
Chapter 1
Evolutionary Algorithms to Analyse and Design
a Controller for a Flapping Wings Aircraft

Stéphane Doncieux and Mohamed Hamdaoui

Abstract Evolutionary Algorithms are now mature optimization tools, especially
in a multi-objective context. This ability is used here to help explore, analyse and,
on this basis, propose a controller for a complex robotics system: a flapping wings
aircraft. A multi-objective optimization is performed to find the best parameters of
sinusoidal wings kinematics. Multi-objective algorithms generate a set of trade-off
solutions instead of a single solution. The feedback is then potentially more infor-
mative in a multi-objective context relative to the one of a single objective setup: the
set of trade-off solutions can be analyzed to characterize the studied system. Such an
approach is applied to study a simulated flapping wing aircraft. The speed-energy
relation is empirically evaluated and the analysis of the relations between the pa-
rameters of the kinematics and speed has led, in a further step, to the synthesis of an
open-loop controller allowing to change speed during flight.

1.1 INTRODUCTION

Evolutionary Algorithms (EA) nowadays belong to the classical toolbox of engi-
neers as powerful optimization algorithms [5]. They differ from other techniques in
the fact that they are black box, derivative free optimization algorithms. The func-
tion to be optimized, i.e. the cost function, also called the fitness function, may
even not be known but just evaluated through a dedicated experimental device. This
makes such tools valuable for non-linear and dynamical systems design and first
applications have actually been performed directly on a real device [20, 21] as cited
by [1].
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Furthermore, as they are population-based, they can easily be adapted to a multi-
objective context [6] and efficient multi-objective evolutionary algorithms (MOEA)
now exists, as for instance NSGA-II [8] or ε-MOEA [7]. Actually, most real world
problems involve multiple objectives to be optimized: cost and efficiency, for in-
stance. When these objectives are antagonistic, there is no single optimal solution,
but rather a set of optimal trade-off solutions. MOEA generate at once an approxi-
mation of this set of the best trade-off solutions whereas most other multi-objective
algorithms only discover one trade-off solution at a time or require to know in ad-
vance some features of this set [16]. Examples of applications of MOEA are then
numerous [3, 22, 4].

The cloud of optimal trade-off solutions generated by a multi-objective algorithm
can be used to extract useful data on the considered problem. Actually, all these
points share the specificity of being optimal relative to some user defined objectives
and are arbitrarily close. They materialize then the possible values of the objec-
tives and the relations between them and the evolved parameters. An expert of the
field can exploit these data to design new and innovative solutions that go beyond
the solutions handled by the MOEA. Deb and Srinivasan [9] suggested a system-
atic approach to these questions and called it innovization, for innovation through
optimization. Their approach consists in first finding the set of Pareto-optimal solu-
tions according to problem specific objectives. On the basis of these data, an analysis
is made to identify regularities and relations between parameters. In this article, such
an approach is applied to a simulated flapping-wings aircraft. The energy-speed re-
lation is empirically evaluated and a simple open-loop speed controller is deduced
from the analysis of the relations between the parameters and the speed.

Many studies have been performed by biologists that have observed natural de-
vices of this kind. Thanks to statistical studies on flying animals or insects, biolo-
gists have identified relations between significant parameters like wing area, cruis-
ing speed, wing span, flapping wings frequency, wing load or mass [23]. Wing kine-
matics have also been studied for several species. Tobalske and Dial have observed,
for instance, that pigeons and magpies use a relatively constant flapping frequency
across their complete range of speed, i.e. 4 to 14m.s−1 [25]. Meanwhile, Park et
al. have studied the swallow in a wind tunnel and observed an U-shaped relation
between frequency and speed [18], concluding that such relations may vary upon
bird species. Physicists also try to unravel the physical mechanisms underlying the
flapping flight. Some experiments have been conducted in which prototypes with a
given kinematics were put in a wind tunnel to study and characterize their behavior
[11]. In this case, the kinematics is given, but if we turn to a roboticist’s point of
view, the question becomes : for a prototype with known features, what are the in-
teresting kinematics ? To our knowledge, no theory nor methodology do exist today
to answer such practical questions. Likewise, no efficient flapping wing aircraft do
exist together with its controller to help infer relations between the involved param-
eters. Birds or bats are sources of inspiration, but equivalent engineered flyers have
fewer degrees-of-freedom and different aerodynamical features. Biological obser-
vations can’t then be directly used. The proposed methodology aims at facilitating
the design of such aircrafts by providing some simple yet efficient solutions that can
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be analyzed to better understand such systems before building more sophisticated
solutions.

Stochastic optimization tools are very interesting in the context of flapping wings
aircrafts due to the complexity of the relation between the parameters of a particular
kinematics and the resulting speed (or aircraft crash...) [19, 24, 17] . The work pre-
sented here is different in that it does not aim at generating a single and particular
optimal controller, but rather at generating a set of them, that are not the goal per
se but rather a mean to study properties of the system. [15] had a similar goal, but
a small number of speeds were initially chosen in the study and runs were launched
for each value. In the present work, a continuum of speeds is explicitely sought. It
should be noticed that the following results have been obtained in simulation and
are thus highly dependent on simulation accuracy. Actually, such experiments may
be done on a real prototype.

1.2 METHOD

The proposed approach consists in first generating a set of Pareto-optimal points.
These points are particular in the sense that they share a common specificity: they
are all optimal relative to some (antagonistic) user-defined objectives. Finding the
common features of those points corresponds then to find what characterizes Pareto-
optimal points: what are the critical parameter values ? How are they related to
objectives? Furthermore, the MOEA we will use, i.e. NSGA-II, aims at finding a
dense approximation of the Pareto front. This means that the generated solutions
will be arbitrarily close one to the other. This proximity between points will make
the analysis of the solutions easier and results, generally, in a continuum between
the features of these solutions. A more detailled description of the approach follows.

The first step consists in choosing two antagonistic objectives (or more). The
objectives explicitely need to be antagonistic in order to guarantee the existence of
a set of trade-off solutions, rather than a single optimum. Although it may seem
at first sight to restrict the field of application, in practice, it is easy to find such
objectives: cost or energy related objectives are, for instance, generally antagonistic
to performance related objectives (efficiency relative to the task to be solved, for
instance).

Once these objectives are known, a search space has to be choosen. The search
space defines the set of candidate solutions the EA will explore. All further results
and analysis will be relative to this search space, its choice must then be done care-
fully.

The next step is straightforward: launch the optimization to find a good approxi-
mation of the Pareto front. Deb and Srinivasan [9] suggest to do it in several different
steps: perform a standard multiobjective search, perform a single objective optimiza-
tion to find the extremum points of the Pareto front and then use NCM [16] to find a
set of points representing an uniformly distributed sampling of the Pareto front. All
these different steps only aim at providing a better confidence in the quality of the
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Pareto front approximation. In most real-world applications, there is no way to know
it with precision, it is then important to do whatever possible to increase the confi-
dence in the quality of the results, as the quality of the further analysis will critically
depend on this part of the process. In the work reported here, several independant
runs have been launched and also single objective optimizations have been tried for
both extremum points and Pareto front points. As the points generated by single
objective algorithms were clearly dominated by the points generated by NSGA-II1,
the focus in the following is only on the points generated by this last MOEA.

The cloud of Pareto-optimal points can then be used to extract useful information
just like in [9]. The Pareto front in the objectives space shows the performance of
the best solutions to be found relative to the given search space. Each parameter can
also be plotted against a target objective or parameter and analytical functions ap-
proximating this relation can be found by regression, as it is done in [9]. But this can
become cumbersome as the dimensionality of the Pareto front increases in the objec-
tives or parameters spaces. For example, with n objectives and p parameters all the
couples with the n + p quantities have to be studied, which result in (n+p−1)(n+p)

2
plots to scrutinize. Looking at these plots individually can dramatically increase the
time needed to extract the information from the Pareto front and may sometimes
lead to inconclusive results. That is why specific visualization methods that can eas-
ily handle high dimensional data and can give at a glance a global view of the Pareto
front in the objectives and/or parameters spaces have to be used to detect the groups
of quantities that seem to be related and only for which, plots should be drawn.

In our case, the Pareto front is of dimension 8 in the parameters space and 2
in the objectives space. Therefore, visualizing the relationships between parameters
and/or objectives on the Pareto front can become a lengthy and laborious process
(∼ 45 plots to review). Kohonen networks [12] are used here to facilitate this step.
These networks are a nonlinear topology preserving projection method which allows
to handle comfortably high dimensional data. The objective of Kohonen networks
is to form a discrete, topological mapping of a Q-dimensional input space. The al-
gorithm outputs a Kohonen map composed of output units often arranged in a 2-D
rectangular or hexagonal grid, each ouput unit being characterized by its 2-D vec-
tor of coordinates and a Q-dimensional vector called codebook. To construct the
mapping, the network is trained on a finite dataset of Q-dimensional vectors (input
space) and produces a Kohonen map whose units are 2-D vectors (output space) in
such a way that the topology of the data is preserved and that each vector of the in-
put Q-dimensional dataset is associated to a unit on the map via its codebook. This
unit is called BMU or best matching unit. Thus, Kohonen networks build a tractable
low dimensional (the Kohonen map) representation of high dimensional datasets al-
lowing a comfortable visualization of the data. A MATLAB R© implementation of
the method is freely provided by the SOM Toolbox2. This technique is used to vi-
sualize the Pareto front taking into account, for each Pareto-optimal solution, both

1 we tried a simple rank-based EA.
2 http://www.cis.hut.fi/somtoolbox/
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parameters and objectives.

In the case of parameters describing a robot controller, this knowledge extraction
step results in the ability to build a new and more complex controller relative to
what EA has explored and generated : if the parameters are modified online using
the found relationships we have a controller able to move along the Pareto front and
thus to adapt to the context. Such an approach requires that such online modifica-
tion is possible and efficient, what is not guaranteed, as the MOEA only explored
constant parameters controllers. Anyway, the proposed new controller may be the
subject of further refinements through another innovization step or through a simple
optimization of its parameters concentrated on the transition phase between changes
of parameters.

1.3 EXPERIMENTAL SETUP

To illustrate potential use of the method, a flapping wings controller able to adapt
the speed of the aircraft to a given desired speed is designed while exploiting the
data extracted from the Pareto-optimal set analysis. The principle of the controller
consists in modifying online the parameters of the wings kinematics. The applied
set of parameter values for the wing kinematics are the closest possible to those of
Pareto-optimal points associated with a similar speed. This requires to extract the
relationships between the speed and the different parameters of the kinematics and
this is what the MOEA analysis is used for.

A cloud of Pareto-optimal points that correspond to different speeds is generated
and analysed, using Kohonen maps, in both objectives and parameters spaces to es-
timate qualitatively the relationships between the different quantities at hands. This
qualitative study will ease the identification of the parameters that noticeably vary
with the velocity while allowing us to spot interesting regions of the Pareto front.
Then, by doing some regression on the withheld kinematical parameters versus the
velocity, a law of variation for each parameter relative to speed will be inferred and
used to drive the online wing kinematic parameter settings.

Tests will then be performed in simulation to see if it actually allows to change
the speed of the flapping wings aircraft. Starting from a simple family of functions,
i.e. sinusoidal functions, allowing to fly at a constant speed, a controller able to
adapt the speed of the aircraft will be designed3.

The first goal is to generate the set of pareto-optimal points to be studied. Such
points should represent a varying speed: speed will be the first objective. An antag-
onistic objective is required to generate a set of individuals and not a single point.
Energy will be used to this end. Two optimizations will be performed: one will try
to maximize speed, while the other one will try to minimize it. The largest range of

3 This will still be an open-loop controller, as it won’t take into account real speed, we will propose
an extension to design a closed-loop controller in the discussion.
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speeds is required to make the speed control interesting. In the case of an U-shaped
relation between speed and energy, two kinds of experiments need to be launched:

• speed minimization will materialize the lowest speed points
• speed maximization will materialize the highest speed points

The points generated by the two experiments are then merged to generate the
cloud of points to study. Wing kinematics are described by the following equations:

DI = aDI sin(2πt/pDI) (1.1)
TWi = rTWi + aTWi sin(2π(t/pDI + pTWi)) (1.2)
TWe = rTWe + aTWe sin(2π(t/pDI + pTWe)) (1.3)

where DI is the wing dihedral, TWi the internal twist and TWe the external
twist. Wing kinematics is then described by eight parameters subject to the evolu-
tionary optimization. The chosen ranges for each value is the following:

• amplitude of the dihedral: aDI in [0; 45o]
• period of the dihedral (and of all other degrees of freedom): pDI in [0.2; 1s]
• reference of the internal twist: rTWi in [−22.5; 22.5o]
• amplitude of the internal twist: aTWi in [0; 45o]
• phase of the internal twist: pTWi in [0; 1]
• reference of the external twist: rTWe in [−22.5; 22.5o]
• amplitude of the external twist: aTWe in [0; 45o]
• phase of the external twist: pTWe in [0; 1]

NSGA-II is used to perform the search, with a population size of 500 and during
1000 generations. Evolved parameters are represented as vectors of real values with
a polynomial mutation and a sbx crossover, as described in [6], p124.

Aerodynamical forces created by wing movements are computed with a semi-
empiric, quasi-steady-aerodynamics model. Each wing is decomposed in three pan-
els. For each panel, the local incident airspeed is evaluated and the leading edge lift,
the parachute drag and the friction drag are computed and summed. See [15, 10]
for a detailed description of the model. The parameters of the aircraft are given in
Appendix. The panels are considered as not deformable solids, connected to their
neighbors via joints, as shown on figure 1.1. The integration of the forces and the
movements of the parts are computed using ODE4.

The objectives to maximize are the following:

• experiment 1:

– + average aircraft speed
– - average mechanical power

• experiment 2:

– - average aircraft speed

4 http://ode.org
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Fig. 1.1 Degrees-of-freedom of the simulated flapping wing aircraft.

– - average mechanical power

Following [15], the instantaneous mechanical power is computed as the scalar
product between the instantaneous torque (τ ) and the instantaneous rotational speed
(ω) for a joint: P =

∑
i |τi.ωi|. The mechanical power objective only takes into

account the shoulder joints which are the main contributors to energy consumption.
It should be noted that the power is always considered as positive. The mechanical
power is then over estimated, as the torques required to accelerate or to slow down
are considered as equivalent.

1.4 RESULTS

Three different runs have been launched for experiment 1 and experiment 2. Each
run shows a similar Pareto front, except for points at highest energy. This result
is not surprising as these individuals are at the limits of the simulation we used:
small changes may have a huge consequence on the stability of the simulation, thus
making such part of the search space difficult to explore.

For each experiment, the set of non dominated solutions out of the three runs is
extracted and the two resulting sets are merged (figure 1.2). Dots follow an U-shape,
with a minimal energy consumption of 24W at 10.7m.s−1. It can be noticed that the
sets of non dominated solutions for experiment 1 and experiment 2 coincide for this
point of minimal energy consumption with no particular discontinuity.

A Kohonen map of the Pareto front in both objectives and parameters spaces
is built. Multiple representations of this map, colored according to the objectives
and kinematic parameters, are provided on Figures 1.3-1.5. For example, the Figure
1.3 top represents the map colored by the values of the U-matrix with the color
code specified on a colorbar next to the map. The U-matrix is a matrix of dis-
tances between the units of the map computed in the Q-dimensional input space:
as each unit of the map has a Q-dimensional codebook, the distance between units
in the Q-dimensional space is the distance (euclidian for example) between the Q-
dimensional codebook vectors associated to these units. To quantify the relative
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Fig. 1.2 Pareto-optimal points extracted from the results of the three speed optimization and the
three speed minimization experiments. Each dot represents the optimal solution found by the EA
for a given speed relative to the energy consumption. X-axis: speed in m.s−1, Y-axis: instantaneous
energy in W

importance of the different components of the Q-dimensional codebook vector in
the U-matrix computation, some components may be set to zero while the others
are taken into account in computation of the distance to assess their importance for
the U-matrix. The U-matrix allows to spot groups of similar solutions (areas on the
map where the U-matrix takes low values). The mapping error is quantified by com-
puting the average distance between each vector in the data and its BMU. The error
associated with the built mapping is of 8 %.

Four main similar areas or clusters can be seen on the map colored by the values
of the U-matrix (see Figure 1.3, top). Three of them (Cluster 1-3) are located in
the region of low velocities and the other one (Cluster 4) is in the region of high
velocities as can be seen by comparing Figure 1.3, top and Figure 1.3, middle. The
separation line between Cluster 1-3, in one hand, and Cluster 4, in the other hand,
seems to correspond to the separation between the two merged Pareto fronts (one
obtained for high velocities and the other for low velocities). To make sure of that
we computed an U-matrix based on the values of the velocity only, represented on
Figure 1.3, bottom, left, which shows that this separation line is strongly related to
the velocity.

The internal twist amplitude aTWi (see Figure 1.3, bottom, right) does not
change much on the map as it takes high values for very low velocities and low
values the rest of the time. This means that this kinematic parameter is not sensitive
to the velocity except for very low velocities.
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Fig. 1.3 Top, : the U-matrix and the four clusters. Middle: the Kohonen map colored by the veloc-
ity values. Bottom, left: the U-matrix based on the velocity only. Bottom, right: the Kohonen map
colored by the Internal Twist Amplitude aTWi.
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On the opposite, the internal twist reference rTWi, internal twist phase pTWi,
external twist amplitude aTWe, external twist reference rTWe (see Figure 1.4) and
external twist phase pTWe (see Figure 1.5, top, left) are related to the velocity on the
map. Indeed, the separation line between Cluster 1-3, in one hand, and Cluster 4, on
the other hand appears on the Kohonen maps colored by the values of rTWi, pTWi,
aTWe, rTWe or pTWe. As this separation line is closely related to the evolution of
the velocity as it appears on the Kohonen map colored by velocity, this means that
these kinematic parameters are closely related to the velocity.

This separation line appears too on the Kohonen map colored by the values of
the energy (see Figure 1.5, top, right), which means that the energy is related to
the velocity too. On the opposite we do not see this separation line for the dihedral
period pDI (see Figure 1.5, bottom, left) or the dihedral amplitude aDI (see Figure
1.5, bottom, right), which means that these two kinematical parameters might not
be related to the velocity, what can be confirmed by a plot of these two kinematic
parameters against the velocity.

Finally, building a Kohonen map allowed us to know that the internal twist ampli-
tude aTWi does not strongly depend on the velocity (except for very low velocities)
and that the other kinematic parameters except the dihedral period pDI and the di-
hedral amplitude aDI clearly depend on the velocity.

All the parameters of the sinusoidal wing kinematics can be plotted, for each
Pareto optimal point, in order to check their relation to speed (figure 1.6).

The relation between each parameter and the speed has been approximated with
polynomial regression methods. The corresponding relations are reported in Ap-
pendix. Resulting approximations are also plotted on figure 1.6.

We used then these approximated functions to pilot the parameters of the same
simulated bird (figure 1.7). The control is oscillating, but as did the original con-
trollers: the fitness did only measure the mean speed, not the ability of the controller
to reduce its standard deviation. The control is not efficient at all for 8m.s−1, mean-
ing that the approximation is not good for this speed. For other speeds, the simulated
bird speed tends to oscillate but with a decreasing amplitude. For a speed of 10 or
11m.s−1 the bird altitude isn’t perfectly maintained, resulting in an increasing speed
error when the bird starts to dive. For each desired speed, the measured mean speeds
are the following:

Desired speed average speed abs. error
8 10.15 27%
10 10.64 6.4%
11 11.23 2%
13 13.45 3.5%
15 15.39 2.6%
20 17.61 12%
25 33.94 36%

For speed ranging from 10 to 15m.s−1, the error is several percents, but it gets
larger for small or high speeds. This is not surprising as the physical behavior is less
stable in these cases.
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Fig. 1.4 Top, left: the Kohonen map colored by the Internal Twist Reference rTWi. Top, right: the
Kohonen map colored by the Internal Twist Phase pTWi. Bottom, left: The Kohonen map colored
by the External Twist Amplitude aTWe. Bottom, right: the Kohonen map colored by the External
Twist Reference rTWe
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Fig. 1.6 Empirical dependency of each parameter relative to speed. Plot of the repartition of
Pareto-optimal points for each parameter. Each dot represents a pareto optimal solution. Solid lines
represent the approximated fit with a polynomial relation whose parameters are given in Appendix,
figure 1.9.

We have also tried to change it online, i.e. during a flight. To avoid physically un-
realistic behavior, we haven’t abruptly changed the parameters, but we have waited
for the wings’ dihedral to pass near zero. Once a small angle is reached, we let the
wings still and wait until the new kinematics also reaches a small angle and we
switch the kinematics only then. Results are reported on figure 1.8. What we ob-
serve is that the bird actually changes its speed dynamically, simply as a result of
wing kinematics parameter change (open-loop modification). Actually, we observe
a kind of undesired memory in the system: the control at a given speed may show
different performances (different static errors) depending on the historical context,
i.e. depending on the initial conditions when the switch is performed. During evolu-
tion, every individual started from a single condition: horizontal flight at 11m.s−1;
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Fig. 1.7 Speed of the simulated bird controlled by a sinusoidal kinematics whose parameters are
obtained from the regression at a given desired speed. The controller is an open-loop controller,
real speed is not taken into account to finely tune it.

here, the ’starting’ speed may be very different. Anyway the bird remains stable and
at a relatively constant altitude (there is no active control at all: none on speed but
none on altitude also).
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Fig. 1.8 Speed of the simulated bird controlled by a sinusoidal kinematics whose parameters are
obtained from the regression at a given desired speed. The controller is an open-loop controller,
real speed is not taken into account to finely tune it. The parameter of the wing kinematics are
changed during flight.

1.5 DISCUSSION AND FUTURE WORK

All the search was performed on the basis of a simplified simulation. The conclu-
sions are then only relative to the model that was used and are to be confirmed by
experiments on a real device. Anyway, such an approach can be used directly on a
real prototype. Its main drawback is then the high number of experiments required
to find the Pareto front. Some solutions do exist to this problem. A simplified sim-
ulation may be used first to reject the most inefficient solutions while testing on the
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prototype only the most pertinent ones. The discrepancy between an experiment in
simulation and reality may also be used to drive a model learning loop aimed at
reducing the gap between the two [2, 13, 14].

The simple open loop controller that we have synthesized is clearly not optimal.
An optimization trying to generate solutions more robust to the initial conditions
might be required to avoid the observed memory effect. Another innovization step
might also be launched to study the transition between different speeds, the com-
promise here being for instance between the speed of transition and its stability.
Likewise, starting from the generated open-loop controller, we could close the loop
and optimize the parameter of a controller in which the speed error is added to the
desired speed.

All this study is based on the features of Pareto optimal points found by the
MOEA. The generated Pareto fronts correspond to performance to be expected with
a simulated bird flying with sinusoidal wing kinematics. Changing the family of
wing kinematics may change the shape of Pareto fronts. At least, using such an
approach, we might empirically compare different kinds of kinematics and look at
the advantage of using more generic periodic functions, for instance.

MOEA were used to generate the set of Pareto optimal solutions. Other methods
could have been used. In many simple cases, an exhaustive search might do the
job. Here, it would be difficult to use it as we have eight continuous parameters.
If we discretize and consider only ten different values, then we have a 108 search
space. A single MOEA run did around 200,000 different evaluations. As we did 6
different runs (3 for speed maximization and 3 for speed minimization), the total
number of evaluations we made is then 1.2 ∗ 106, thus two orders of magnitude
below an exhaustive search. Furthermore the search space explored by the MOEA
was continuous and not a discretized one.

The main point here is that EA might be used for other purposes than mere op-
timization. Here, each generated point is not an interesting solution in itself, it was
interesting as a mean to capture some regularities of the problem that have then been
exploited manually. This suggests thus another use of EA as an exploration tool dur-
ing the very first steps of a design process, whereas it is usually used at the very end,
when there just remains several parameters to tune. This particular use requires the
analysis of an expert and is not aimed at automatically designing a solution. It is
rather a tool aimed at helping the engineer or the scientist to gain better insights
about the problem to be solved.

1.6 CONCLUSIONS

In this work, we have exploited the ability of MOEA to generate a set of Pareto
optimal points not just to discover such points and choose one among them, but
rather to get some insights on the relationships between those points. We have used
it to empirically evaluate the trade-off between speed and energy with a constant
morphology.
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The Pareto front has then ben visualized by Kohonen maps to spot the kinematic
parameters that noticeably vary with the velocity. Each selected parameter have then
been expressed as a function of speed thanks to a regression performed on Pareto-
optimal solutions. An open-loop controller able to change speed along flight has
been synthesized and tested in simulation.
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APPENDIX

Parameters of the MOEA:

• MOEA: NSGA-II
• population size: 500
• number of generation: 1000
• number of independant run performed for each experimental context: 3
• mutation rate 0.1
• mutation type: polynomial, ηm: 15 and ηc: 10
• crossover: sbx

param v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Str 1.3e2 57.0 11 -1.1 6.5e-02 -2.3e-3 4.5e-5 3.7e-7 - -
pDI -3.89e0 1.07e0 -9.68e-2 4.09e-3 -8.27e-5 6.45e-7 - - - -

rTWi -1.16e2 2.44e1 -2.07 8.78e-2 -1.82e-3 1.47e-5 - - - -
pTWi -2.89e-1 2.10e-1 -1.35e-2 3.58e-4 -3.39e-6 - - - - -
aTWi 1.30e4 -6.60e3 1.44e3 -1.76e2 1.34e1 -6.57e-1 2.09e-2 -4.14e-4 4.66e-6 -2.28e-8
rTWe 3.55e2 -1.38e2 2.24e1 -1.94e0 9.62e-2 -2.76e-3 4.22e-5 -2.68e-7 - -
pTWe 2.11e-2 1.49e-1 -1.04e-2 2.97e-4 -3.03e-6 - - - - -
aTWe 3.00e2 -6.69e1 5.94e0 -2.55e-1 5.35e-3 -4.38e-5 - - - -

Fig. 1.9 Parameters of the polynomials approximating the relations parameter = f(v) for each
parameter of wing kinematics submitted to optimization.

Parameters of the aircraft:

• wing span: 1.93m
• aspect ratio: 8.5
• wing area: 0.407m2

• total mass: 1.3kg
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– fuselage mass: 0.915kg
– wing mass: 0.4kg
– elevator/rudder: 0.038kg
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