
Observer design on the Special Euclidean group SE(3)

Minh-Duc Hua, Mohammad Zamani, Jochen Trumpf, Robert Mahony, Tarek Hamel

Abstract— This paper proposes a nonlinear pose observer
designed directly on the Lie group structure of the Special Eu-
clidean group SE(3). We use a gradient-based observer design
approach and ensure that the derived observer innovation can
be implemented from position measurements. We prove local
exponential stability of the error and instability of the non-zero
critical points. Simulations indicate that the observer is indeed
almost globally stable as would be expected.

I. INTRODUCTION

Estimating the pose (i.e., position and attitude) of a rigid
body is a key requirement for robust and high performance
control of robotic vehicles. Pose estimation is a highly
nonlinear problem in which the sensors normally utilized
are prone to non-Gaussian noise [1]. According to a recent
survey by Crassidis [2], the dominant algorithms applied to
the problem of attitude estimation, Extended Kalman Filter
(EKF) type methods, encounter difficulties due to the non-
linearity of the state space and can display non-robustness
and instability. In contrast, nonlinear observers exploit the
underlying geometry in order to account for the highly
nonlinear nature of the problem. As a result, they appear to be
more robust and have provable almost global stability proper-
ties (see, e.g., [3], [4], [5], [6], [7]). For the attitude problem,
Mahony et al. [4] derived a complementary nonlinear attitude
observer exploiting the underlying Lie group structure of
the Special Orthogonal group SO(3) of all rotations, and
proved almost global stability of the error system. A locally
valid symmetry-preserving nonlinear observer construction
based on the Cartan moving-frame method was proposed
in [8], [9]. This process is valid for arbitrary Lie groups but
specializes to the same attitude filter on SO(3). Lageman et
al. [5] proposed a gradient-like observer design technique
for invariant systems on Lie groups. This method leads
to almost globally convergent observers given that a non-
degenerate Morse-Bott cost function is used. This observer
was applied to pose estimation on the Special Euclidean
group SE(3) from full pose measurements. Following the
previous work on SO(3) [4], Baldwin et al. [10], [11]
proposed complementary observers directly on SE(3) using
both full state feedback and bearing only measurements
of known landmarks. Vasconcelos et al. [7] proposed an
observer that uses full range and bearing measurements of
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known landmarks, achieving almost global asymptotic stabil-
ity even when bias is present in the velocity measurements.

In this paper, we propose a nonlinear pose observer
designed directly on the Lie group SE(3). We use the
gradient-based observer design proposed in [5] but extend
this work to utilize position measurements. Following the
previous work on invariant systems [9], [5] we consider left
invariant kinematics along with a right invariant cost function
and a right invariant Riemannian metric on SE(3) and obtain
autonomous error dynamics. A Lyapunov argument is used
to prove local exponential stability of the proposed observer.
The critical points of the error dynamics are characterized
and the non-zero critical points are shown to be unstable. We
go on to provide simulation studies that indicate the almost
global stability of the proposed observer.

The remainder of the paper is organized as follows.
Section II formally introduces the pose estimation problem
on SE(3) along with the notation used. Section III contains
the gradient-based observer derivation and the proposed ob-
server. Next, the stability of the observer is formally studied
using Lyapunov theory in Section IV. Section V derives a
discrete version of the observer to facilitate the simulation
studies in Section VI. Finally, Section VII concludes the
paper and some of the proofs are provided in the appendix.

II. PROBLEM FORMULATION AND NOTATION

A. Notation and mathematical identities

Let {A} and {B} denote an inertial frame attached to the
earth and a body-fixed frame attached to a vehicle moving
in 3D-space, respectively. The vehicle’s position, expressed
in {A}, is denoted as p ∈ R3. The attitude of the vehicle
is represented by a rotation matrix R ∈ SO(3) of the body-
fixed frame {B} relative to the inertial frame {A}. Let V ∈
R3 denote the vehicle’s translational velocity, expressed in
{B}. Let Ω ∈ R3 denote the angular velocity, expressed in
{B}, of the body-fixed frame {B} with respect to the inertial
frame {A}.

We consider the problem of estimating the vehicle’s pose
which comprises the vehicle’s position p and attitude R.
The vehicle’s pose can be interpreted as an element of the
Special Euclidean group SE(3), which can be represented
by a matrix

X :=
[
R p
0 1

]
∈ R4×4 . (1)

This representation, commonly known as homogeneous co-
ordinates, preserves the group structure of SE(3) with the
GL(4) operation of matrix multiplication, i.e., X1X2 ∈



SE(3), for all X1, X2 ∈ SE(3). The Lie-algebra se(3) is
the set of 4×4 matrices defined as

se(3) :=
{
A ∈ R4×4 | ∃Ω, V ∈ R3 : A =

[
Ω× V
0 0

]}
,

with Ω× denoting the skew-symmetric matrix associated
with the cross product by Ω, i.e., Ω×v = Ω × v, for all
v ∈ R3. The adjoint operator is a mapping Ad : SE(3) ×
se(3)→ se(3) defined as

AdXA := XAX−1, with X ∈ SE(3), A ∈ se(3) .

One verifies that

AdXA =
[
(RΩ)× −(RΩ)×p+RV

0 0

]
∈ se(3) .

For any two matrices M1,M2 ∈ Rn×n, the Euclidean matrix
inner product and Frobenius norm are defined as

〈〈M1,M2〉〉 = tr(M>1 M2), ‖M1‖ =
√
〈〈M1,M1〉〉 .

Let Pa(M), for all M ∈ Rn×n, denote the anti-symmetric
part of M , i.e., Pa(M) = 0.5(M −M>). Let P : R4×4 →
se(3) denote the orthogonal projection of R4×4 onto se(3)
with respect to the inner product 〈〈·, ·〉〉, i.e., for all A ∈
se(3), M ∈ R4×4, one has

〈〈A,M〉〉 = 〈〈A,P(M)〉〉 = 〈〈P(M), A〉〉 .

One verifies that for all M1 ∈ R3×3,m2,3 ∈ R3,m4 ∈ R,

P
([

M1 m2

m>3 m4

])
=
[
Pa(M1) m2

0 0

]
. (2)

Let M0 and M1 denote the sub-manifolds of R4, respec-
tively, defined as

M0 :={y ∈ R4 | y(4) = 0}, M1 :={y ∈ R4 | y(4) = 1} .

For any element y ∈ M0 or y ∈ M1, the underline
notation y ∈ R3 denotes a vector of coordinates which
comprises the first three components of y, i.e., y = [y> 0]>

or y = [y> 1]>, respectively. For later use, let us introduce
some mathematical identities which can be easily verified by
simple calculations.

Property 1 For all X ∈ SE(3), y ∈ M0, one has
tr(X>Xyy>) = tr(yy>) .

Property 2 For all X ∈ SE(3), y ∈M0, z ∈M1, one has

P(X−>yz>) = P(Xyz>) , with X−> := (X−1)> .

Property 3 For all y1, y2 ∈M1, one has P((y1−y2)y>1 ) =
P((y1 − y2)y>2 ) .

B. System equations and measurements

The vehicle’s pose X ∈ SE(3), defined by Eq. (1),
satisfies the differential equation

Ẋ = XA , (3)

with group velocity A ∈ se(3). System (3) is left invariant
in the sense that it preserves the (Lie group) invariance
properties with respect to constant translation and constant
rotation of the body-fixed frame {B} X 7→ X0X .

Assume that A (i.e., Ω and V ) is available to measurement.
Moreover, the positions of n ∈ N+ points, whose positions
ẙi are constant and known in the inertial frame {A}, are
assumed to be measured in the body-fixed frame {B} as

yi = h(X, ẙi) := X−1ẙi , (4)

with yi, ẙi ∈ M1, i = 1, · · · , n. One verifies that the Lie
group action h : SE(3)×M1 →M1 on the manifoldM1 is
a right group action in the sense that for all X1, X2 ∈ SE(3)
and y ∈M1, one has h(X2, h(X1, y)) = h(X1X2, y).

III. OBSERVER DESIGN ON SE(3)

A. Gradient-based observer design

Consider an estimate X̂(t) ∈ SE(3) of the pose X(t).
Denote by R̂ and p̂ the estimates of R and p, respectively,

such that X̂ :=
[
R̂ p̂
0 1

]
. Consider the observer system

˙̂
X = X̂(A− α) , X̂(0) ∈ SE(3) , (5)

with α ∈ se(3) the innovation term to be designed hereafter.
Define a group error

Er(X̂,X) := X̂X−1 ∈ SE(3) . (6)

The group error Er is a right invariant error in the sense
that for all X̂,X, S ∈ SE(3), one has Er(X̂S,XS) =
Er(X̂,X). Now, without confusion let us use the shortened
notation Er for Er(X̂,X). The group error Er provides a
natural evaluation of performance of the observer response.
It converges to the identity element I4 of the group SE(3)
if and only if X̂ converges to X . Using Eqs. (3) and (5),
one deduces

Ėr = −(AdX̂α)Er . (7)

For later use, let ei, with i = 1, · · · , n, denote the estimate
of ẙi which is defined as

ei := h(X̂−1, yi) = X̂yi , (8)

or, equivalently,

ei = h(X̂−1, h(X, ẙi)) = h(XX̂−1, ẙi) = Erẙi . (9)

Remark 1 The variables ei defined by Eq. (8), with i =
1, · · · , n, can be computed by the observer.

A recent study provides a constructive methodology of ob-
server design for invariant systems which have the opposite
invariance properties to the measurements in order to obtain
well conditioned observers [5]. More precisely, Theorem 17
in [5] can be rewritten for the case of SE(3) as follows.

Lemma 1 (see [5]) Consider the left invariant system (3).
Let f : SE(3)× SE(3) → R be a right invariant cost
function in the sense that for all X̂,X, S ∈ SE(3), one
has f(X̂S,XS) = f(X̂,X). Let us take a right invariant
Riemannian metric on SE(3). Consider the left observer
dynamics

˙̂
X = X̂A− gradX̂f(X̂,X) , X̂(0) ∈ SE(3) . (10)



Then, the dynamics of the right invariant error Er defined
by Eq. (6) is autonomous and is given by

Ėr = −gradEr
f(Er, I4) . (11)

The observer system (10) is equivalent to System (5), with

α = X̂−1gradX̂f(X̂,X) . (12)

Given that we define f(X̂,X) such that it is minimal
when X̂ = X , Lemma 1 provides a method for designing
the innovation term α in order to obtain well conditioned
observers. Note that since Eq. (11) is a gradient flow it is
straightforward to deduce that the local minimum Er = I4 is
locally asymptotically stable. In what follows, we calculate
the innovation term α based on the use of the gradient decent
direction of a suitable cost function.

Lemma 2 Consider the smooth non-negative cost function
f : SE(3)× SE(3)→ R defined as

f(X̂,X) := 0.5
∑
i ki|(X̂−1 −X−1)ẙi|2 , (13)

with ki, i = 1, · · · , n, some positive numbers. The cost
function f is right invariant and can be expressed as a
function of Er as follows

f(X̂,X) = L(Er) := 0.5
∑
i ki|(Er−I4)ẙi|2 . (14)

See Appendix A for the proof. For all X ∈ SE(3),
A1, A2 ∈ se(3), the following equation defines a right
invariant Riemannian metric 〈〈·, ·〉〉X .

〈〈A1X,A2X〉〉X := 〈〈A1, A2〉〉 ,

where 〈〈·, ·〉〉 is the Euclidean metric on R4×4. Let us calcu-
late gradX̂f(X̂,X). Using standard rules for transformations
of Riemannian gradients and the fact that the Riemannian
metric is right invariant, one obtains

DX̂f(X̂,X) ◦ (ΓX̂) = 〈〈gradX̂f(X̂,X),ΓX̂〉〉X
= 〈〈gradX̂f(X̂,X)X̂−1X̂,ΓX̂〉〉X
= 〈〈gradX̂f(X̂,X)X̂−1,Γ〉〉 ,

with some Γ ∈ se(3). Besides, in view of Eq. (13) one has

DX̂f(X̂,X) ◦ (ΓX̂) = dX̂f(X̂,X)(ΓX̂)

=
∑
i kiẙ

>
i (X̂−1 −X−1)>(−X̂−1(ΓX̂)X̂−1)ẙi

= −
〈〈∑

i kiX̂
−>(X̂−1 −X−1)ẙiẙ>i , Γ

〉〉
= −

〈〈
P
(∑

i kiX̂
−>(X̂−1 −X−1)ẙiẙ>i

)
, Γ
〉〉
.

Then, one deduces that

gradX̂f(X̂,X)
= −P

(∑
i kiX̂

−>(X̂−1 −X−1)ẙiẙ>i
)
X̂ .

(15)

In view of Eqs. (12) and (15), the innovation term α involved
in the observer system (5) satisfies

α = −AdX̂−1P
(∑

i kiX̂
−>(X̂−1−X−1)ẙiẙ>i

)
. (16)

Lemma 3 The expression (16) of α can be rewritten as

α = −AdX̂−1P
(∑

i ki(I4 − Er)ẙiẙ>i
)

= AdX̂−1P
(∑

i ki(ei − ẙi)ẙ>i
)
.

(17)

See Appendix B for the proof. In summary, we propose
the following nonlinear observer on SE(3){ ˙̂

X = X̂(A− α) , X̂(0) ∈ SE(3)

α = AdX̂−1P
(∑

i ki(ei − ẙi)ẙ>i
) (18)

with ei given by Eq. (8) and

P
(∑

i ki(ei−ẙi)ẙ>i
)

=
[
− 1

2

∑
i ki(ei×ẙi)×

∑
i ki(ei−ẙi)

0 0

]
.

B. Group error dynamics

In order to analyze the asymptotic stability of the observer
trajectory of the observer (18) to the observed system’s
trajectory, it is more convenient to consider the dynamics
of the group error Er and prove that its trajectory converges
to the identity element of the group.

Lemma 4 The dynamics of the group error Er defined by
Eq. (6) satisfies

Ėr = P
(∑

i ki(I4 − Er)ẙiẙ>i
)
Er . (19)

Furthermore, P
(∑

i ki(I4 − Er)ẙiẙ>i
)

converges to zero
and the equilibrium Er = I4 of System (19) is locally
asymptotically stable.

See Appendix C for the proof. In the following section,
we provide a more comprehensive stability analysis of the
error system (19).

IV. STABILITY ANALYSIS

Denote Er =
[
Re pe
0 1

]
, with Re ∈ SO(3), pe ∈ R3. As

a result of Lemma 4 and Eq. (2), one obtains

Ėr = P
(
(I4 − Er)

∑
i kiẙiẙ

>
i

)
Er

= −P
([
Re − I3 pe

0 0

] [
Σ̊ µ̊
µ̊>

∑
i ki

])
Er

= −P
([

Pa(ReΣ̊+peµ̊>) (Re−I3)µ̊+
∑
ikipe

0 0

])
Er

=
[
Ωe× ve

0 0

]
Er ,

(20)

with {
µ̊ :=

∑
i kiẙi

Σ̊ :=
∑
i kiẙiẙ

>
i

(21)

and{
Ωe× := 0.5

(
Σ̊R>e −ReΣ̊ + µ̊p>e − peµ̊>

)
ve := −(Re − I3)µ̊−

∑
i kipe

(22)

System (20) is equivalent to the following system{
Ṙe = Ωe×Re
ṗe = Ωe×pe + ve

(23)



which will be used hereafter for analysis purposes. Denote

E∗r =
[
R∗e p∗e
0 1

]
, with R∗e ∈ SO(3), p∗e ∈ R3, as the

equilibrium associated with Er. As a consequence of Lemma
4, ΩE× and ve defined by Eq. (22) converge to zero, which
in turn implies that (using Eq. (22))

p∗e = −(
∑
i ki)

−1(R∗e − I3)µ̊ , (24)

Q̊R∗e
> = R∗eQ̊ , (25)

with Q̊ the symmetric matrix defined as

Q̊ := Σ̊− (
∑
i ki)

−1µ̊µ̊> ,

which can be written as

Q̊ =

(∑
i

ki

)−1∑
i

∑
j<i

kikj(ẙi−ẙj)(ẙi−ẙj)
> . (26)

Since the matrices Σ̊ and Q̊ are symmetric, they are Her-
mitian and all their eigenvalues are real. Moreover, in view
of Eqs. (21) and (26), it is straightforward to verify that Σ̊
and Q̊ are positive semi-definite. For the sake of analysis
purposes, let us introduce the following assumption.

Assumption 1 Assume that n ≥ 3 and that the vectors
ẙ
i
, with i = 1, · · · , n, are not all collinear. Assume that

rank(Σ̊) ≥ 2, rank(Q̊) ≥ 2, and that the matrix Q̊ has
three distinct eigenvalues.
If n ≥ 3, then it is always possible to choose a set of
parameters ki such that rank(Σ̊) ≥ 2, rank(Q̊) ≥ 2 and
the three eigenvalues of Q̊ are distinct. From here, the main
result of the present paper is stated next.

Theorem 1 Consider System (23) and assume that Assump-
tion 1 holds. Then,

1) System (23) has only four isolated equilibrium points
(Re, pe) = (R∗ei, p

∗
ei), i = 1, · · · , 4, with (R∗e1, p

∗
e1) =

(I3, 0). For any initial condition (Re(0), pe(0)), the
error trajectory (Re(t), pe(t)) converges to one of these
four equilibria.

2) The equilibrium (Re, pe) = (I3, 0) is locally exponen-
tially stable (L.E.S.).

3) The equilibria (R∗e2, p
∗
e2), (R∗e3, p

∗
e3), (R∗e4, p

∗
e4) are

unstable.

Proof : Let us prove Property 1 of Theorem 1. Proceeding
exactly like in the proof of Theorem 5.1 in [4], one de-
duces from Eq. (25) and rank(Q̊) ≥ 2 that R∗e = I3 or
tr(R∗e) = −1. This implies that R∗e is a symmetric matrix
and, subsequently, R∗e

2 = I3. The symmetry of the matrices
R∗e and Q̊ yields the symmetry of the matrix Q̊R∗e .

Denote the eigenvalues of Q̊ as λ1, λ2, λ3 and assume
that 0 ≤ λ1 < λ2 < λ3. Let u1, u2, u3 the associated
eigenvectors of Q̊ such that

[
u1 u2 u3

]
∈ SO(3). Let us

denote the set UQ ⊂ SO(3) as

UQ :={RQ∈SO(3) | RQΛQR>Q=Q̊,ΛQ=diag(λi, λj , λk)},

with i, j, k ∈ {1; 2; 3} and distinct. This means that there are
only six possibilities for ΛQ. Then, for each possible value

of ΛQ one verifies that there are only four possible values
for RQ ∈ UQ as [ui uj uk], [ui −uj −uk], [−ui uj −uk],
[−ui −uj uk]. As a consequence, there are only 24 isolated
elements in UQ. Then, for each value of RQ ∈ UQ, using
Eq. (25) one deduces

ΛQR̄ = R̄ΛQ , (27)
with R̄ := R>QR

∗
eRQ which is a symmetric matrix since

R∗e is symmetric. Eq. (27) implies that (λi − λj)R̄ij = 0,
∀i, j ∈ {1; 2; 3}. Since Q̊ has three distinct eigenvalues and
two of them are not null, it follows that R̄ij = 0 for all
i 6= j. This implies that R̄ is diagonal. Therefore, there are
only four possible values for R̄ as

R̄1 := diag(1, 1, 1), R̄2 := diag(1,−1,−1),
R̄3 := diag(−1, 1,−1), R̄4 := diag(−1,−1, 1) .

Then, the matrix R∗e can be deduced as R∗e = RQR̄R
>
Q. As

a consequence, there exist only four possible values for R∗e
which satisfy R∗e = RQR̄R

>
Q, with RQ ∈ UQ and R̄ equal

to either R̄1, R̄2, R̄3, or R̄4. They are
R∗e1 = I3

R∗e2 = u1u
>
1 − u2u

>
2 − u3u

>
3

R∗e3 = −u1u
>
1 + u2u

>
2 − u3u

>
3

R∗e4 = −u1u
>
1 − u2u

>
2 + u3u

>
3

Finally, p∗ei, with i = 1, · · · , 4, the corresponding values for
p∗e satisfying Eq. (24), with R∗e = R∗ei, are uniquely defined
(end of proof of Property 1).
Let us prove Property 2 of Theorem 1. Denoting R̄e := R>e
and p̄e := −R>e pe, one deduces from Eqs. (23) and (22) that{

˙̄Re = 0.5
(

Σ̊− R̄eΣ̊R̄e − p̄eµ̊>+R̄eµ̊p̄>e R̄e
)

˙̄pe = (I3 − R̄e)µ̊−
∑
i kip̄e

(28)

The equilibrium (Re, pe) = (I3, 0) of System (23) corre-
sponds to the equilibrium (R̄e, p̄e) = (I3, 0) of System (28).
Thus, it suffices to show that the equilibrium (R̄e, p̄e) =
(I3, 0) of System (28) is L.E.S.. Consider a first order
approximation of (R̄e, p̄e) around the equilibrium (I3, 0) as
R̄e = I3 + r̃× and p̄e = p̃, with r̃, p̃ ∈ R3. Then, in first
order approximations one obtains from Eq. (28) that{

˙̃r× = −0.5(r̃×Σ̊ + Σ̊r̃×)− 0.5(µ̊× p̃)×
˙̃p = µ̊× r̃ −

∑
i kip̃

(29)

To prove the local exponential stability of the equilibrium
(R̄e, p̄e) = (I3, 0) of System (28), it suffices to prove that
the equilibrium (r̃, p̃) = (0, 0) of the linearized system (29)
is uniformly asymptotically stable. To this purpose, let us
consider the following candidate Lyapunov function

V := |r̃|2 + 0.5|p̃|2 = −0.5tr(r̃×r̃×) + 0.5|p̃|2 .

Using Eq. (29), the fact that tr(u×v×) = −2u>v, ∀u, v ∈
R3, and Eq. (21), one verifies that
V̇ = 0.5tr(r̃×(r̃×Σ̊ + Σ̊r̃×) + r̃×(µ̊× p̃)×)

+p̃>(µ̊× r̃)−
∑
i ki|p̃|2

= −tr(r̃×
∑
i kiẙi ẙ

>
i
r̃>×)−2p̃>(r̃×

∑
i kiẙi)−

∑
i ki|p̃|2

= −
∑
i ki(|r̃ × ẙi|

2 + 2p̃>(r̃ × ẙ
i
) + |p̃|2)

= −
∑
i ki(r̃ × ẙi + p̃)2 ≤ 0 .



The resulting boundedness of V along any solution to
the linearized system (29) yields the stability of the point
(r̃, p̃) = (0, 0). The convergence of V̇ to zero implies that p̃
converges to ẙ

i
× r̃, ∀i = 1, · · · , n. From here, we will show

that this is possible only if p̃ and r̃ converge to zero. Let us
consider two possible cases :
. Case 1: If there exists some null vector ẙ

i
among the

observed vectors, one deduces directly that p̃ converges to
zero. Skipping technical arguments of minor importance, it
remains to show that r̃ = 0 is exponentially stable on the
zero dynamics defined by p̃ = 0, which is given by

˙̃r× = −0.5(r̃×Σ̊ + Σ̊r̃×) . (30)

Since Σ̊ is symmetric, it can be expressed as Σ̊ = RσΛσR>σ ,
where RΣ ∈ SO(3) and Λσ = diag(λσ1, λσ2, λσ3), with
λσ1, λσ2, λσ3 the eigenvalues of Σ̊. Since Σ̊ is positive semi-
definite and of rank greater than one, at least two eigenvalues
of Σ̊ are positive. Denoting r̄ := R>σ r̃, one verifies from
(30) that ˙̄r× = −0.5(r̄×Λσ + Λσ r̄×) = −0.5(Aσ r̄)×, or,
equivalently, ˙̄r = −0.5Aσ r̄, with

Aσ = diag(λσ2 + λσ3, λσ3 + λσ1, λσ1 + λσ2) .

From here, it is straightforward to deduce the exponential
stability of r̄ = 0, and subsequently, of r̃ = 0.
. Case 2: Let us consider the case where ẙ

i
6= 0,∀i =

1, · · · , n, and proceed the proof by contradiction. Assume
that the ultimate values of r̃, denoted as r̃∞, is not identically
null. Then, the proof proceeds as follows :
• Consider any pair of non-collinear vectors (ẙ

i
, ẙ
j
). The

fact that p̃ converges to ẙ
i
× r̃ and ẙ

j
× r̃ simultaneously

implies that p̃ tends to be orthogonal to ẙ
i
, ẙ

j
, and r̃.

This indicates that r̃ must converge to span{ẙ
i
, ẙ
j
} and

that r̃∞ = αij(ẙi − ẙ
j
), with αij some time-varying

scalar, since ultimately one has ẙ
i
× r̃∞ = ẙ

j
× r̃∞.

As a consequence, for all pairs of non-collinear vectors
(ẙ
i
, ẙ
j
), all resulting vectors (ẙ

i
− ẙ

j
) are collinear.

• Consider any pair of collinear vectors (ẙ
i
, ẙ
j
) and any

vector ẙ
k

non-collinear with them. We have proven
previously that (ẙ

i
− ẙ

k
) and (ẙ

j
− ẙ

k
) are collinear.

Thus, there exist some constants α1,2 such that ẙ
j

=
α1ẙi and (ẙ

j
− ẙ

k
) = α2(ẙ

i
− ẙ

k
). From here, one

easily verifies that α1 = α2 = 1, since otherwise ẙ
k

is collinear with ẙ
i
. As a consequence, for all pairs of

collinear vectors (ẙ
i
, ẙ
j
), all resulting vectors (ẙ

i
− ẙ

j
)

are null.
• From here, in view of the expression (26) of Q̊ and

two previous items, one deduces that rank(Q̊) ≤ 1.
The resulting contradiction with Assumption 1 yields
r̃∞ = 0 and, subsequently, p̃∞ = 0 (end of proof of
Property 2).

Let us prove Property 3 of Theorem 1. The Lyapunov
function L(Er) defined in Eq. (14) can be rewritten as

L(Re, pe) = 0.5
∑
i ki|(Re − I3)ẙ

i
+ pe|2

= tr((I3−Re)Σ̊) + 0.5
∑
i ki|pe|2+p>e (Re−I3)µ̊ .

(31)

In order to prove that (R∗e2, p
∗
e2) is unstable, let us first prove

that for any neighborhood of (R∗e2, p
∗
e2), there exists some

point (Rεe, p
ε
e) in this neighborhood such that L(Rεe, p

ε
e) <

L(R∗e2, p
∗
e2). Now, take (Rεe, p

ε
e) ∈ SO(3)×R3 of the form{

pεe = p∗e2 +R∗e2εp

Rεe = R∗e2(I3 + 2aεεr× + 2(εr×)2)
(32)

with aε :=
√

1− |εr|2 and εp, εr ∈ R3 to be chosen such
that their norms are positive and as small as possible. From
Eqs. (31) and (32), one verifies that

L(Rεe, p
ε
e)−L(R∗e2, p

∗
e2) = −2tr(R∗e2(aεεr× + (εr×)2)Σ̊)

+0.5
∑
i ki(|εp|2 + 2ε>p R

∗
e2p
∗
e2)

+ε>p R
∗
e2(R∗e2 − I3 + 2R∗e2(aεεr× + (εr×)2))µ̊

+2p∗e2
>R∗e2(aεεr× + (εr×)2)µ̊ .

Then, using the definition (24) of p∗e2 and the fact that
R∗e2

2 = I3, one deduces

L(Rεe, p
ε
e)− L(R∗e2, p

∗
e2) = −2tr(R∗e2(aεεr×+(εr×)2)Σ̊)

+0.5
∑
i ki|εp|2 + 2ε>p (aεεr×+(εr×)2)µ̊

−2(
∑
i ki)

−1tr((R∗e2 − I3)R∗e2(aεεr×+(εr×)2)µ̊µ̊>)

= 0.5
∑
i ki|εp|2 + 2ε>p (aεεr×+(εr×)2)µ̊

−2tr((aεεr×+(εr×)2)Q̊R∗e2)−2(
∑
iki)
−1tr((εr×)2µ̊µ̊>).

From here, using the fact that Q̊R∗e2 is symmetric and,
subsequently, tr(εr×QR∗e2) = 0, one verifies that

L(Rεe,p
ε
e)− L(R∗e2, p

∗
e2) = 2ε>p (aεεr×+(εr×)2)µ̊

+0.5
∑
iki|εp|2 − 2tr((εr×)2(Q̊R∗e2 + (

∑
i ki)

−1µ̊µ̊>)) .

For a given εr, choosing εp in the opposed direction of the
vector of coordinates (aεεr× + (εr×)2)µ̊, one obtains

ε>p (aεεr× + (εr×)2)µ̊ = −|εp| |(aεεr× + (εr×)2)µ̊| ,

and, subsequently,

L(Rεe,p
ε
e)− L(R∗e2, p

∗
e2) = −2|εp||(aεεr×+(εr×)2)µ̊|

+0.5
∑
iki|εp|2 − 2tr((εr×)2(Q̊R∗e2 + (

∑
i ki)

−1µ̊µ̊>)) .

The objective is to prove the existence of εp and εr such that
their norms can be chosen as small as possible, and that

0.5
∑
i ki|εp|2 − 2|(aεεr× + (εr×)2)µ̊| |εp|

−2tr((εr×)2(Q̊R∗e2 + (
∑
i ki)

−1µ̊µ̊>)) < 0.
(33)

Now, consider the following quadratic equation of x∑
i 0.5kix2 − 2|(aεεr× + (εr×)2)µ̊|x

−2tr((εr×)2(Q̊R∗e2 + (
∑
i ki)

−1µ̊µ̊>)) = 0.
(34)

Using the relation (εr×)4 = −|εr|2(εr×)2, one deduces

|(aεεr× + (εr×)2)µ̊|2 = tr
(
(−a2

ε(εr×)2 + (εr×)4)µ̊µ̊>
)

= −tr
(
(εr×)2µ̊µ̊>

)
.

Subsequently, the discriminant of Eq. (34) satisfies

∆ = 4
∑
i kitr((εr×)2Q̊R∗e2) .



Then, using the relations Q̊ = RQΛQR>Q, R∗e2 = RQR̄2R
>
Q,

and denoting ε̄r := R>Qεr, one obtains
∆ = 4

∑
i kitr((εr×)2RQΛQR̄2R

>
Q)

= 4
∑
i kitr((R>Qεr)

2
×ΛQR̄2)

= 4
∑
i kitr((ε̄r)2

×diag(λ1,−λ2,−λ3))
= 4

∑
i kitr((ε̄r ε̄>r − |ε̄r|2I3)diag(λ1,−λ2,−λ3))

= 4
∑
i ki(ε̄

2
r1(λ2+λ3)+ε̄2

r2(−λ1+λ3)+ε̄2
r3(−λ1+λ2)) .

Choosing ε̄r2 = ε̄r3 = 0, one deduces that |ε̄r1| = |εr| and,
subsequently, ∆ = 4

∑
i ki(λ2+λ3)|εr|2 > 0. Therefore, Eq.

(34) has two distinct real solutions x1 and x2 (with x1 < x2,
x2 > 0) given by

x1,2 = (
∑
i ki)

−1
(

2|(aεεr× + (εr×)2)µ̊| ±
√

∆
)
.

Then, choosing any |εp| such that max(x1, 0) < |εp| < x2

one ensures that inequality (33) is satisfied. Besides, one
easily verifies that |εp| and |εr| can be chosen positive and as
small as possible by using the fact that lim|εr|→0+ x1,2 = 0.

We have proven that for any neighborhood of (R∗e2, p
∗
e2),

there exists some point (Rεe, p
ε
e) in this neighborhood such

that L(Rεe, p
ε
e) < L(R∗e2, p

∗
e2). This, together with the non-

increasing of L (as proved in Appendix C) and Prop-
erty 1 of the theorem, implies that the observer trajectory
(Re(t), pe(t)) starting from (Rεe, p

ε
e) will never reach the

equilibrium (R∗e2, p
∗
e2) and will quit this neighborhood to

reach asymptotically one of the other three equilibria. This
implies the instability of (R∗e2, p

∗
e2). The proof of instability

of the equilibria (R∗e3, p
∗
e3) and (R∗e4, p

∗
e4) proceeds analo-

gously. 2

V. EXTENSIONS FOR IMPLEMENTATION PURPOSES

A. Observer in quaternion form
For a more explicit form of the observer, one can verify

that ei = R̂y
i
+ p̂ and System (18) can be rewritten as

˙̂
R = R̂Ω× + ω̂×R̂

˙̂p = R̂V + ω̂×p̂−
∑
i ki(R̂yi + p̂− ẙ

i
)

ω̂ := 0.5
∑
i ki((R̂yi + p̂)× ẙ

i
)

R̂(0) ∈ SO(3), p̂(0) ∈ R3

(35)

In practice, since it is difficult to preserve the evolution of
R̂ on SO(3) due to numerical errors, the group of unit
quaternions is a good alternative. Let q̂ denote the unit
quaternion associated with R̂ such that

R̂ = R̂(q̂) := I3 + 2q̂0q̂× + 2q̂2
× , (36)

where q̂ = [q0, q̂]>, q0 ∈ R and q̂ ∈ R3 are the real and pure
parts of q̂, respectively. Using standard rules for quaternion
parametrizations and differentials (see, e.g., [12, Ch.1]), one
deduces from the differential equation of R̂ in Eq. (35) that

˙̂q = 0.5(A(Ω) + B(ω̂))q̂ , (37)

where the mappings A,B : R3 → R4×4 are defined as

A(ω) :=
[

0 −ω>
ω −ω×

]
, B(ω) :=

[
0 −ω>
ω ω×

]
, ∀ω ∈ R3 ,

and the term R̂, which is involved in the definition of ω̂ in
Eq. (35), is calculated according to Eq. (36).

B. Numerical integration

If the sample time τ is small enough, then one can
approximately assume that Ω and ω̂ remain constant in every
period of time [kτ, (k + 1)τ ], ∀k ∈ N. Let us denote these
values as Ωk and ω̂k, respectively. Note that

ω̂k = 0.5
∑
i ki

(
(R̂(q̂k)y

ik
+ p̂k)× ẙ

ik

)
.

Then, by exact integration of Eq. (37), one obtains

q̂k+1 = exp(0.5τ(A(Ωk) + B(ω̂k))) q̂k .

By simple calculations, one verifies that A(x)B(y) =
B(y)A(x), ∀x, y ∈ R3, which implies that exp(A(x)B(y)) =
exp(A(x))exp(B(y)). Thus, one obtains

q̂k+1 = exp(0.5τA(Ωk)) exp(0.5τB(ω̂k)) q̂k .

Using the fact that, ∀ω ∈ R3, A(ω)2 = B(ω)2 = −|ω|2I4,
the Taylor series expansion yields

exp(0.5τA(Ωk)) = cos( τ2 |Ωk|)I4 + τ
2 sinc( τ2 |Ωk|)A(Ωk),

exp(0.5τB(ω̂k)) = cos( τ2 |ω̂k|)I4 + τ
2 sinc( τ2 |ω̂k|)B(ω̂k),

with sinc(s) := sin(s)/s,∀s ∈ R. Therefore, the discrete
version of Eq. (37) is given by

q̂k+1 =
(

cos(
τ

2
|Ωk|)I4 +

τ

2
sinc(

τ

2
|Ωk|)A(Ωk)

)
·

→
(

cos(
τ

2
|ω̂k|)I4 +

τ

2
sinc(

τ

2
|ω̂k|)B(ω̂k)

)
q̂k . (38)

Finally, to the second equation in (35), one can apply Euler’s
integration method to obtain the following discrete update
equation for p̂

p̂k+1 = p̂k

+τ
(
R̂(q̂k)Vk+ω̂k×p̂k −

∑
i ki

(
R̂(q̂k)y

ik
+p̂k−ẙik

))
.

(39)

In the next section, the reported simulation results are based
on the discrete update equations (38)–(39).

VI. SIMULATION RESULTS

We have performed a suite of simulations using the
discrete equations derived in Section V. Our simulations
indicate excellent performance of the proposed observer
in all the situations considered which reconfirms our local
exponential convergence proof. Furthermore, the proposed
observer converges asymptotically, in of all the simula-
tion setups considered which indicates the almost global
asymptotic stability of the filter. Our setups included various
combinations of measurement error levels and initial values
for the pose system (3) and (4). Error signals correspond
to the measured angular velocity Ω, linear velocity V and
output {y

i
}. Three orthogonal reference vectors {ẙ

i
} are

assumed to be available in order to satisfy Assumption 1
and several initial values were considered for the attitude R
and the position p.

Figure VI illustrates the tracking performance of the
proposed observer in a situation which is typical of our
simulations. Here, normally distributed noises of variance
0.1, 0.01 and 0.1 are imposed on the measurement {y

i
},



Fig. 1. The rotation angle and the position tracking performance of the
proposed filter. Note that the dashed line is the estimated trajectory while
the solid line represents the true trajectory.

angular velocity Ω and the linear velocity V , respectively.
The proposed filter is initialized at the origin while the true
trajectories are initialized differently. Note that sinusoidal
inputs are considered for both the angular and the linear
velocity inputs of the system. The rotation angle associated
with the axis-angle representation is representing the attitude
trajectory. As can be seen in Figure VI the filter trajectories
converge to the true trajectory after a short transition period.

VII. CONCLUSIONS

In this paper, a nonlinear observer designed directly on
the Special Euclidean group SE(3) is proposed. It is a
gradient-based observer that utilizes position measurements
to update its state estimate. In the present work, we provide
a proof for local exponential stability of the observer and
instability of the undesired critical points. The proposed
filter performs well in the simulations which indicates almost
global asymptotic stability of the proposed observer.
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APPENDIX

A. Proof of Lemma 2
Using Property 1 and the fact that (X̂−1−X−1)ẙi ∈M0,

one deduces that for all X̂,X, S ∈ SE(3),

f(X̂S,XS)=0.5
∑
i ki|S−1(X̂−1 −X−1)ẙi|2

=0.5
∑
i kitr(S−>S−1(X̂−1−X−1)ẙiẙ>i (X̂−1−X−1)>)

=0.5
∑
i kitr((X̂−1−X−1)ẙiẙi>(X̂−1−X−1)>)=f(X̂,X)

Using Property 1 again, one obtains

f(X̂,X) = 0.5
∑
i kitr((X̂−1−X−1)ẙiẙ>i (X̂−1−X−1)>)

= 0.5
∑
i kitr(X̂>X̂(X̂−1−X−1)ẙiẙ>i (X̂−1−X−1)>)

= 0.5
∑
i kitr((I4 − Er)ẙiẙ>i (I4 − Er)>)

= 0.5
∑
i ki|(Er − I4)ẙi|2 .

B. Proof of Lemma 3
Using Property 2 and the fact that (X̂−1−X−1)ẙi ∈M0,

ẙi ∈M1, one verifies from (16) that

α = −AdX̂−1P
(∑

i kiX̂(X̂−1 −X−1)ẙiẙ>i
)

= −AdX̂−1P
(∑

i ki(I4 − Er)ẙiẙ>i
)
.

Finally, the second equality of (17) is deduced using (9).

C. Proof of Lemma 4
Eq. (19) can be directly deduced from Eq. (7) and Lemma

3. Then, from Eq. (11) and Property 3 one verifies that the
time-derivative of the candidate Lyapunov function L(Er)
defined by Eq. (14) satisfies
L̇(Er)
=
〈〈

P
(∑

i ki(I4 − Er)ẙiẙ>i
)
,
∑
i ki(Erẙi − ẙi)(Erẙi)>

〉〉
=
〈〈

P
(∑

i ki(I4−Er)ẙiẙ>i
)
,P
(∑

i ki(Erẙi−ẙi)(Erẙi)>
)〉〉

=
〈〈

P
(∑

i ki(I4 − Er)ẙiẙ>i
)
,P
(∑

i ki(Erẙi − ẙi)ẙ>i
)〉〉

= −‖P
(∑

i ki(I4 − Er)ẙiẙ>i
)
‖2 .

From here, the application of LaSalle’s theorem allows us to
conclude to proof.


