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Abstract— The paper addresses the control of Vertical Take
Off and Landing (VTOL) Underactuated Autonomous Vehicles
(UAVs) in hover flight, based on measurements provided by
an on-board video camera and rate gyros. The objective is
to stabilize the vehicle to the pose associated with a visual
image of a planar target. By using the homography matrix
computed from the camera measurements of the target, stabi-
lizing feedback laws are derived. Explicit stability conditions
on the control parameters are provided. It is shown that very
good robustness and performance can be achieved without
any apriori information on the visual target (like geometry,
or orientation), by a proper tuning of the control parameters.
Simulation results confirm the effectiveness of the approach.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) can be used for many
surveillance and monitoring applications, both indoor and
outdoor. Their effectiveness relies in the first place on the
use of onboard sensors that can provide information on the
vehicle’s pose (i.e. position and orientation). In teleoperated
modes, the human operator can compensate for the lack of
some pose information (like, e.g., the vehicle’s position). For
fully autonomous control modes, however, information on
both position and orientation is necessary. It is well known
that pose estimation is a challenging problem for UAVs,
and especially for VTOLs (Vertical Take-Off and Landing
vehicles). This is due to several reasons, among which, i)
the absence of sensors that can provide a direct measure of
the 3D-orientation (recall that using accelerometers as incli-
nometers is appropriate only when the vehicle acceleration
is small), ii) the difficulty to obtain precise and high-rate
position measurements via GPS sensors, iii) the impossibility
to use these sensors in some environments (like, e.g., urban
canyons). Thus, while interesting results have been obtained
with Inertial Measurement Units (IMUs) [1], or GPS-aided
IMUs (see, e.g., [2], [3] for recent results), it is evident that
other sensors should be used to improve UAV’s effectiveness,
especially those providing information about UAV’s local
environment. One of the most promising alternatives is
vision sensors. Cameras provide a rich information about the
environment. They have been used extensively for ground
robotics applications. Over the last ten years, vision-based
control solutions have been extensively developed for aerial
vehicles. Regulation of a mechanical system based on visual
features as feedback is known as Visual Servo Control [4].
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There are two main approaches in visual servo control [5],
[6]: Image-Based Visual Servoing (IBVS), and Position-
Based Visual Servoing (PBVS), depending upon whether
the controller is designed to directly act on the visual
information (IBVS) or whether the visual information is first
used in the pose reconstruction (PBVS). The latter has been
successfully implemented on a number of aerial vehicles [7],
[8], [9], [10]. It requires, however, an accurate geometric
model of the visual target along with good calibration of the
camera. An IBVS scheme was first presented in [11] where
the dynamics of features in image space were formulated in
terms of their spherical projections to preserve the dynamic
structure of the system and used as direct inputs to the
control algorithm. The controller is designed to stabilize
the dynamics of the image features, and implicitly solves
the underlying task space control problem. This approach
does not require an accurate geometric target model or a
well calibrated camera, but it leads to complex nonlinear
control problems due to the appearance of the image depth
as an unknown scale factor into the system dynamics.
When the target is planar an alternative approach is the
Homography-Based Visual Servoing, originally developed
for robot manipulators or more general fully-actuated sys-
tems [12], [13], [14]. It consists in a combination of partially
reconstructed Euclidean information and 2D image-space in-
formation in the control design, and has been shown to have
many practical advantages. In particular, the method does
not require an accurate model of the target. Homography-
Based Visual Servoing for underactuated vehicles has been
exploited in different scenarios. In [8] the idea has been
exploited to perform a landing manoeuver using a PBVS
scheme and in [15] (and subsequently in [16], [17]) in a
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2D visual servoing formulation. It is important to remark
that in these works on homography-based visual servoing of
underactuated vehicles, measurements of both the rotation
matrix and linear velocities are assumed to be available via
complementary sensors.

In this paper we address the problem of controlling VTOL
UAVs’ hover flight, based on measurements provided by
a single camera and rate gyros only. The solution relies
on the measure of the homography matrix associated with
the camera’s observation of a planar target. The assumption
of a planar target is not unrealistic when thinking about
a landing pad, a planar ground, or a building. There are
several challenges associated with this problem. First, since
we do not assume any information on the target (like, e.g.,
size or inclination), the vehicle’s pose cannot be extracted
from the homography measure. In addition, unlike previous



works on the subject, we do not assume that the vehicle’s
orientation can be reconstructed (using, e.g., information
on the target or additional sensors). Then, we do not have
any sensor that provides linear velocity measurements either.
Finally, the systems here considered are underactuated (i.e.
the number of independent force and torque controls is
strictly smaller than the number of degrees of freedom).
Indeed, most VTOLs encountered in applications belong
to this class (e.g., helicopters, X-flyers, ducted fans, etc).
The approach builds on a previous result by Benhimane and
Malis [13] for the control of robotic manipulators, based on
a kinematic and holonomic model. The fact that dynamical
models of underactuated vehicles are considered here makes
the problem significantly harder.

The paper is organized as follows. Section II reviews some
technical background and provides a precise description of
the addressed problem. In Section III, we propose a new
homography-based error vector and specify its relation with
the pose error. The main result of the paper, which provides
asymptotically stabilizing feedback controllers for VTOL
UAVs, is given in Section IV. This is complemented in
Section V by a gain-tuning strategy that allows to obtain
good performance in a large operating domain. Finally,
simulation results are presented in Section VI.

II. PRELIMINARY BACKGROUND

A. Problem statement

The problem addressed in this paper (see Fig. 1 below)
corresponds to a typical scenario for UAVs. The vehicle is
equipped with a camera. A reference image of a planar target
T is taken at some desired pose (i.e. location), represented
by the reference frame <∗. Based on this reference image
and the current image, the objective is to design feedback
laws that stabilize the vehicle at the desired pose. In addition
to the camera, the vehicle is also equipped with rate gyros.
No other sensor is available.

Except for the planarity assumption no other information
on the target, like geometry or orientation, is available. In
particular, the target’s normal is unknown. The distance to
the target at the desired pose is also unknown, although
a (very rough) lowerbound on this distance is needed to
guarantee stability.

Since the systems here considered are underactuated, we
have to assume that the desired pose is an equilibrium of the
vehicle. Otherwise the problem of asymptotic stabilization
cannot be solved. For example, in the case of an helicopter,
stabilization of a desired pose requires that the rotor thrust
direction is vertical at this pose, so as to compensate gravity
without inducing lateral motion. This fixes two rotational
degrees of freedom.

B. Dynamics of thrust-propelled underactuated vehicles

The approach here proposed applies to the class of un-
deractuated ”thrust-propelled” VTOL vehicles [18]. More
precisely, we consider rigid bodies with one force control
in a body-fixed direction and full torque actuation. Typical
examples are given by helicopters, ducted fans, quad-rotors,

etc. To comply with the assumption that the reference pose
is an equilibrium for the vehicle, it is assumed that the thrust
direction at the reference pose is aligned with the vertical
basis vector of the reference frame <∗. The dynamical
equations are then given by

ṗ = Rv

Ṙ = RS(ω)
mv̇ = −mS(ω)v − Tb3 +mγ
Jω̇ = −S(ω)Jω + Γ

(1)

with p the position vector of the vehicle’s center of mass,
expressed in the reference frame, R the rotation matrix from
the current frame to the reference frame, v the velocity vector
with respect to (w.r.t.) the reference frame expressed in the
current frame, ω the angular velocity vector expressed in
the current frame, S(.) the matrix-valued function associated
with the cross product, i.e. S(x)y = x× y , ∀x, y ∈ R3, m
the mass, T the thrust input, b3 = (0, 0, 1)T , J the inertia
matrix, Γ the torque vector, and γ = gRT b3 the projection
of the gravity vector in the current frame with g the gravity
constant. Among others, this model describes the dynamics
of a helicopter.

Note that the first and second equations of System (1)
correspond to the kinematics, while the third and forth
account for the dynamics. The objective is to asymptotically
stabilize the origin p = 0, R = I3, v = 0, ω = 0, with I3
the 3 × 3 identity matrix, from visual measurements of a
reference image I∗ (taken at <∗) and the current image I
(taken at <) of the planar target T . Note in particular that
neither p nor R are directly measured. Visual measurements
only provide a partial and coupled measurement of these
quantities (see subsection below). The velocity vector v is
not measured either. On the other hand, ω is measured via
rate gyros. We review below some well known facts about
visual sensors and homography matrices.

C. Visual observation of planar scenes and homography
matrices

The following notation relates to the planar scene T (see
Fig. 1 below).
• χ∗, χ are the coordinates of a point of interest P lying

on the planar target, expressed in the reference and
current frames respectively.

• n∗ is the unit vector defining the normal to the planar
object, expressed in the reference frame; d∗ is the
distance between this plane and the camera optical
center. Z∗ is the third coordinate of point P in the
reference frame and c∗ = 1

Z∗ its inverse. For simplicity,
it is assumed that the z-axis of the body-fixed frame
coincides with the camera optical axis.

A useful tool in visual servoing is the so-called homog-
raphy matrix H which embeds all information regarding
the transformation between two images of the same planar
object of interest (see, e.g., [13], [19] for more details). An
important feature of this matrix is that it can be estimated
from these images without any assumption on the camera
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Fig. 1: Problem scheme

pose. It is thus possible to use this matrix to define an error
vector that will converge to zero at the desired equilibrium.

Let us first assume that the camera optical center and
the vehicle center of mass coincide (this assumption will be
discussed latter on). Then, H is defined as:

H , K

(
RT − 1

d∗
RT pn∗T

)
K−1 (2)

with K the camera intrinsic parameters matrix. The matrix
H relates the normalized coordinates of a point as seen
from the reference and current pose. Indeed, the following
relationship holds:

χ = RTχ∗ −RT p (3)

Defining the pixel coordinates, which embed the camera
calibration error, µ = K

(
1
Zχ
)

and µ∗ = K
(

1
Z∗χ

∗) and
noticing that n∗Tχ∗ = d∗, one gets:

Z

Z∗
µ = K

(
RT

χ∗

Z∗
−RT p

Z∗
1
d∗
n∗Tχ∗

)
= K

(
RT − 1

d∗
RT pn∗T

)
K−1µ∗ = Hµ∗

(4)

The scalar Z
Z∗ is the unknown ratio of the third coordinates

in both frames. This relationship suggests that H can be
estimated only up to an unknown scalar factor. Several
algorithms have been proposed for the estimation of the
Homography matrix (see, e.g., [13], [19]). Assuming that K
is known, we can compute an estimate of the matrix (denoted
Hη as opposed to H which encompasses the calibration
error)

Hη = η

(
RT − 1

d∗
RT pn∗T

)
with η some scalar factor. One can show (see, e.g., [19, Pg.
135]) that η corresponds to the mean singular value of Hη .
Furthermore, an explicit formula for the calculation of η is
proposed in [20, App. B]. Therefore, we assume from now
on the knowledge of

H = RT − 1
d∗
RT pn∗T (5)

Let us now consider the case when the camera optical
center does not coincide with the vehicle center of mass. The
camera frame, centered at the optical center, differs from the
center of mass frame only by a position offset δ. Let pc =
p+(R−I)δ denote the position vector of the camera optical
center in the reference camera frame. Then, the dynamics of
pc is given by{
ṗc = Rvc
mv̇c = −mS(ω)vc − Tb3 +mγ +Q(ω)−mS(δ)Γ

with vc = v−S(δ)ω and Q quadratic in ω. These equations
differ from the dynamic equations of p (see (1)) only by the
term Q(ω)−mS(δ)Γ. The present approach is based on the
design of smooth feedback laws that make the closed-loop
system locally exponentially stable (i.e., the state matrix of
the linearized closed-loop system is Hurwitz). Since Q is
second-order, this term does not affect this stability property.
As for mS(δ)Γ, this is a first-order term that does not affect
the stability for ”small enough” values of δ, due to the
robustness margin associated with any Hurwitz matrix. We
essentially assume in this paper that δ is small enough, so
that mS(δ)Γ can be neglected. The general case will be
considered in a future work.

The time-derivative of H is easily deduced from (1):

Ḣ = −S(ω)H − 1
d∗
vn∗T

In [13], H was used to define an error vector and an
associated feedback law, based on a kinematic control model.
More precisely, the following result was shown.

Proposition 2.1: [13, Sec. 4] Let χ∗ denote the coordi-
nates of a point P ∈ T , expressed in the reference frame
<∗, and m∗ = 1

Z∗χ
∗ = c∗χ∗ the associated normalized

coordinates. Let e ∈ R6 denote the error vector defined by

e =
(
ep
eΘ

)
, ep = (I −H)m∗ , eΘ = vex(HT −H) (6)

with vex the function defined by vex(S(x)) = x for any
x ∈ R3. Then,

1) (p,R) 7−→ e defines a local diffeormorphism around
(p,R) = (0, I3). In particular, e = 0 if and only if
(p,R) = (0, I3).

2) The kinematic control law

v = −λpep , ω = −λΘeΘ (7)

with λp, λΘ > 0 makes (p,R) = (0, I3) locally
asymptotically stable. 4

Remark 2.2: 1) In [13], ep and eΘ are defined with an
opposite sign, i.e. ep = (H − I)m∗ , eΘ = vex(H −HT ).
The present choice is better adapted to the definition of v
and ω in (1). 2) Note that there is no constraint on m∗ except
that it must be a projective vector, i.e., m∗3 = 1. 4

Extension of Proposition 2.1 to System (1) raises several
difficulties. First, the control input is no longer the 6d-vector
of velocity variables (v, ω). It is the 4d-vector composed of
the force input T and torque vector Γ. Then, the relation
between the linear velocity v and the control inputs is



nonlinear and underactuated: there is only one force control
variable to control the 3d velocity vector v. Finally, we do
not have any measurement of this vector.

III. A NEW ERROR VECTOR

In this section we define a new error which is instrumental
in the design of stabilizing feedback laws.

Proposition 3.1: Let m∗ = b3 = (0, 0, 1)T and

ē = Me, M =
(

2I3 S(m∗)
−S(m∗) I3

)
(8)

with e defined by (6). Let Θ = (φ, θ, ψ)T denote any
parametrization of the rotation matrix R such that R ≈
I3 + S(Θ) around R = I3 (e.g., Euler angles). Then,

1) (p,R) 7−→ ē defines a local diffeormorphism around
(p,R) = (0, I3). In particular, ē = 0 if and only if
(p,R) = (0, I3).

2) In a neighborhood of (p,R) = (0, I3),

ē = L

(
p
Θ

)
+O2(p,Θ), L =

(
Lp 0
LpΘ LΘ

)
(9)

with LpΘ = S((α∗, β∗, 0)T ),

Lp =

c∗ 0 α∗

0 c∗ β∗

0 0 2c∗

 , LΘ =

1 0 0
0 1 0
0 0 2

 ,

α∗, β∗ the (unknown) constant scalars defined by n∗ =
d∗(α∗, β∗, c∗)T , and O2 denoting terms of order two
at least. 4

The proof, based on elementary first-order approximation of
ē, is available upon request to the authors.

Remark 3.2: 1) Since the projective vector m∗ is user-
defined, the choice m∗ = b3 can always be made. As a
matter of fact, the present approach can be extended to a
general projective vector m∗ = (m∗1,m

∗
2, 1)T , by a slight

modification of ē. 2) Eq. (9) shows the rationale behind
the definition of ē: at first order, components ē1, ē2, ē3

contain information on the translation vector p only, while
components ē4, ē5, ē6 contain decoupled information on the
orientation (i.e. LΘ is diagonal), corrupted by components
of the translation vector. Note that L can be viewed as the
linear approximation at the origin of the interaction matrix
associated with ē. 4
Since c∗, α∗, and β∗ are unknown, L is not known either.
We show below, however, that L contains enough structure
for the design of stabilizing control laws.

IV. CONTROL SYNTHESIS

Let ēp ∈ R3 (resp. ēΘ ∈ R3) denote the first (resp. last)
three components of ē, i.e. ē = (ēTp , ē

T
Θ)T . The control

design relies on a dynamic extension of the state vector
defined as follows:

ν̇ = −K7ν − ēp (10)

with K7 a diagonal gain matrix. The variable ν copes with
the lack of measurements of ˙̄e. The main result of the paper
is given next.

Theorem 4.1: Let{
T = m (g + k1ē3 + k2ν3)
Γ = −JK3

(
ω − ωd

) (11)

with {
ωd = −K4

g

(
gēΘ + b3 × γd

)
γd = −K5ēp −K6ν

(12)

Then,
1) Given any upper-bound c∗M > 0, there exist diagonal

gain matrices Ki = Diag(kji ) i = 3, . . . , 7; j = 1, 2, 3
and scalar gains k1, k2, such that the control law (11)
makes the equilibrium (p,R, v, ω, ν) = (0, I3, 0, 0, 0)
of the closed-loop System (1)-(10) locally exponen-
tially stable for any value of c∗ ∈ (0, c∗M ].

2) If the diagonal gain matrices Ki and scalar gains k1, k2

make the closed-loop system locally exponentially
stable for c∗ = c∗M , then local exponential stability
is guaranted for any value of c∗ ∈ (0, c∗M ].

4
The proof is available upon request to the authors.

Let us comment on this result. Since c∗ = 1/Z∗ and
Z∗ ≥ d∗ (recall that m∗ = b3), a sufficient condition for
c∗ ∈ (0, c∗M ] is that d∗ ≥ 1/c∗M . Thus, Property 1) ensures
that stabilizing control gains can be found given any lower
bound on the distance between the reference pose and the
observed planar target. This is a very weak requirement from
an application point of view. Property 2) is also a very strong
result since it implies that in order to find stabilizing control
gains for any c∗ ∈ (0, c∗M ], it is sufficient to find stabilizing
control gains for c∗ = c∗M . This is a much easier task
which can be achieved with classical linear control tools.
In particular, by using the Routh-Hurwitz criterion, one can
show that local exponential stability for c∗ = c∗M is ensured
when the following inequalities are satisfied:

k1, k2, k
j
i > 0 , ∀(i, j) /∈ {(5, 3), (6, 3)} (13)

 k1
6 < k1

5k
1
7

c∗Ma
1
1a

1
4(a1

4 − a1
0) < a1

2D
1
2

c∗Ma
1
1(a1

4 − a1
0)2 < (a1

2 − a1
0a

1
3)D1

2

(14)

and  k2
6 < k2

5k
2
7

c∗Ma
2
1a

2
4(a2

4 − a2
0) < a2

2D
2
2

c∗Ma
2
1(a2

4 − a2
0)2 < (a2

2 − a2
0a

2
3)D2

2

(15)

with

a1
0 = k1

7 − k1
6
k1
5
, a1

1 = k2
3k

2
4k

1
5, a

1
2 = k2

3k
2
4k

1
7,

a1
3 = k2

3(k2
4 + k1

7), a1
4 = k2

3 + k1
7, D

1
2 = a1

4a
1
3 − a1

2

(16)

and

a2
0 = k2

7 − k2
6
k2
5
, a2

1 = k1
3k

1
4k

2
5, a

2
2 = k1

3k
1
4k

2
7,

a2
3 = k1

3(k1
4 + k2

7), a2
4 = k2

3 + k2
7, D

2
2 = a2

4a
2
3 − a2

2

(17)

Let us show the existence of control gains that satisfy these
inequalities. First, note that there is no condition on k3

5 and



k3
6 . This is due to the fact that, by (12), these gains do

not affect ωd. Condition (13) is readily satisfied. Let us
consider (14). First, let us remark that this set of conditions
involves the control gains k2

3, k
2
4, k

1
5, k

1
6 and k1

7 only. The
gains k2

3, k
2
4 and k1

7 can be chosen arbitrarily (under the
positivity condition (13)).This fixes the values of a1

2, a
1
3, a

1
4,

and D1
2 . Then, one observes that for a1

0 = 0, the second and
third conditions of (14) reduce to c∗Ma

1
1(a1

4)2 < a1
2D

1
2 . Due

to the fact that a1
2, D

1
2 > 0, one can choose a1

1 > 0 (via
the choice of k1

5) so that these conditions are satisfied. It
is clear by continuity that these conditions are still satisfied
for a1

0 > 0 ”small enough”. This latter condition leads to the
choice of k1

6 . Note that a1
0 > 0 guarantees the first condition

in (14). Choosing k1
3, k

1
4, k

2
5, k

2
6 and k2

7 in order to satisfy
(15) follows the same procedure.

Let us finally remark that, given a family of control gains,
Conditions (13)–(15) allow to determine the maximum value
of c∗M for which exponential stability is obtained.

V. GAIN TUNING

While stability is a prerequisite for a closed-loop system,
performance cannot be neglected in practice. In particular, it
matters to ensure good damping properties. This issue is very
important here since we have to cope with a large range of
the unknown parameter c∗. In this section we propose gain
tuning heuristics so as to obtain good performance. These
heuristics do not guarantee performance levels, however, we
have observed in simulation that they provide good results.
Futhermore, after having tuned the gains as proposed, the
Barmish theorem [21] can be used to verify performance af-
terwards. These heuristics are based on the cascade structure
of the closed-loop linearized system which allows to address
separately the yaw, vertical, and horizontal dynamics. This
is similar to the case when full measurement of position,
orientation, and velocities is available.

A. Yaw dynamics gain tuning

The characteristic polynomial associated with the (lin-
earized) yaw dynamics is P (λ) = λ2 + k3

3λ+ 2k3
3k

3
4 . Thus,

any given set of closed-loop poles (λ1, λ2) can be assigned
by setting

k3
3 = − (λ1 + λ2) , k3

4 = − λ1λ2

2 (λ1 + λ2)

B. Vertical dynamics gain tuning

The characteristic polynomial associated with the vertical
dynamics is P (λ) = λ2

(
λ+ k3

7

)
+ C∗ (λ+ k) with C∗ =

2c∗k1 and k = k3
7− k2

k1
. The following heuristic is proposed:

1) Define the gain k3
7 and a number k 6= k3

7 knowing
that, as c∗ grows from 0 to ∞, the closed loop gains
will be moving from 0 and −k3

7 to −k and k−k3
7

2 .
2) The slowest poles’ real parts will start from 0 and head

to k−k3
7

2 : define the scaling factor k1 so as to define
c∗min for which a given real part is reached. Note that
k2 is then given by: k2 = k1

(
k3

7 − k
)
.

3) Use [21] to assess the performance of the obtained
closed-loop system as c∗ varies in its allowed range.

Justification: The root locus theory shows that the poles
will start from

(
−k3

7, 0, 0
)

as c∗ = 0 and head to −k and
the two asymptotic directions k−k3

7
2 ± j∞ as c∗ →∞. One

can also verify that, whatever the gains such that k 6= k3
7 ,

there is no root on the imaginary axis.

Numerical example: With k1 = 5, k2 = 10, k3
7 = 2.4, the

root locus shows that:
1) ∀c∗ > 0,< (λi) < 0
2) ∀c∗ ∈ [0.175; +∞] ,−1 ≤ < (λi) ≤ −0.4
3) ∀c∗ ∈ [0.175; 2.34] , ξ ≥ 0.2 (ξ is the damping ratio)

C. Horizontal dynamics gain tuning

The horizontal dynamics is composed of two fifth-order
linear systems (associated respectively with the roll and pitch
dynamics). Since the structure of these systems is the same
we only address gain tuning for the first one. The associated
characteristic polynomial is:

λ2
(
λ+ k1

7

) (
λ2 + k2

3λ+ k2
3k

2
4

)
+ C∗ [λ+K]

where C = c∗k2
3k

2
4k

1
5,K = k1

7 − k1
6
k1
5

. The following
heuristics is proposed:

1) Select k2
3 and k2

4 such that the roots of λ2+k2
3λ+k2

3k
2
4

are as fast as possible;
2) Define a much slower dynamics for the ”inside sys-

tem” defined by: k2
3k

2
4λ

2
(
λ+ k1

7

)
+C∗ [λ+K], and

select suitable k1
5, k

1
6, k

1
7 so that for c∗ ∈ (0; c∗M ], all

poles are slower than the above defined maximum
inside dynamics: see section V.B since the ”inside”
and vertical dynamics are similar;

3) Use [21] to assess the performance of the obtained
closed-loop system as c∗ varies in its allowed range.

Justification: From the root locus theory there are poles at
0 (double), −k1

7 and at the roots of λ2 + k2
3λ + k2

3k
2
4 . The

only zero is at −
(
k1

7 − k1
6
k1
5

)
(zero of the inside dynamics).

The two poles placed by k2
3 and k2

4 will go to infinity as c∗

grows. The poles at 0 and −k1
7 will behave similarly to the

vertical dynamics for small c∗, since they are close to zero
and separated from the first two; for c∗ large, two of these
poles will escape to infinity with positive real part.

Numerical Example: With gains defined as k2
3 = 10, k2

4 =
12, k1

5 = 5, k1
6 = 10, k1

7 = 2.4 (inside dynamics being
slower than -1, which is must slower than the roots of
λ2 + k2

3λ + k2
3k

2
4), the characteristic polynom is given by:

λ5 + 12.4λ4 + 144λ3 + 288λ2 + 600c∗λ+ 240c∗, which is
stable for c∗ ∈ (0; c∗M ] with c∗M ≈ 4, and such that the roots
real parts < (λ) ≤ −0.2 for c∗ ∈ [c∗1; c∗2] with c∗1 ≈ 0.2 and
c∗2 ≈ 3.25.

VI. SIMULATION RESULTS

The proposed approach has been tested via simulations for
a dynamical model of an helicopter. This model is defined
by (1) with m = 10kg and the coefficients of the inertia



matrix defined by Jxx = 0.3kg.m2; Jyy = 0.8kg.m2; Jzz =
0.9kg.m2; Jxy = 0.1kg.m2; Jxz = 0.2kg.m2; Jyz =
0.1kg.m2.

Simulation results reported on Fig. 2–3 have been ob-
tained with initial position offset proportional to the distance:
p0 =

(
0.4
c∗ ;− 0.8

3c∗ ; 0.4
3c∗

)T
. The other initial conditions were

null (angles, linear and angular velocity). n∗ was chosen
as n∗ = (−0.28m; 0.28m; 0.92m)T . The control gains in
(10)–(11) have been chosen as follows:

k1 = 5, k2 = 10, K3 = Diag(10, 10,
√

2)
K4 = Diag(12, 12, 1

2
√

2
), K5 = Diag(5, 5, 0)

K6 = Diag(10, 10, 0) K7 = 2.4I3
(18)

This yields, from (14)-(15), the stability upper-bound c∗M <
3.99m−1. Two simulations, obtained with values of c∗ =
0.1m−1 and c∗ = 2m−1 are reported. This corresponds to
a very large range of distances to the target, with 0.5m ≤
Z∗ ≤ 10m. Fig. 2–3 show good performance in all this
range without using any depth information.

To simulate the effects of measurement noise, simulations
have also been conducted with realistic noise levels, i.e.
gaussian white noise with standard deviations 0.01rad/s for
the angular velocity and0.0002 0.0002 0.0454

0.0002 0.0002 0.0319
0 0 0.0003


for the various elements of the homography matrix. The
latter values are based on measurements performed on
actual images. In addition, the control values have been
passed through a third-order Butterworth filter with 50rad/s
bandwith. The results are presented on Fig. 4–5. Despite a
significant level of noise at the input level, the controller is
still able to achieve a fair stabilization around the desired
position. Nevertheless, it seems that there is room for im-
provement in the filtering process.

VII. CONCLUSION

Stabilizing feedback laws for hover flight control of
VTOL UAVs have been proposed based on visual measure-
ments of a planar target and rate gyros measurements. Given
any lowerbound on the distance between the target and the
vehicle’s reference pose, it has been shown that stabilizing
feedback laws can be designed without any information on
the target. This property could be instrumental in controlling
UAVs in unknown environments. Gain tuning strategies
have been derived so as to achieve good performance. The
approach has been validated in simulation. Extensions of this
work include experimental validations on helicopter drones,
nonlinear control design in order to possibly extend the
stability domain and allow more aggressive manoeuvers, and
incorporating accelerometers measurements to better cope
with wind gusts.
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Fig. 2: Simulation results for c∗ = 0.1m−1, without noise
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Fig. 3: Simulation results for c∗ = 2m−1, without noise
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Fig. 4: Simulation results for c∗ = 0.1m−1, with noise
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Fig. 5: Simulation results for c∗ = 2m−1, with noise


