minus
the gravity field in body coordinates. Therefore, effects arisen
from the real body accelerationaB and earth’s gravitational
field are measured as if they were the same force.

Due to manufacturing characteristics of MEMS, the mea-
surement is modeled as being disturbed by an offset measure-
ment, also called bias. The considered measurement model
is often employed

ω = ωB + ωb,
d
dt
ωb = 0, (4)

a = RT
(

d
dt
v − gI

)
+ ab,

d
dt
ab = 0, (5)

where ω, a denote the rate gyroscope and accelerometer
measurements;ωb, ab denote gyroscope, accelerometer bias,
respectively; andgI is the gravitational acceleration field
represented in inertial coordinates. For the previous models,
it is important to notice that other sensor characteristicsare
neglected, such as limited bandwidth and bias variation with
respect to temperature and time. Moreover, MEMS measure-
ments are corrupted by an additive measurement noise. These
effects are neglected for the observer design. However, these
noises are indeed considered for the presented simulations.

The introduced solution assumes position and attitude
measurements/estimates. Many methods can be used. For



example, position can be directly measured by a GPS.
Attitude is usually more difficult to obtain and its estimation
is still a research topic, especially for IMU-magnetometer
based solutions [9], [12]. An interesting alternative is vision,
since efficient methods are now available to estimate relative
displacements in both position and orientation from visual
data (see, e.g. [18]). In this work, a camera observing a
known target is used to obtain the complete pose.

III. O BSERVER DESIGN

In the previous section, the dynamics of the rigid body’s
pose and the available measurements were defined. In a
complete form, considering the actual IMU measurement and
Eqs. (3), (4), and (5), then the dynamics of attitude, position,
and sensor bias is given by

{
d
dt
R =RS(ω − ωb),

d
dt
ωb= 0,

d
dt
p = v, d

dt
v = gI +R(a− ab),

d
dt
ab = 0.

(6)

The following observers are defined:

d
dt
R̂=R̂S(ω − ω̂b + αR), d

dt
ω̂b=αω, (7)

for the attitude, and

d
dt
p̂ = v̂ + αp,

d
dt
v̂=gI +R(a− âb) + αv,

d
dt
âb = αa, (8)

for position, whereαR, αω, αp, αv, αa are innovation terms
defined further on. The estimation errors are defined

R̃ , RR̂T , ω̃b , ωb − ω̂b, (9)

p̃ , p− p̂, ṽ , v − v̂, ãb , ab − âb, (10)

then, the estimation error dynamics yields

d
dt
R̃ =R̃S(−R̂ω̃b − R̂αR), d

dt
ω̃b= −αω, (11)

d
dt
p̃ = ṽ − αp,

d
dt
ṽ = −Rãb − αv,

d
dt
ãb = −αa. (12)

The objective of the nonlinear observer’s design is to define
αR, αω, αp, αv, andαa so that(R̃,ω̃b,p̃,ṽ,ãb)= (I3,0, 0, 0, 0)
is an asymptotically stable equilibrium of this estimation
error dynamics.

Nonlinear observer solutions with semi-global stability
have already been proposed in the literature for attitude and
online gyroscope bias estimation. One of them is the passive
complementary filter onSO(3) [10].

Lemma 1 (Passive complementary filter onSO(3)) Let

αR = k1R̂
T
vex

(
Pa(R̃)

)
, αω= − k2R̂

T
vex

(
Pa(R̃)

)
(13)

with k1, k2 > 0. Then, for the attitude estimation error
dynamics(11), the following statements hold:
1) All solutions converge toEs ∪ Eu with Es = (I3, 0),

Eu =
{

(R̃, ω̃b)
∣∣ tr

(
R̃

)
= −1

}
.

2) The equilibrium point(R̃, ω̃b) = (I3, 0) is locally expo-
nentially stable.

Remark that observer (7), (13) is the same as the one
in [10], despite the different definition of̃R. This observer
is endowed with additional stability properties (see [10] for
the complete statement).

The following result concerns the problem of position, and
online accelerometer bias estimation. This is the main result
of this section and complements Lemma 1.

Theorem 1 (Position and accelerometer bias observer)Let

αp= k3p̃, αv= k4p̃, αa= −k5(I3+
1

k3

S(ωB))RT p̃ (14)

with k3, k4, k5 > 0 such thatk5 < k3k4. Then,(p̃, ṽ, ãb) =
(0, 0, 0) is a globally exponentially stable equilibrium point
of the position estimation error dynamics(12).

Proof. Appendix A.

This theorem provides a globally exponentially stable
observer for the position, velocity and accelerometer bias
estimation problem, independently of the rotational dynam-
ics. Note that the stability conditions on the gain parameters
are necessary. For example, whenωB = 0, the dynamics of
the estimation error is linear and autonomous. Therefore,
the gain conditions in Theorem 1 correspond exactly to the
stability conditions of this linear system.

It is implicitly assumed in (14) thatωB = ω−ωb is directly
available to measurements/estimation. In practice, this term
should be replaced by the estimateω − ω̂b, with ω̂b being
the output of the attitude observer (7). The following result,
derived from Theorem 1, shows that this can be done without
consequence on the convergence of the observer.

Corollary 1 Let

αp= k3p̃, αv= k4p̃, αa= −k5(I3+
1

k3

S(ω−ω̂b))R
T p̃ (15)

with k3, k4, k5 > 0 such thatk5 < k3k4.
If ω̃b converges asymptotically to zero, then(p̃, ṽ, ãb) con-
verges asymptotically to zero along the solutions of the
position estimation error dynamics(12).

Proof. Appendix B.

Finally, the measured rotation matrixR in (12) and (14)
can be replaced by its estimatêR. However, global asymp-
totic convergence cannot be achieved anymore, since the
observer onSO(3) is not globally asymptotically stable.

Corollary 2 (Nonlinear pose observer)Let
{

d
dt
R̂ = R̂S(ω − ω̂b + αR),

d
dt
ω̂b = αω ,

(16)






d
dt
p̂ = v̂ + αp,

d
dt
v̂ = gI + R̂(a− âb) + αv,

d
dt
âb = αa,

(17)

with αR, αω defined by(13), and

αp = k3p̃, αv = k4p̃, αa = −k5(I3+
1

k3

S(ω−ω̂b))R̂
T p̃ (18)

Assume thatk1, · · · , k5 > 0 and k5 < k3k4. Then,
1) The origin (R̃, ω̃b, p̃, ṽ, ãb) = (I3, 0, 0, 0, 0) is a locally
exponentially stable equilibrium of the estimation error dy-
namics.



2) If R̃ converges asymptotically toI3, then (ω̃b, p̃, ṽ, ãb)
converges asymptotically to zero.

Proof. Appendix C.

IV. I MPLEMENTATION ISSUES

While stability of the estimation error is a prerequisite, a
good tuning of the innovation gains is also a relevant topic
to ensure good response to estimation errors, and respect
the sensors characteristics. In IMU-based pose estimationof
robotic systems, two dynamics are distinguished: fast dynam-
ics for pose variables and their derivatives, slow dynamics
of the gyroscope and accelerometer bias. In this section, we
propose a gain tuning strategy for the proposed observer that
has a direct interpretation in terms of time-response.

First, consider the attitude observer. Letτ1, τ2 denote
two settling times withτ1 ≪ τ2. The parameterτ1 denotes
a desired settling time for the dynamics of the attitude
estimation error dynamics. A typical value (depending of
course of the measurements characteristics) isτ1 ≤ 1. As for
τ2, it denotes a desired settling time for the gyroscope bias
estimation error. Since this bias varies slowly, a relatively
large value ofτ2 can be considered (e.g.τ2 ≈ 10, or even
larger). The gainsk1 and k2 for the attitude estimator are
defined as follows:

k1 = 3 τ1+τ2

τ1τ2

, k2 = 9 1

τ1τ2

. (19)

The rationale for this choice is the following. The error
system for the attitude estimator can also be written as:

{
d
dt
R̃ = − S(Rω̃b)R̃− k1R̃Pa

(
R̃

)
,

d
dt
ω̃b = k2R̂

T
vex

(
Pa

(
R̃

))
.

(20)

In order to simplify the analysis, the gyroscope bias error is
expressed in{I}, i.e. ω̃Ib= Rω̃b, using (1) and (20) yields

d
dt
ω̃Ib = d

dt
(R)ω̃b + k2vex

(
Pa(R̃)

)
.

Consider a hover flight situation, i.e.d
dt
R ≈ 0, ωB ≈ 0.

DefiningΘ̃ as any parametrizatioñR ≈I3+S(Θ̃) around the
identity matrix, from (2), (20), the linearized dynamics of
the attitude estimation error dynamics around the equilibrium
point Θ̃ = 0 yields

d

dt

[
Θ̃
ω̃Ib

]
=

[
−k1I3 −I3
k2I3 0

] [
Θ̃
ω̃Ib

]
.

This system can be decomposed into three independent
second-order linear systems:

d

dt

[
Θ̃i

ω̃i

]
=

[
−k1 −1
k2 0

] [
Θ̃i

ω̃i

]
, (i = 1, 2, 3), (21)

and the characteristic polynomial of these systems is

P (s) = s2 + k1s+ k2 = s2 + 3 τ1+τ2

τ1τ2
s+ 9

τ1τ2

=
(
s+ 3

τ1

)(
s+ 3

τ2

)
.

Hence, the gain choice (19) yields two real eigenval-
ues λ1 = − 3

τ1

, λ2 = − 3

τ2

. Furthermore, using the variable
change (assumingτ1 6= τ2)

[
x1(t)
x2(t)

]
=

[
λ1 1
λ2 1

] [
Θ̃i(t)
ω̃i(t)

]
, (22)

then Eq. (21) writes

d

dt

[
x1

x2

]
=

[
λ1 0
0 λ2

] [
x1

x2

]
. (23)

By using (22) and (23), it is not difficult to obtain the
following expression for the solutions of System (21):

Θ̃i(t) = eλ1tΘ̃i(0) +
f12(t)

λ1 − λ2

ω̃i(0) +
λ2f12(t)

λ1 − λ2

Θ̃i(0)

ω̃i(t) = eλ2tω̃i(0) +
λ1λ2f12(t)

λ1 − λ2

Θ̃i(0) +
λ2f12(t)

λ1 − λ2

ω̃i(0)

with f12(t) = eλ1t − eλ2t. Therefore the following (partial)
dynamics decoupling is obtained:

• Fast exponential decrease ofΘ̃i(t) to zero, corrupted by
slowly decreasing terms with small amplitude:1

λ1−λ2

and λ2

λ1−λ2
tend to zero asτ1 → 0 andτ2 → ∞.

• Slow exponential decrease ofω̃i(t) to zero corrupted by
slowly decreasing terms with small amplitude.

The same rationale leads to the following definition of the
pose estimation observer gains:

k3 = 3 τ3τ4+τ3τ5+τ4τ5

τ3τ4τ5

, k4 = 9 τ3+τ4+τ5

τ3τ4τ5

, k5 = 27

τ3τ4τ5

. (24)

with τ3, τ4, andτ5 different settling times. These gains satisfy
the stability conditions of Theorem 1. Choosingτ3, τ4 ≪ τ5
leads to the same (partial) decoupling of the dynamics of
p̃, ṽ on one hand, and̃ab on the other hand.

V. RESULTS

Two simulations are carried out to illustrate the observer’s
performance and robustness with respect to measurement
noise and large initial errors. The first one concerns the evalu-
ation of the nonlinear observer and gain tuning method when
facing large initial errors, and the second one consists of a
flight simulation with visual feedback. Both simulations were
performed using rotational velocity and specific acceleration
sampled at a frequency of100 Hz. The measurement noises
considered for the inertial sensors are obtained from a xSens
MTi-G unit, presenting variance of4 × 10−2 [rad]

2 and
7 × 10−3 [m/s2]

2
for rate gyroscopes and accelerometers

respectively. To present a measurement noise corrupted by
non-Gaussian source, attitude and position are reconstructed
by a perspective camera sampling at10 Hz frequency. The
camera is simulated with the following parameters

Kf =




1313 0 512

0 1313 384
0 0 1



 , RC

B =




1 0 0
0 −1 0
0 0 −1



 , pCB =0,

with Kf being its calibration matrix,RC

B
and pC

B
the ro-

tation matrix and translational displacement{B} → {C},
where{C} is the reference frame attached to the optical axis
of the camera. The visual system is capable of tracking a
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Fig. 1. Simulation for a body at rest. Roll̃φ, pitch θ̃ and yawψ̃ errors are
presented in blue, green, and red respectively. For the other variable p̃, ṽ,
ω̃b, and ãb, the componentsx , y, z are presented in blue, red, and green
respectively. Typical result from repeated simulations.

point, however its projection is corrupted by a Gaussian noise
with 1

9
[pixel]2 variance for the width and height pixels.

To recover the rotation and the translational displacement
between two views, thehomographybetween a reference
and the current image is recovered using thefour point
method. For further information on image formation and pose
recovering from two different views the interested reader is
conducted to [19]. The observer gains are computed from
the aforementioned method given the following settling times
τ1=2 [s], τ2=15 [s], τ3=4 [s], τ4=4 [s], τ5=25 [s], yielding
the gainsk1=1.7, k2=0.3, k3=1.62, k4=0.743, k5=0.068.
The nonlinear observer presented in Corollary 2 is used.

A. Observer convergence from large initial errors

This simulation concerns the convergence of the pro-
posed estimation for large initial errors. The body is at
rest with R(t) = I3, p(t) = [0 0 1], and IMU biases are
around5 × 10−2 [rad] for gyroscopes and3 × 10−2 [m/s2]
for accelerometers. The estimator is initialized with random
estimates obtained from zero-mean Gaussian distributions:
R̂(0) = exp{0.999πS(u)}, whereu ∈ R

3 is a unitary-norm
random vector, and̂p(0), v̂(0), ω̂b(0), âb(0) are drawn from
zero-mean Gaussian distributions with3 [m]

2, 1 [m/s]
2,

0.5 [rad]
2 and 0.5 [m/s2]

2
variance respectively. Fig. 1

depicts the evolution of estimation errors for a typical result
from repeated trials. From top to bottom, the results for the
attitude error in Euler angles, position, velocity, gyroscope
and accelerometer bias errors are presented. Notice the con-
vergence for all the estimates, and that defined settling times
correspond to the dominant dynamics for each variable’s
response. In order to better visualize the convergence of the
biases, Fig. 2 presents a closer view for the biases after the
settling time has passed. From top to bottom, the results
for gyroscope and accelerometer bias are presented. The
biases are estimated with a good precision regarding the
measurement noises.
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45 50 55 60 65 70 75 80 85 90 95 100
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Fig. 2. Closer view on extended time for the visualization ofbiases error
on steady state. Results for componentsx, y, z are presented in blue, red,
and green respectively. Typical result from repeated simulations.

B. On–flight simulation

This simulation aims to evaluate the proposed algorithm in
a situation that resembles a drone flight surveillance. Also,
the results obtained using the proposed observer are com-
pared to the response provided by the classical EKF written
after (6) with its parameters chosen as the noises of the
system. The trajectory corresponds to a typical drone mission
with take-off, surveillance above a point of interest and land-
ing. The camera observes two square targets, each consisting
of four points, with sides40 [cm] and2.4 [m]. This way at
least one target can be distinguished during the take-off and
landing. The rotational movement is designed in order to
keep the image inside the camera’s sight. The homography
matrix is computed, and after its decomposition and a refer-
ence frame change the current rotation and position are ob-
tained. Time varying biases are used to simulate temperature
variation, thus increasing the complexity of the simulation.
From 0 [s] up to 50 [s], no bias is present. After50 [s] the
biases instantly change toωb = [0.035,−0.053, 0.018] [rad],
and ab = [−0.3, 0.2,−0.1] [m/s2] and remain until100 [s]
when they start to change with constant derivative reaching
zero at 200 [s], and return with constant derivative until
300 [s] when the values change instantly to their original zero
value. For a better visualization of the simulation’s dynamics,
the reader is directed to the attached video. The associ-
ated simulation data are available athttp://www-sop.
inria.fr/members/Glauco.Scandaroli.

A typical result obtained from repeated simulations is
presented in Fig. 3. The curves for measured, proposed
algorithm, and the EKF estimation errors are depicted in
gray, solid blue, and dashed red, respectively. Estimation
and measurement errors for the attitude are represented
on the top left with Euler angles. Position estimation and
measurement errors are depicted on the top right. Gyroscope,
and accelerometer biases estimation errors are presented on
the bottom left and right. It is visually evident that the
resulting noise for attitude and the position measurement are
not Gaussian. For the EKF, the attitude is estimated with a
good precision until the first bias behavior switch at50 [s],
then non-Gaussian noise and time-varying biases corrupt
the estimates. Until the end of the simulation, the biases
are well estimated, however roll-pitch angles and estimated
position start to present a biased behavior. Also, the yaw
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Fig. 3. Simulation for pose estimation during flight surveillance. Comparison of the visual measurement, nonlinear observer, and EKF. Results for visual
measurements are presented in gray, nonlinear observer is depicted in solid blue, and EKF in dashed red. Typical result from repeated simulations.

angle does not correspond to the measurements. It could be
stated that a2 [deg] estimation error is not relevant, how-
ever considering that the measurements are given within a
0.5 [deg] precision, this error is indeed relevant. Concerning
the proposed method, despite the presence of time-varying
biases neglected in the observer’s design the resulting error
presents a smaller variance than the measurement error. Also
its precision is better than the EKF. Concerning the gain
tuning of the EKF, one may argue thatinflatingmodel noises
might eliminate its convergence problems. This argument is
valid, but it also supports the simplicity and effectiveness of
the gain tuning method here proposed.

VI. CONCLUSION AND FUTURE WORK

This article presents a pose estimation method with online
calibration of IMU sensors. A nonlinear observer for concur-
rent position estimation and accelerometer bias calibration is
proposed, together with a global exponential stability proof.
A procedure for gain tuning in terms of time-response is
also presented. Simulation results endorse the improvement
due to thealmostglobal stability properties of the nonlinear
estimator against locally stable classical estimators. Future
work will consist on the evaluation of this approach using
real visual-inertial data, and the conduction of a study to-
wards a stochastic evaluation of the innovation gains relating
to the measurement noises.
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APPENDIX

A. Proof of Theorem 1

From (12) and (14), pose estimation error dynamics yields




d
dt
p̃ = ṽ − k3p̃,

d
dt
ṽ = −Rãb − k4p̃,

d
dt
ãb = k5

(
I3 + 1

k3

S(ωB)
)
RT p̃.

(25)

Consider the following variable change

γ = Rãb + k5

k3
p̃, (26)

In the coordinates(p̃, ṽ, γ), System (25) is thus given by




d
dt
p̃ = ṽ − k3p̃,

d
dt
ṽ = − γ − (k4 − k5

k3
)p̃,

d
dt
γ = S(RωB)γ + k5

k3

ṽ.

(27)

Define the following candidate Lyapunov function:

Wt = 1

2

(
k4 − k5

k3

)
|p̃|2 + 1

2
|ṽ|2 + 1

2

k3

k5

|γ|2, (28)

and note thatWt is positive definite due to the assumption
k3, k4, k5> 0 andk5 <k3k4. Along the solutions of (27),

d
dt
Wt =

(
k4 − k5

k3

)
p̃T (ṽ − k3p̃) − ṽT

(
γ +

(
k4 − k5

k3

)
p̃
)

+ k3

k5
γT

(
S(RωB)γ + k5

k3
ṽ
)
,

= − k3

(
k4 − k5

k3

)
|p̃|2 ≤ 0 (29)

By using Barbalat’s Lemma, and Assumption 1, it is not
very difficult from here to prove that(p̃, ṽ, γ) = (0, 0, 0) is
a globally asymptotically stable equilibrium point. However,
in order to establishexponentialstability, it is proceeded
differently by modifyingWt so as to obtain a strict Lyapunov
function. LetW = Wt − ǫṽT (p̃ − δγ) with δ ∈ (0, 1) and
ǫ > 0 some constants which will be specified further on. Due
to the conditionδ ∈ (0, 1) and the fact thatWt is positive
definite, it is clear thatW is also positive definite forǫ > 0
“small enough”. Letk4 =(k4−k5

k3
) and recall thatk4 > 0. It

follows from (29) that along the solutions of System (27),
d
dt
W = − k4(k3 − ǫ)|p̃|2

− ǫ
(
δ|γ|2 + (1 − δ k5

k3
)|ṽ|2 − δṽTS(RωB)γ

)

+ ǫp̃T
(
(1 − δk4)γ + k3ṽ

)
(30)

Consider the term

L2 = δ|γ|2 + (1 − δ k5

k3
)|ṽ|2 − δṽTS(RωB)γ

in the second line of (30). From Assumption 1 it follows that

L2 ≥ δ|γ|2 + (1 − δ k5

k3

)|ṽ|2 − δcω|ṽ||γ|.

Therefore, withδ ∈ (0,min(1, k3

k5
)) andδ2c2ω < 4δ(1−δ k5

k3
),

L2 is a positive definite function of|γ|, and |ṽ|. Clearly,
there exist values ofδ which satisfy the above condition. By
choosing such a valueδ, from (30), it can be deduced that
for some constantδ′ > 0 independent ofǫ,

d
dt
W ≤ − k4(k3 − ǫ)|p̃|2 − ǫδ′

(
|γ|2 + |ṽ|2

)

+ ǫp̃T
(
(1 − δk4)γ + k3ṽ

)
(31)

Using the fact that
∣∣ǫp̃T

(
(1 − δk4)γ + k3ṽ

)∣∣ =
∣∣ǫ

1

4 p̃T ǫ
3

4

(
(1 − δk4)γ + k3ṽ

) ∣∣

≤ 1

2

(√
ǫ|p̃|2 + ǫ

3

2 |(1 − δk4)γ + k3ṽ|2
)
,

it is straightforward to verify from (31) that there exists
ǫ0 > 0 such that, for anyǫ ∈ (0, ǫ0),

d
dt
W ≤ −η(ǫ)W , η(ǫ) > 0. (32)

SinceW is definite positive function forǫ > 0 small enough,
this concludes the proof of global exponential stability ofthe
origin of System (27). Considering the variable transforma-
tion (26), it is concluded that the origin of System (25) is
also globally exponentially stable. This also follows fromthe
fact that the functionW defined byW(p̃, ṽ, ãb) = W(p̃, ṽ, γ)
satisfies inequality (32) along the solutions of System (25).

B. Proof of Corollary 1

The dynamics of the position estimation error (12) can be
written as

Ẏ = A(t)Y + g1(Y, ω̃b, t) (33)

with Y = (p̃, ṽ, ãb), A(t) the right-hand side of System (25),
andg1(Y, ω̃b, t) a “perturbation term” such that

|g1(Y, ω̃b, t)| ≤ c|Y ||ω̃b| (34)

for some constantc. This readily implies that the solutions of
the system are well defined for all time. From Section A of
this appendix, there exists a quadratic Lyapunov functionW
such that, along the solution oḟY = A(t)Y ,

d
dt
W ≤ −ηW , η > 0 (35)

Furthermore, it is considered that̃ωb(t) converges asymp-
totically to zero regardless of the initial conditions. Then,
it is deduced from (34) and (35) that, along any solution
of System (33), there existsT ≥ 0 such that fort ≥ T ,
d
dt
W ≤ − 1

2
ηW . Convergence to zero ofY readily follows

from this inequality.

C. Proof of Corollary 2

The dynamics of the position estimation error (12) can be
written as {

Ẋ = f0(X, t)

Ẏ = A(t)Y + g2(X,Y, t)
(36)

with X = (R̃, ω̃b), Y = (p̃, ṽ, ãb), f0(X, t), A(t) the right-
hand side of System (25), andg2(X,Y, t) a “perturbation
term” such that

|g2(X,Y, t)| ≤ c|X |(1 + |X |)|Y | (37)

for some constantc. From [10], there exists a quadratic
Lyapunov functionU for the systemẊ = f0(X, t) such that,
in a neighborhood ofX = (I3, 0), d

dt
U ≤ −η′U with η′ > 0.

By settingV = U+W, it is verified from (36), and (37) that
in a neighborhood of(X,Y ) =

(
(I3, 0), 0

)
, d

dt
V = −η′′V

with n′′ > 0. This shows Property 1) of Corollary 2. The
proof of Property 2) is similar to Corollary 1.


