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M. Pouget Joël Professeur, UPMC-IJLRA, Paris
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Introduction

Context of the work

Living cells are the basic building blocks of all living organisms. Notwithstanding their
microscopic size and their apparent simple anatomy, cells turn out to be real miniature
protein factories capable of performing all the functions of life. Thereby, cells express
genetic information, synthesize, sort, store and transport biomolecules. Cells, however,
are far from being governed exclusively by biochemical reactions. They also transduce
signals, maintain internal structures, and respond to external environments. Many of
these processes actually involve mechanical aspects.

Within a living body, cells are indeed constantly exposed to various mechanical
forces. For example, during human locomotion, tensile muscular forces and compressive
loads act on cartilage and bones cells [1]. Heart cells are stretched during beating. Lung
cells also experience stretching cycles during breathing [2]. Cells lining the interior walls
of blood vessels are constantly subjected to pulsatile and continuous shear stresses from
blood flows. Red blood cells (RCBs) can be subjected to about 100% deformation as
blood flows through narrow capillaries [3].

The presence of such mechanical forces in the cell environment plays a dominant
role in the cell behavior [4]. In fact, any alteration of the mechanical forces that cells
undergo may cause a disruption in their normal functioning. Thereby, many normal
and diseased conditions of cells are dependent on or regulated by their mechanical en-
vironment [3]. By way of illustration, slow stretching of the axon of neural cells helps
neural cell growth, whereas severe stretching of the axon that occur during traumatic
brain injury causes cell death [3]. Likewise, mechanical forces may induce profound
effects on cellular functions as essential as growth, proliferation, contractility, migration
or differentiation [1, 5, 6].

Cells can indeed sense, react and adapt themselves to mechanical forces. Mechani-
cal and biochemical cues occurring at the cellular level actually prove to be intimately
correlated through reciprocal mechanochemical conversion pathways. Thereby, cells can
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Figure 1: In a human body, mechanical forces are ubiquitous. For instance, heart cells
are constantly exposed to stretching cycles during heart beating. Illustration adapted
from [2].

convert mechanical forces into biological responses. Reciprocally, biological and bio-
chemical signals are known to influence the abilities of cells to sense, generate and bear
mechanical forces.

Decades ago, early studies already attempted to investigate the effects of mechanical
forces on cells. To that purpose, a variety of laboratory apparatuses aimed at repro-
ducing mechanical forces that cells experience in their physiological environment were
developed. Such apparatuses (see [7] for a comprehensive review) usually controlled
the delivery of a mechanical input such as hydrostatic pressure, fluid shear stress, or
substrate strain. However, the mechanical input could solely be applied to large tissue
cultures. From the analysis of tissue cultures, the response of a particular cell could not
be easily decoupled from the response of the entire cell population. The heterogeneity
among cell responses was hence largely ignored.

The possibility to study isolated cells then appeared as a next crucial step to thor-
oughly study various mechanical aspects of cells and gain new biological insights. Both
life sciences and engineering communities have been highly involved in the development
of systems capable of interacting with a single cell. In particular, systems produced
via microfabrication processes are today increasingly used to uncover the fundamental
ways in which cells function. Micrometer-scale actuators and sensors indeed prove to be
ideal interfaces to decipher how single cells receive and process extracellular mechanical
signals. By essence, dimensions of these actuators/sensors are in the same order of mag-
nitude than the sizes of most cells. They also exhibit a high functional density and the
possibility to be associated with fluidic parts to create more in-vivo like environments
in in-vitro settings.

In this dissertation, one is especially interested in taking advantages of the potential
benefits brought by such microsystems for measuring the elastic modulus (i.e., Young’s
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modulus) of individual living cells. Scientific evidences have indeed recently revealed
connections between alterations in the elastic modulus of single cells and pathophysio-
logical states [8]. Thereby, a dramatically reduced Young’s modulus is a characteristic
feature of cancerous cells. By contrast, RCBs infected by malaria have a significantly
higher Young’s modulus than their healthy counterparts.

The elastic modulus of cells hence appears as a meaningful marker to differentiate
pathogenic cells and healthy cells. For diagnostic purposes, knowing the Young’s mod-
ulus of cells may hence help to detect the presence of cancer as well as other cell-based
degenerative diseases at earlier stages. Besides, elasticity measurements also have the
potential to disclose the specific effects of pharmaceuticals at the cellular level. There-
fore, cell elasticity measurements may also prove advantageous in drug development.
Nevertheless, to use the Young’s modulus of cells as a reliable indicator, challenges still
need to be addressed. This dissertation proposes to discuss these challenges and re-
ports the design of a novel structure aimed at bringing new solutions to the restrictions
encountered so far.

Dissertation contributions and outline

To date, the use of resonant structures in cell analysis is restricted to the detection of
target biomolecules. In this context, structures that exploit resonance phenomena per-
mit to achieve exquisite mass sensitivity. Nonetheless, extracting the Young’s modulus
of cells imposes additional constraints. In particular, the cell to be probed must be
deformed by an known force. As a result, most micrometer-scale tools and devices that
can deform individual cells or/and measure the cell response operate today in a static
mode.

By contrast, this dissertation proposes a novel structure specifically adapted for mea-
suring forces applied to living cells and extract their Young’s modulus via a dynamic
mode. In particular, the resonant structure does not need to be immersed into liquids
for measuring the Young’s modulus of cells. Major energy losses are thereby avoided,
and higher performances offered by resonance phenomena can be exploited. In the mean
time, cells can be preserved in culture medium directly within the structure. The struc-
ture presented also proposes solutions for dealing with different types of cells as well as
for increasing measurement rates.

To discuss in details the key features and potential advantages of this new structure,
this doctoral dissertation is structured in four main chapters:� Chapter 1 is intended to provide a global overview of microfabricated tools that

can deform individual cells or/and measure the cell response. Through the review
of a large panel of systems that have been reported in the literature, Chapter 1
highlights and discusses specific constraints encountered in the context of cell anal-
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ysis. Compared to existing devices, the potential advantages of resonant beams
for measuring cell forces and extracting the cell Young’s modulus are pointed out.� Chapter 2 discusses a first case of study where one tries to take advantage of
a clamped-clamped beam resonator for measuring the interaction force with a
cell. Problems faced by such a simple beam in the context of cell analysis are
theoretically investigated. In particular, the presence of a surrounding fluid is
analyzed and it is demonstrated that such a simple beam cannot be satisfyingly
used for determining the Young’s modulus of a cell.� Chapter 3 constitutes the heart of the work presented in this dissertation. It intro-
duces the new resonant structure designed for extracting the Young’s modulus of
cells while taking into consideration the set of limitations identified in Chapter 1
and Chapter 2. The whole concept of the structure is explained as well as its
key features and advantages. To grasp valuable insights into its working princi-
ple, energy methods are used to theoretically investigate its static and dynamic
behaviors. Numerical applications are also provided to predict its performances.� Chapter 4 reports the fabrication of a first prototype of the new structure intro-
duced in Chapter 3. The whole experimental arrangement used for its character-
ization is described. Performances predicted by theory are confronted to experi-
mental results. The possibility to conduct experiments with biological samples is
also demonstrated. Coupled to a flat indenter, the prototype is used to compress
a round suspension cells. An experimental method is detailed to rapidly extract
the Young’s modulus of the cell without the need of a descriptive model.

Finally, a general conclusion summarizes the work developed and the results obtained
throughout the dissertation. This last part also discusses future work that could be
addressed.
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Chapter 1
Microfabricated tools for conducting

mechanical studies on individual cells:

state-of-the art

Since the 1990s, mechanical studies conducted on isolated cells have permitted to gain
new insights into complex cellular processes. With recent technological advances, dif-
ferent types of actuators and sensors can today be fabricated at the micrometer-scale.
With feature sizes that inherently match the sizes of most cells, such microfabricated
tools appear as ideal interfaces to conduct mechanical studies at the cell level. More-
over, microactuators or/and microsensors have the potential to be combined in a single
miniature package. With such a miniature unit, accurate stimulation of individual cells
and quantitative measures of cellular responses can be obtained with high spatial and
temporal resolutions. Microfabrication processes also permit to integrate fluidic compo-
nents. More in-vivo like environments can be created in in-vitro experimental settings,
and forces that cells face in their physiological environment can be mimicked more real-
istically. For all these reasons, microfabricated systems have been increasingly used to
study various mechanical aspects of cells.

The first aim of this chapter is to provide an updated overview of such tools. Prior
to their review, some fundamentals on the architecture of living cells are first reminded
in Section 1.1. Then, Section 1.2 surveys a large panel of systems dedicated to cell me-
chanics that have been recently reported in the literature. Systems providing mechanical
stimulation to cells are enumerated in Section 1.2.2 whereas devices sensing various cell
mechanical features are listed in Section 1.2.3. Next, Section 1.3 provides three discus-
sions. Section 1.3.1 introduces problems encountered due to the nature and the number
of cells that must be probed. Section 1.3.2 emphasizes on specific constraints naturally
imposed by the cell environment. Section 1.3.3 discusses different types of biophysical
parameters that are usually investigated. It also highlights the importance of the cell
Young’s modulus. To conclude, Section 1.4 summarizes the chapter and emphasizes
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challenges that will be more specifically addressed in the context of this thesis.

1.1 The cell architecture: some fundamentals

In the context of cell mechanical studies, this section only covers most important cellular
structures that are known to play a more dominant role in the mechanical properties
and mechanical integrity of the cell.

Cells involved in most mechanical studies are mammalian cells (i.e., eukaryote cells).
As illustrated in Fig. 1.1, mammalian cells are surrounded by a plasma membrane, pro-
viding a barrier between the internal and the external environment. It consists of a
double layer of phospholipids (lipid bilayer). The exposed heads of the bilayer are hy-
drophilic, whereas hidden tails of the phospholipids are hydrophobic, so the cell mem-
brane acts as a protective barrier to the uncontrolled flow of water. The membrane is
made more complex by the presence of numerous proteins. Proteins are crucial to cell
activity and regulate entrance and exit of specific molecules into and out of the cell.

Figure 1.1: Top: schematic diagram of a typical eukaryote cell, which contains many
subcellular elements. Bottom: drawing detailing the constitution of the cell membrane.
Illustrations adapted from [3].

The interior of mammalian cells is filled with a semi fluid medium called cytoplasm.
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The cytoplasm is composed of the largely aqueous cytosol and cell organelles. Organelles
(e.g., mitochondrion, endoplasmic reticulum, etc.) act as small organs that are adapted
and/or specialized for carrying out one or more vital cell functions.

The cytoplasm also surrounds the nucleus. The nucleus is of primary importance
because it stores the genetic material which governs the characteristics of the cell and
its metabolic functioning. It is a prominent structure with a typical diameter of about
5 µm. The nucleus has a spherical shape and is separated from the cytoplasm by the
nuclear envelope surrounding the nucleoplasm, with distinct components such as the
inner and outer nuclear membrane, the nuclear lamina, and the nuclear pore complexes.
From a structural point of view, the nucleus is mechanically stiffer than the cell cyto-
plasm.

Nearly all cellular structures are connected through the cytoskeleton, a complex
network of protein filaments extending throughout the entire cell. The cytoskeleton is
involved in regulating cell shape, resistance to deformation, and elasticity as well as
in active processes such as cell division, locomotion, and the transport of intracellular
particles. The cytoskeleton is also believed to be involved in many cell signaling pro-
cesses. It consists of three main components: the microfilaments (actin filaments), the
microtubules, and to a lesser extend, the intermediate filaments.

As explained in [9], actin filaments assemble in a variety of structures including
isotropic networks of filaments within the cytoplasm, contractile actin filament bundles
often called stress fibers and highly organized parallel arrays of filaments in such struc-
tures as microspikes (thin, stiff protrusions of the plasma membrane) and lamellipodia
(sheet-like extensions on the cell surface). Actin filaments are thin, typically 8 nm in
diameter, flexible and appear to be the most resistant of the cytoskeleton elements to
deformation.

Microtubules are long, hollow, rigid cylinders with extreme outer and inner diam-
eters of 30 and 18 nm respectively, and with lengths of up to and exceeding 100 µm.
They extend throughout the cytoplasm and determine the location of membranebound
organelles and other cell components. It is believed that microtubules serve as stabilizing
elements within a network of the other two cytoskeletal filaments. Although individual
microtubules are stiff and rigid over cellular dimensions, microtubule networks are easily
deformed and begin to flow when stretched beyond 50% of their original length.

Intermediate filaments are tough and durable fibrous proteins which are organized
in ropelike arrays and have a typical diameter of 10 nm, intermediate between thin actin
filaments and thick microtubules. They can be found around the nucleus, extending out
through the cytoplasm and eventually forming close associations with the cell membrane
at the cell adhesion sites. Moreover, intermediate filaments also appear as a fibrous pro-
tein meshwork underlying the inner nuclear membrane. These so-called nuclear lamins
are believed to be connected to the nuclear membrane and other cytoskeletal elements.
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Intermediate filaments are specifically found in cells, which are regularly subjected to
mechanical stresses, like epithelial cells and all kinds of muscle cells. Moreover, dis-
assembly of intermediate filaments is accompanied by dramatic changes in shape and
mechanical properties of the cell.

It will go far beyond the purpose of this dissertation to describe in further details the
cell anatomy and physiology. Although not exhaustive, the description of the cell interior
provided above however allows one to realize the level of mechanical complexity of the
cell architecture. The mechanical study of cells is further complexified by the fact that
mammalian cells actually come in a wide variety of shapes and sizes. Indeed, if Fig. 1.1
represents an adherent cell, experiments can also involve suspension cells. In table 1.1,
some essential differences between adherent and suspension cells are enumerated.

Adherent cells Suspension cells

Property Need to anchor to Evolve in suspension,
an underlying substrate not attached to a surface

Shape Highly irregular Mostly spherical

Size A few µm RCBs: 8-12 µm
Embryos - Oocytes: 100 - 600 µm

Table 1.1: Essential differences between the two main types of living cells manipulated
by MEMS for conducting mechanical experiments.

1.2 Overview of microfabricated tools for conducting me-
chanical studies on individual cells

1.2.1 Preliminary remarks

The author now surveys different types of microfabricated tools that have been reported
for conducting mechanical studies on individual cells. For the sake of clarity and concise-
ness, these microfabricated tools will now be referred as microelectromechanical systems
(MEMS). By essence, the acronym MEMS is however a broad definition. Throughout
the thesis, the terminology MEMS employed will refer to systems that encompass elec-
trical, mechanical, but also optical or fluidic parts manufactured via microfabrication
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processes. In particular, focus will be given on MEMS with a high functional density,
namely MEMS that try be as portable and autonomous as possible by maximizing the
integration of actuation or/and sensing capabilities in a compact single-chip piece.

Therefore, devices such as micropipettes [10, 11, 12], microcantilevers used in atomic
force microscopes (AFM) [13, 14, 15, 16, 17, 18], microplates [19, 20, 21, 22, 23] or mi-
croindenters [24, 25, 26] will not be described in details in this chapter (further details
can be found in several relevant reviews [7, 27, 28, 29, 30, 31, 32, 33] ). Notwithstand-
ing the presence of microscopic components, actuators (e.g., positioning stages) and
measurement means (e.g., microscopes, cameras, etc.) utilized in these systems are all
distant (off-chip) from the extremity entering in contact with the cells. Besides, such
tools are usually considered as experimental techniques or laboratory apparatus by the
research community (see for instance classifications adopted in [2, 32]).

The choice to exclude micropipettes, AFM cantilevers, microplates or microindenters
is representative of the difficulty to adopt a proper classification for introducing MEMS
dedicated to cell mechanics. This classification is further complexified by the fact that
a broad class of cell mechanical studies can be carried out. These studies may concern
how cells move, deform and interact, as well as how cells sense, generate, and respond to
mechanical forces. Accordingly, a large variety of MEMS can be found in the literature.

However, in many cell studies, stresses (i.e., forces) or/and strains (i.e., deformations)
must be imposed or/and measured. Hereafter, Section 1.2.2 first lists several MEMS
that encompass actuation means capable of imposing stresses/strains on cells. Then,
Section 1.2.3 reports MEMS capable of measuring stresses/strains developed during cell
responses.

1.2.2 MEMS encompassing actuation means

In this section, it is pointed out that, to avoid too many confusing subcategories, no
particular distinction is made between MEMS applying a prescribed force or a prescribed
displacement. Similarly, MEMS that provide stimulation globally (i.e., a stress/strain
is provided to the entire cell structure) or locally (i.e., only a given cellular region is
excited) are not dissociated. In addition, MEMS that target adherent cells or suspension
cells (see Section 1.3.1) are not differentiated. Finally, auxiliary equipments (e.g., laser
sources, peristaltic pumps, electric power supplies) are not considered.

1.2.2.1 Electrostatic comb drives

In [34, 35], interdigitated comb fingers exploiting electrostatic phenomena were used to
carry out stress-strain experiments on individual collagen fibrils. A multidimensional
approach based on a single linear electrostatic structure was also reported by Scuor et al.
[36], who conceived a micro in-plane biaxial cell stretcher (see Fig. 1.2). The quadrants
of a sliced circular plate were actuated in mutually-orthogonal directions, that is to say
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Figure 1.2: Illustration of a comb drive system actuating a bi-axial cell stretcher. Draw-
ing adapted from [36].

that the quadrants moved in horizontal and vertical directions simultaneously. The net
force developed by such a comb drive actuator is given by

Felectro = Nce

(

ǫ tce
gce

)

U2 (1.1)

where Nce is the number of comb electrodes, ǫ is the permittivity constant of the di-
electric medium, tce is the comb thickness, gce is the comb electrode gap and U is the
driving voltage. Theoretically, Scuor et al. claimed that a nominal voltage of 100 V
permitted such an electrostatic structure to generate actuation forces up to 60µN. In
practice, only translation amplitudes of the plate were reported. In ambient conditions,
a power supply of 100 V led to a maximum space between the quadrants of 3.4 µm.

1.2.2.2 Electrothermal beams

Thermal expansion caused by electric currents heating up the material of a microstruc-
ture constitutes a well known actuation principle used in MEMS [37, 38, 39, 40]. In
particular, large rectilinear displacement parallel to the device substrate can be achieved
with chevron (or V-shaped beam) configurations. Such a compliant beam is depicted in
Fig. 1.3.
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Figure 1.3: Main dimensions of a V-shaped beam (or chevron) anchored at its two ends:
Joules heating causes thermal expansion and pushes the apex outward when an electric
current passes through the structure [41].

Displacement of the beam apex ∆Y can be approximated via the formula [42]

∆Y =

(

L + ∆L

2

)

sin

[

arccos

(

2Lp

L + ∆L

)]

− Y0 (1.2)

where L is the total beam length, Lp is the X axis projection of L/2, and ∆L is the
increment in length of the beam which can be expressed by

∆L =
αL3

12 k Tbvol rtb
U2 (1.3)

In equation 1.3, α is the thermal expansion coefficient, k is the thermal conductivity,
U is the voltage applied between anchors, Tbvol is the volume of the beam, and rtb is the
electrical resistance of the beam. Multiple pairs of such V-shaped beams can be serially
combined in order to reach higher force displacement. Indeed, for small displacement,
the total actuation force of several V-shaped beams can be approximated by

Ftherm = Ntb
E b3 h

4L3
∆Y (1.4)

where E is the Young’s modulus, b and h are the width and thickness of the beam,
whereas Ntb is the number of beams.

Compression of a mouse fibroblast (NIH3T3) with an array of five chevrons has
been reported by [43] (see Fig. 1.4). This miniature cell loading system was power
supplied either by low continuous voltages (≤ 2 V) when operating in air, or by high
frequency (800 kHz) sinusoidal voltages in liquids. In ambient conditions, it offered a
maximum translation along one direction of 9µm. This MEMS allowed the authors to
apply compressive strains up to 25% of the initial cell size.

1.2.2.3 Electro-active polymers

Electro-active polymers (EAP) are polymers that change in shape or size in response
to an electrical stimulation. In [44], an array of 100x100µm2 EAP microactuators was
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Figure 1.4: Electrothermal MEMS cell loader designed for measuring the compliance of
cells. Image adapted from [43].

built to perform the individual stretching of 128 cells. In this array (see Fig. 1.5),
compliant gold electrodes (100µm wide) were deposited by low energy ion implantation
on each side of a 30µm thick, 30% pre-stretched, PDMS (polydimethylsiloxane) mem-
brane. Next, the membrane was placed over a rigid PDMS support composed of 200µm
wide channels. The membrane provided flexibility and could expand over the channels
when high voltages were applied to the electrodes. This design permitted to restrict
the stimulation areas to intersections between electrodes and channels. Although this
technique was not applied to living cells, the investigators predict that each cell could
potentially receive up to 10-20% uniaxial strains.

Figure 1.5: Concept of an array of EAP microactuators. Left: device at 0V with four
cells placed at the intersection between electrodes and channels. Right: device when
high voltage (2kV) is applied; the four cells are stretched along the channels. Drawings
adapted from [44].
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1.2.2.4 Magnetic fields

Magnetic fields have been used for studying the physical properties of cell cultures since
the 1950s [45]. Recently, microscopic magnetic manipulators able to locally stress an
isolated cell have been reported [46, 47, 48, 49]. For instance, in [50, 51], the authors
implemented three magnetic micropoles on a glass substrate (see Fig. 1.6) in order to
enable the multidimensional stimulation of one cell. Each pole tip was 4µm wide, 6 µm
thick and had a surface roughness of 0.5µm. Poles spacing was about 20µm to ensure
the placement of a single cell between them. As in conventional magnetic tweezers (MT)
(e.g., [52, 53, 54, 55]) precise forces could be applied on magnetic microbeads attached
to the cell membrane. Indeed, in the presence of a spatially varying magnetic field, the
force Fmag experienced by such a magnetic bead is

Fmag = ∇(Mmb · B) (1.5)

where Mmb is the magnetic moment of the microbead and B is the magnetic flux density.
By controlling the amplitude and the direction of the magnetic flux gradient generated at
the center of the three micropoles, de Vries et al. validated actuation forces >100 pN on
a magnetic microbead (∼500 nm radius) injected inside the nucleus of a HeLa cell [56].

Figure 1.6: Left: Principle of the magnetic MEMS setup designed by de Vries et al.: a
cell anchored to a glass plate and embedding a magnetic microbead is placed between
the tips of magnetic poles. Right: Light microscopy image showing the extremities of
the magnetic micropoles. Scale bar equals 20 µm. Images from [56].

Magnetic fields have also been used to actuate a dense array of vertical microposts
[57, 58]. Each post measured 1.5 µm in radius, 10 µm in height and had a low stiffness
of 32 nN/µm. Posts were also closely spaced with a pitch of 9 µm. Magnetic cobalt
nanowires (350 nm in diameter, 5-7µm long) were incorporated within some posts dur-
ing the fabrication process of the array (1 nanowire per 200 posts). External NdFeB
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Figure 1.7: a) Micropost array of Sniadecki et al. where permanent magnets are used
to bend magnetized posts. b) Close-up of the post array: an adherent cell is lying on
the top of the posts, one of them incorporating a magnetic nanowire. c) Parameters
influencing the bending of the magnetic post in accordance with Eq. (1.6). Drawings
adapted from [57, 58].

magnets were used to generate a horizontal uniform magnetic field. This magnetic field
attracted the magnetic wires and hence enabled the bending of the magnetized posts.
Such bending led to a post displacement ranging from 100 nm to 1µm. For a cell posi-
tioned at the top of a magnetic post, this displacement transferred a punctual force to
the cell. The magnitude of this force was a function of the post as well as the nanowire
dimensions, in accordance with the following equation

FPmag
=

3µ⊥ B (Lmp + Lw)

2(L2
mp + Lw Lmp + L2

w)
(1.6)

where Lmp and Lw are the lengths of the post and the length of the embedded nanowire
respectively, and µ⊥ is the component of the dipole moment perpendicular to the mag-
netic field B, as represented in the inset c) of Fig. 1.7. For a nanowire 5µm long, a
maximum force of 27 nN was reported by the authors.

1.2.2.5 Electric fields

Non-uniform electric fields can physically deform an isolated cell [59, 60, 61, 62, 63].
Indeed, when a cell is subjected to an electric field, a dipole can be induced due to
interfacial polarization on the cell membrane. Depending on the electric field strength
and the effective polarization of the cell, stress can then occur at the interfaces and result
in a deforming force. During minor deformation, the elastic strain of the cell along the
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electric field direction is estimated as [64]

∆Lc

Lc0

= Ks J2 ℜ [C(ω)] (1.7)

where ∆Lc represents the deformation of the cell, Lc0 is the original length of the cell,
Ks is a constant representing the elastic properties of the cell, ω is the angular frequency
of the AC electric field applied, and ℜ [C(ω)] is the real part of the complex Clausius-
Mossotti factor. The latter depends on the internal structure of the cell and is cell-type
specific.

Figure 1.8: a) A GUV trapped between the electrodes of a microfield cage. b) The GUV
is deformed by electric field. Images adapted from [65].

Electrodes capable of generating such electric fields can be patterned with microfab-
rication processes [66, 67]. For example, MEMS electrodes that were used to capture,
hold, rotate and deform isolated giant unilamellar vesicles (GUVs) are shown in Fig. 1.8
[65]. Modulation of the amplitude and frequency of the voltage applied to the electrode
edges permitted the authors to conduct stretch and relax experiments on isolated GUVs,
whose size ranged from 5 to 25 µm.

Electric fields have also been associated with microchannels to provoke cell electro-
poration. In [68], electric field intensity was concentrated toward the narrow section
of a microchannel (see Fig. 1.9). During experiments, field intensities of 200 V/cm,
400 V/cm as well as 600 V/cm were applied. Stress indirectly arose from the elec-
troporation phenomenon. In effect, cells may open up pores when they experience an
external electric field with an intensity beyond a certain threshold. Material exchange
across the membrane may then occur. A direct consequence was the swelling of human
breast epithelial cells while they were flowing through the microchannel. Even though
the amount of stress induced was not explicitly quantified by the authors, such method
allowed to strain suspension cells at stimulation rates as high as 5 cells/s.

1.2.2.6 Optical gradients

Both refraction and reflection of light exert forces on all objects. If these forces are
negligible in the macroworld, they become significant for microscopic objects weighing
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Figure 1.9: Top: electric fields used in conjunction with microfluidic channel to provoke
cell electroporation. Inset: swelling evolution at different times for a cell experiencing
electroporation while progressing through a microchannel [68].

less than 1µg. Thereby, light has been used to manipulate microparticles for four
decades [69]. Two optical fibers can be used to guide the light emanating from a laser
source and create a dual beam laser trap system [70, 71, 72, 73, 74, 75]. In [76, 77],
Guck et al. made use of optical fibers with a diameter of 125µm to trap and stretch
biological entities. The divergent laser beams were directed at diametrically opposite
portions of a suspension cell placed between them, as shown in Fig. 1.10. Often termed
as optical stretcher (OS) in the literature, the net stretching force Fos exerted by such
a configuration on a single cell can be expressed by the following equation [27]

Fos =

(

nm − (1 − Rrl)nc + Rrl.nm

)(

Pl

cl

)

+

(

nc − (1 − Rrl)nm + Rrl.nc

)(

(1 − Rrl)
Pl

cl

) (1.8)

where nm and nc are the refractive indices of the surrounding media and cell, respec-
tively, Rrl is the fraction of reflected light, cl is the speed of light in vacuum, and Pl is
the total light power.

With a 500 mW power laser source, this approach allowed Guck and co-workers to
generate uniaxial stretching forces up to 400 pN in aqueous media. This facilitated cell
elongations between 7-30 µm. Guck et al. even predicted that given a higher power
laser, the maximum stretching force could achieve or exceed 1 nN.

1.2.2.7 Fluid flows

Fluid flows permit to mimic in a simple manner a variety of stresses that vascular cells
naturally undergo in the vessel architecture of the arterial system. At the macroscale,
experimental apparatus such as cone-and-plate rotating chambers [79] or parallel-plate

23



Figure 1.10: Principle of an all-fiber OS. (a) At low laser power, the OS can trap a RCB
(∼10 µm in diameter). (b) At higher laser power, the OS can stretch the RCB. (c) The
OS associated with a fluidic microchannel ensuring the delivery of cells. Images from
[78].

flow channels [80] are conventional tools to impose hydrodynamic shear-stress on large
cell cultures. With advances in microfabrication technologies, MEMS parallel-plate
channels (see Fig. 1.11) have been reported [81, 82, 83]. In [84], the authors integrated
four parallel-plate channels of different cross-sections on a single miniature fluidic chip.
Channel height was 25µm whereas channel width ranged from 250µm to 1000µm. Such
small dimensions guaranteed a low Reynolds number (Re ≤ 1.0), ensuring a laminar
flow with no turbulence within the microchannels. For a parallel-plate channel with an
infinite aspect ratio, the generated wall shear stress can be expressed as

τw =

(

6 η

h2
mc bmc

)

ν (1.9)

where η denotes the fluid viscosity, hmc and bmc are the height and the width of the
chamber, respectively, and ν is the volumetric flow rate. By varying the width of
the channels, Lu et al. could expose a culture of fibroblasts to multiple shear stress
conditions. During experiments, shear stresses up to 4000 dyne/cm2 were generated by
the authors.

1.2.3 MEMS providing sensing capabilities

Applying a stress or a strain to a cell is a requirement for many studies. But once the cell
has been mechanically stimulated, the possibility to evaluate the mechanical behavior
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Figure 1.11: Top: sketch representing the principle of a microfluidic channel imposing
shear stress to a culture of adherent cells [85]. Bottom: microscope view of fibroblasts
cultured in one of a parallel-plate flow chambers. Average fibroblast diameter was about
20µm after attachment [84].

of the cell is also often a sine qua non condition. In the following paragraphs, one hence
enumerates different MEMS capable of extracting various mechanical properties of cells.

1.2.3.1 Deformable beam-based sensors

Cells can migrate in response to multiple situations (e.g., wound healing). During loco-
motion, cells pull themselves and develop forces to move from one location to another.
In precursory works, soft silicon substrates that wrinkled during cell movements con-
stituted a first mean to detect these forces [86, 87, 88]. Distortions of the substrates
were however highly chaotic and nonlinear. A quantitative evaluation of the cell forces
generated was hence difficult.

To alleviate this difficulty, locomotion forces developed during cell migration were
studied with cantilever-like configurations. For instance, Galbraith and Sheetz [89] re-
ported a high functional density MEMS made up of 5904 horizontal microlevers (see
Fig. 1.12). Each lever was ended by a pad. The area of the pads ranged from 4 to
25 µm2. The whole set of pads constituted a sensitive surface where a chicken fibroblast
was seeded. Centroid of the pads were monitored optically during locomotion of the
cell. The forces that the cell exerted on the pads could be determined by calculating
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Figure 1.12: Left: different magnifications of the micromachined substrate designed
by Galbraith et al: (a) is a cut-away drawing that shows a lever, a pad and a well
(bar = 10 µm); (b) shows 0.18 mm long levers (bar = 1 mm); (c) corresponds to the
white square area visible in (b) (bar = 10 µm). Right: (d) Sketch representating the
device viewed from above: cell forces are evaluated thanks to lever deflections. Images
adapted from [89, 32].

the product of the pad displacement and the stiffness of the levers (see image (d) in
Fig. 1.12). Traction forces < 1 nN and up to 100 nN were measured for different regions
of the cell.

Figure 1.13: Examples of a micropost array detectors for the mapping of cell traction
forces. Local forces can be estimated with Eq. (1.10). Black and white scale bars indicate
10 µm and 8 µm, respectively. Images adapted from [90, 91].

A restriction usually admitted for the MEMS of Galbraith and Sheetz is that the
levers could solely bend in one direction. Hence, forces generated in other directions
than the free axis could not be measured with this system. Furthermore, the spatial
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resolution was still limited. To circumvent these limitations, isolated cells have also
been placed on the top of MEMS arrays of compliant microposts (see Fig. 1.13). In
references consulted by the author [90, 91, 92, 93] (see also reviews [94, 95]), posts
dimensions typically spanned 3-50 µm in length with a diameter 2-10 µm. Posts were
also closely spaced with a typical pitch of 2-10 µm. Such tight post spacing allowed
subcellular spatial resolution. It also helped to avoid spreading of the cells between
posts. Posts could deflect independently in response to local tractions. Again, the post
deflection ∆mp imposed by the cells was typically measured by optical microscopy and
then related to the force Fmp via the standard linear elastic beam theory

Fmp =
3Emp Imp

L3
mp

∆mp (1.10)

where Emp, Imp and Lmp are the time-independent elastic modulus, the moment of in-
ertia and the length of the post, respectively. The stiffness of the posts typically ranged
from 0.47 to 1600 nN/µm. Knowing the value of the stiffness, image analysis of each
post yielded an independent force vector. Combined, these force vectors formed a map
of subcellular traction forces.

With microposts arrays, cell forces as low as as 1 nN were measured [91]. It is
also worth pointing out the versatility and reversibility of these configurations. Sec-
tion 1.2.2.4 has indeed mentioned the possibility to actuate such microposts with an
external magnetic field. Microposts have hence the potential to serve alternatively as
discrete actuators or sensors.

1.2.3.2 Piezoresistive strain gauges

In the literature, numerous devices intended for sensing cell forces are compliant struc-
tures that deform when interacting with the cells [96, 97, 98, 99, 100, 101, 102, 103, 104].
As in the previous section, if the stiffness of the structure is known, visual observations
of structure deflections permit to calculate forces. However, for such visual observations,
a microscope, a video camera and an image analysis software are required. Although a
microscope remains an important tool to observe cell during manipulations, this config-
uration is not in favor of the functional density.

As an alternative, piezoresistive (PZR) strain gauges permit to evaluate structure
deflections without optical means. PZR strain gauges can be easily deposited and pat-
terned on microfabricated structures. By way of illustration, PZR gauges were imple-
mented at the base of 16 AFM cantilevers embedded within a single frame [105]. Com-
pared to a conventional AFM setup, the functional density was significantly improved.
In effect, PZR gauges permitted to suppress the need of laser beams and photodiodes.
This also allowed to circumvent misalignment difficulties. Although no experiment was
directly validated on cells, this array was however able to work in liquid environments.
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Figure 1.14: 4x4 matrix of tipless cantilevers integrating PZR gauges as reported in [105].
Unlike conventional AFM setups, lasers and photodiodes are not needed anymore. This
facilitates the integration of many AFM in parallel. Scale bar is 500 µm.

Figure 1.15: Heart cell force transducer proposed by Lin et al.: contractile force gener-
ated by a cardiac myocyte are evaluated via PZR strain gauges [106].

PZR strain gauges were also incorporated in the MEMS force transducer of Lin et
al. [106]. This force transducer was designed to measure contraction forces of living
heart muscle cells. The volume of this MEMS force transducer system was <1 mm3. It
was composed of two free-standing polysilicon clamps. The clamps permitted to hold
the ends of a heart cell under investigation. As shown in Fig. 1.15, each clamp was
suspended by a beam. PZR strain gauges were implemented at the base of the beams.
PZR gauges were connected to a Wheatstone bridge and amplification electronics for
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electrical readout. Cell contractions then provoked the bending of the beams, and the
force generated by a cardiac cell could be evaluated by measuring the output voltage
of the bridge. Theoretically, this MEMS could provide a sensitivity of 2.6 mV/µm.
In experimental conditions, the authors could measure forces spanning from 100 nN to
50 µN, and an average contraction force of ∼12 µN was quantified for several rat cardiac
myocytes.

1.2.3.3 Capacitive sensors

Measure of capacitance changes can also resolve applied displacements/forces without
the need of an optical equipment. A typical example of capacitive sensors is illustrated
in Fig. 1.16. A displacement ∆dc applied to the probe tip caused the inner structure to
move, changing the gap between each pair of interdigitated comb capacitors. In particu-
lar, the sensor in Fig. 1.16 used a differential tri-plate configuration which permitted to
obtain a linear relationship between the displacement applied and resulting capacitance
changes [107]. When an AC signal Us was supplied to the outer capacitors, capacitance
changes could be converted into voltages. Thereby, ∆dc could be linearly related to
voltage changes

∆dc = d0

Uout

Us
(1.11)

where d0 is a constant representing the nominal position of the comb structure (i.e., no
force applied, capacitor plates equally spaced) and Uout is a measured voltage.

Two springs of given stiffness then allowed to convert the displacement estimated
into a force. The springs being modelled as two fixed beams with a load point applied
in the middle, the force-deflection relationship could be determined from

Fcapa = ∆dc
4Esi b3

sc hsc

L3
sc

(1.12)

where Fcapa is the resolved force applied upon the probe, Esi is the average Young’s
modulus of P-type silicon, and Lsc, bsc and hsc are the spring length, width, and thickness
respectively.

It is interesting to note that capacitive configurations are capable of providing force
information along multiple axes (e.g., [109]). In [108], interdigitated capacitors were
orthogonally configured to make the force sensor capable of resolving in-plane forces
not only along the x direction (as shown in Fig. 1.16) but also along the y direction.
The sensor was then used to measure puncturing forces on embryos and oocytes. In
particular, the sensor was capable of resolving forces up to 25 µN in x and 110 µN in y
with a resolution of 0.01 µN in x and 0.24 µN in y.

It is also worth highlighting that configurations based on interdigitated fingers can
efficiently combine electrostatic actuators and sensing parallel-plate capacitors in a com-
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Figure 1.16: Uniaxial capacitive force sensor. This MEMS can solely sense forces along
the x direction (images adapted from [107]). Evolution of the concept with capabilities
for resolving forces in the x and y directions simultaneously has been reported in [108].

pact unit. For instance, MEMS grippers that can simultaneously apply and measure
forces on cells have been reported in [110, 111].

1.3 Discussions

Although the survey of the previous sections does not pretend to be exhaustive, it
provides a sufficiently representative sample of MEMS to discuss the current trends and
remaining challenges that must be addressed in the field of cell mechanics.

1.3.1 Nature and number of cells targeted

MEMS dedicated to the mechanical investigation of individual living cells must cope
with several harsh constraints. A first problem is directly related to the nature of the
cells to be tested. Indeed, living cells come in a wide variety of shapes and sizes because
they all perform different functions. As a reminder, two distinct types of cells are
encountered in cell studies:� As seen in Table 1.1, adherent cells (e.g., fibroblasts, endothelial cells) need to

anchor to an underlying substrate (see for instance Fig. 1.13). Adherent cells
typically measure a few micrometers and have a highly irregular shape. To a first
approximation, adherent cells such as endothelial cells behave more as solids.� Suspension cells have almost a spherical shape and do not attach to a surface.
Blood cells, oocytes or embryos are examples of suspension cells. The latter are
however significantly bigger than the former and the size of suspension cells can
span a wide range of values. For instance, blood cells (see Fig. 1.10) typically have
a diameter of 8-12 µm, whereas oocytes and embryos have a diameter that usually
ranges from ∼100 µm to 600 µm. Compared to adherent cells, suspension cells
usually behave more as liquid droplets surrounded by an elastic cortical shell.
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Adherent and suspension cells hence exhibit morphologies and properties that are
fundamentally different. These differences pose very different challenges for stimulating
cells and measure their reactions. Accordingly, many MEMS reported in previous sec-
tions lack versatility in the sense that they can deal exclusively with a single type of
cells. By way of illustration, the MEMS cell puller of Scuor et al illustrated in Fig. 1.2
do not lend itself to the stretching of suspension cells. Conversely, the OS of Guck et
al. depicted in Fig. 1.10 only proved to be suitable with suspension cells showing a high
degree of symmetry and/or a uniform optical density.

In addition, it is important to realize that for most MEMS cited, delicate and time-
consuming protocols are often required to properly prepare and place the cells prior
to experiments. For instance, in [57, 58, 96, 97, 102], the authors functionalized the
probe extremities to guarantee a firm attachment of the cells under tests. In [34, 35],
the authors used small drops of epoxy to attach a fibril between the two pads of their
uniaxial cell tenser. Long curing times were necessary and it could take hours to conduct
experiments with just a few cells.

In the mean time, it has been experimentally confirmed that cell responses are largely
heterogeneous from cell to cell, even within a given cell line. A more representative
overview of the cellular behavior could be obtained by considering the averaged re-
sponses of many individual cells studied independently. A new tendency based on sta-
tistical studies has hence progressively emerged (see for instance [112, 113]).

Today, MEMS with the capability to provide cell measures obtained in a short
amount of time are hence highly requested by the science community. To speed up
cell analysis, matrix of MEMS replicated in arrays (e.g., see Fig. 1.14) have been re-
ported for the simultaneous analysis of several cells in parallel. Usually, the number of
MEMS contained within a singly frame do not exceed 10-20. This is due to the fact
the replication of a higher number of perfectly identical MEMS may rapidly become
challenging. Moreover, if patterns duplicated are deformable structures that must be
optically monitored (e.g., [114, 115]), the larger field of view necessary leads to a loss of
resolution. Beside, the requirement for optical observation may prevent rapide analysis
and is today considered as a significant barrier to parallelization in most experiments
[116].

As an alternative to alleviate these difficulties, serial approaches where individual
cell are successively driven toward excitation/analysis areas have been proposed (e.g.,
see Fig. 1.10). Interesting results have been reported with the possibility to stimulate
and analyze cell mechanical responses at rates as high as 5 cells/sec [68]. However,
MEMS exploiting this approach are always coupled to fluidic microchannels where fluid
flows ensure the repetitive delivery of the cells toward excitation/analysis areas. Un-
fortunately, a lack of versatility is again observed since this principle works only with
restrictive types of suspension cells and excludes adherent cells.
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1.3.2 Constraints imposed by the cell environment

Living cells are obviously entities of exquisite fragility. For successful mechanical studies
conducted on cells, a first priority is to preserve their integrity so that they can survive
after experiments. Ideally, cells should be conserved in specific medium during exper-
iments. Such cell medium allow the continuous delivery of vital nutrients in order to
maintain cells alive.

But major challenges arise as soon as MEMS must face such a liquid environment.
For instance, in the presence of aqueous solutions, capillary meniscus arise at the air-
water interface when soft force sensors (e.g., [96, 97, 102]) are immersed and removed.
Soft structures must then withstand large capillary forces. Besides, capillary forces can
engender measurement artifacts.

MEMS exploiting electrostatic comb drives (see Fig. 1.2) experience significantly re-
duced performances when immersed in cell medium. Due to the hydrophobic nature of
the silicon-water interface, air trapping between the comb drive teeth and the MEMS
ground plane may arise. Furthermore, the enhanced electrical conductivity of liquids
usually reduce their initial stroke.

Similarly, electrothermal beams cope with challenging phenomena if they are plunged
in a liquid environment. For instance, electrothermal beams cannot be supplied with
continuous power for underwater operation due to electrolysis. For the MEMS shown in
Fig. 1.4, alternating voltages were used in electrolytic solutions. But the initial travel
range of 9µm measured in air was restricted to 4µm in liquids. An additional feature
of electrothermal actuators relates to the high temperature that they can reach during
operation. Since cells are particularly sensitive to temperature fluctuations, high tem-
peratures may potentially cause irreversible damages. Special precautions should hence
be taken accordingly.

The latter remark may be extended to all types of contact-based MEMS, that is to
say all MEMS for whom an extremity directly touches the cells. For instance, sharp tips
(e.g., such of those used in conventional AFM) may cause damages to external lipid cell
biomembranes. Moreover, contamination problems may arise once the tool has touched
a cell. Therefore, the tips should be properly cleaned before each new experiment. This
additional laborious step may further prevent repetitive analysis.

MEMS that exploit non-contact based techniques may alleviate such problems. Op-
tical gradients, electric fields and magnetic fields have indeed the potential to carry out
cell analysis without direct physical interaction with the cells. However, electric fields
can directly affect cells under test [117]. Although no direct contact occurs during cell
stimulation (see Fig. 1.8), electric fields cause power dissipation in the form of Joules
heating in a conductive medium. Therefore, and as in the case of electrothermal actu-
ators, the usage of electric fields requires to monitor changes in temperature that can
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affect cell phenotypes.

The wavelength of some highly concentrated laser beams may also be hazardous for
cells [118, 119, 120, 121]. Comparatively, magnetic fields (see Fig. 1.6) are nowadays
considered safe for cells. In effect, magnetic fields do not significantly disturb the cell re-
sponse upon short times of exposure. Unfortunately, restrictions of magnetic setups are
related the microbeads that must be locally attached to the cell membrane. Magnetic
forces applied strongly depends on the beads size whereas it may be difficult to avoid
size variations from bead to bead in experimental conditions. Likewise, material prop-
erties of the beads used (e.g., magnetic moment) cannot be easily controlled. Moreover,
the adhesion procedure of the beads remains an unpredictable process and formation of
bead aggregates may appear. Finally, since bead immersion is unpredictable, the force
distribution around adhesion sites can actually be highly heterogeneous.

Taking into account the above discussion, it is clear that using MEMS in cell media
remains challenging. Besides, several results of cell mechanical studies reported in the
literature have been obtained in air. However, living cells are particularly sensitive to the
humidity rate. Considering the fact that their mechanical properties can be drastically
impacted, it may be reasonably presume that results obtained could have been partly
biased and could have possibly led to some misinterpretations.

1.3.3 Type of mechanical properties probed: relevance of the cell elas-
tic modulus

MEMS reported in Section 1.2 have permitted to investigate different biophysical prop-
erties of cells. Examples of these biophysical properties are summurized in Table 1.2. In
essence, all these properties permit to gain insights in the mechanics of cells. Accord-
ingly, they all deserved to be thoroughly investigated.

Cell Biophysical Properties Examples of MEMS

Traction forces Post arrays [90, 91]

Contraction forces Force transducer [122]

Post arrays [123, 124]

Adhesion forces Cell tenser [100, 104]

Deformability Capacitive sensors [108]

Optical stretcher [74]

Electrical fields [67]

Table 1.2: Typical cell mechanical parameters investigated with MEMS

Nevertheless, the notion of cell deformability appears today as an increasing im-
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portant physical marker for future biomedical applications. Cell are indeed constantly
stabilized by their internal scaffolding, the cytoskeleton network. As seen in Section 1.1,
the cytoskeleton is a complex biopolymer network that may undergo structural alter-
ations leading to changes in cell rigidity. Deformation characteristics of cells may hence
provide relevant information about the biological and structural function of cells.

The notion of cell deformability is however general and must be clarified. Basically,
studying cell deformability requires application of an external force, and a correspond-
ing quantification of the cellular deformation in response. Intuitively, a stiffer cell is less
deformable. In the literature, quantitative measures of cell deformability are however
reported in different manners. Cell deformability can indeed be expressed in terms of
elasticity (i.e., elastic modulus), viscoelasticity or stiffness. Although all of these param-
eters provide information about the resitstance of a cell to deformation, they describe
distinctly different properties. For the sake of clarity, some essential disctintions between
these parameters are first reminded.

A cell exhibits an elastic behavior if it deforms under stress (i.e., an external force)
and returns to its orginal shape when the stress is removed (see left image in Fig. 1.17).
The relationship between stress and strain (force-deformation) is linear, and the de-
formation energy is returned completely. Elasticity is often referred to as the elastic
modulus or Young’s modulus. Given the large values typical for many common materi-
als, the Young’s modulus is usually quoted in MPa or GPa. For instance, the Young’s
modulus of steel, bone, polystyrene or soft silicon rubber are about 200 GPa, 17 GPa,
3MPa and 2 MPa, respectively. Comparatively, most living cells range from 1 kPa to
100 kPa (see Fig. 1.18).

A cell behaves as a viscoelastic material if it exhibits both viscous and elastic char-
acteristics when undergoing deformation. Viscosity is a measure of the resitstance of a
fluid to being deformed by either shear stress or extensional stress. The reciprocal of
viscosity is fluidity. The relationship between stress (force) and strain (deformation) is
non linear for viscoelastic materials, and the deformation energy is not returned com-
pletely. The amount of energy loss is represented by the hysteresis of a loading and
unloading cycle (hysteresis in the force deformation curve, see right image in Fig. 1.17).

Stiffness relates to the resistance of a solid body. Stiffness is not the same as the
elastic modulus. Stiffness is a property of a solid body; elastic modulus is a property
of the constituent material. The elastic modulus is an intensive property (it does not
depend on the size, shape, amount of material and boundary conditions) of the solid
body. For example, a solid rock and a soft flat spring made from the same material
(e.g., steel) have the same elastic modulus but a different stiffness.

In this thesis, one will focus on measuring the Young’s modulus of living cells. Scien-
tific evidences have indeed revealed connections between alterations in the elastic mod-
ulus of single cells and pathophysiological states [16, 125, 126, 127, 128, 129, 130, 131].
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Figure 1.17: Left: typical force-deformation curve for an elastic rigid material. Right:
typical force-deformation curve for a viscoelastic material (epithelial cell): the hysteresis
cyle is representative of a loss of energy. Images adapted from [18].

Figure 1.18: Approximate range of values for the elastic modulus of biological cells and
comparisons with those of engineering metals, ceramics and polymers. Image from [3].
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As observed in Table 1.3, a dramatically reduced Young’s modulus is for instance a
characteristic feature of cancerous cells. The standard deviation of cancerous cell is
also over five times narrower than benign cells. By constrat, RCBs infected by sickle
cell disease (SCD1) have a Young’s modulus approximately three times higher than in
normal cells as well as a larger standard deviation.

Cell type Human Young’s modulus (kPa) Measurement Reference
disease Healthy Abnormal system

cells cells

Epithelial cells Cancer 8.6 ± 3.6 0.7 ± 0.4 AFM [125]
Mesothelial cells Cancer 1.97 ± 0.7 0.53 ± 0.1 AFM [128]
Mesothelial cells Cancer 2.53 ± 1.23 0.41 ± 0.18 AFM [129]
RCBs Erythrocytes SCD 1.1 ± 0.4 3.05 ± 1.09 AFM [130]
RCBs Erythrocytes SCD 1 ± 1.1 3 ± 2.7 AFM [131]

Table 1.3: Mean values and standard deviations of elastic modulus for human cells
affected by cancer or sickle cell disease (SCD) compared to normal cells.

Accordingly, the elastic modulus of cells appears as a meaningful marker to differen-
tiate pathogenic cells and healthy cells. For diagnostic purposes, knowing the Young’s
modulus of cells may hence help to detect the presence of cancer as well as other cell-
based degenerative diseases at earlier stages. Furthermore, elasticity measurements also
have the potential to disclose the specific effects of pharmaceuticals at the cellular level
[132, 133, 134]. Therefore, cell elasticity measurements may also prove advantageous in
drug development.

Although several MEMS have been specifically devised for measuring the Young’s
modulus of living cells (e.g., [108]), AFM remains the most widespread tool. Thereby,
all results published in Table 1.3 as well as in [16, 126, 127, 129] were derived force-
deformation information measured with an AFM cantilever. Then, a model based on
the Hertz theory permitted to extract the Young’s modulus

Fc =
4

3
E∗ δ3/2

c

(

R1 R2

R1 + R2

)1/2

. (1.13)

In Eq. 1.13, Fc and δc are the force and the amount of deformation applied to the cell,
R1 is radius of curvature of the cell, R2 is the radius of curvature of the probe applying
the deformation, and E∗ is the effective Young’ s modulus

1

E∗
=

1 − ν2
1

E1

+
1 − ν2

2

E2

(1.14)

1SCD is an inherited blood disorder. It gives rise to circulation problems due to the fact that stiffer
RCBs have difficulty flowing through the small blood vessels and capillaries in the body. Some serious
consequences of SCD include stroke, infection and pneumonia (see [8] for further explanations).
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where ν1 and E1 are the Poisson’s ratio and Young’s modulus of the cell whereas ν2 and
E2 are the Poisson’s ratio and Young’s modulus of the probe.

Notwithstanding indisputable advantages to conduct cell investigations, AFM is
more adapted to conduct experiments on adherent cells. Round suspension cells cannot
be easily studied with AFM. Moreover, it is recognized that the throughput of AFM is
severly limited. This is a major bottleneck for using the Young’s modulus of cells as a
reliable indicator. As discussed in Section 1.3.1, cells are indeed highly heterogeneous
entities and large differences can occur during measurements, even among a particular
cell line. For enabling the reliable use of the Young’s modulus for diagnosis purposes,
measurements must be conducted on a significant number of cells in order to obtain a
statistically set of meaningful data [135].

To bridge this gap, several research teams have paved the way with MEMS in-
tended for parallelization and automation [63, 67, 68, 136]. Interesting results have
been reported. Unfortunately, all these MEMS could only deal with restrictive type of
suspension cells.

1.4 Summary and conclusions

This first chapter has reviewed a large panel of MEMS intended for cell mechanics.
MEMS encompassing actuation capabilities for cell stimulation and MEMS providing
mesurement means to monitor mechanical cell responses have been surveyed separately.
MEMS combining actuation and sensing capabilities have also been highlighted. Several
discussions have also been provided with the aim to realize the specific constraints that
apply in the context of cell analysis. In light of these discussions, it can be concluded
that:� To survive, cells must be maintained in a culture medium providing vital nutrients.

Therefore, cell mechanical studies require MEMS that can cope with a liquid
environment.� MEMS capable of extracting values of cell Young’s modulus turns out to be of
increasing interest and show great promise for future biomedical applications. The
Young’s modulus of diseased cells indeed vary from their healthy counterparts.
Thereby, it is presently recognized that Young’s modulus values may be correlated
to disease states. In the future, Young’s modulus values might be used to diagnose
pathological conditions at earlier stages. To quantify the Young’s modulus of cells,
MEMS must be somehow capable of measuring the force applied to a cell and the
corresponding cell deformation in response.� To be used as a robust and reliable indicator for diagnosis, an averaged value of
the Young’s modulus must be obtained by probing numerous cells. MEMS ca-
pable of providing values of elastic modulus within minutes are highly requested
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by the research community. The problem is that adherent and suspension cells
exhibit very different morphologies and properties that pose antagonist challenges.
Although several solutions based on parallel or serial approaches have been pro-
posed, no MEMS capable of measuring the Young’s modulus of both adherent and
suspended cell with high throughput capabilities has been reported so far.

To bring new solutions to the above mentioned problems, this thesis will present a
planar structure where two beam resonators are exploited to extract the Young’s modu-
lus of cells. In effect, compared to a static mode, oscillating beams that exploit resonance
phenomena allow for a higher dynamic range and a higher transduction sensitivity. For
instance, resonance operation is usually favoured for cantilevers aimed at detecting the
presence of target biomolecules. This preference can be justified by the fact that, in a
static mode, a minimum amount of target molecules must bind to the cantilever surface
(which is coated with specific receptors) in order to generate enough surface stress and
cause the cantilever to deflect. By way of comparison, single molecule detection capa-
bilites with exquisite mass resolution down to the attogram (10−18g) and even to the
zeptogram (10−21g) have been achieved with dynamic modes [137, 138].

To extract the Young’s modulus of cells, beam resonators can also be used to mea-
sure forces with improved sensitivity. Beyond enhanced sensitivity, beams operating in
the frequency domain also permit to circumvent some typical limitations encountered
for devices operating in static modes. Generally speaking, common readout schemes
used to measure the static deflection of compliant structures involve analog signals that
are amplitude dependent (e.g., voltages). Such signals are intrinsically sensitive to noise
sources, especially at the MEMS scale. By contrast, the frequency domain output is dig-
ital in the sense that it is independent of analog level. Resonant structures hence provide
inherent accuracy and easy digital interfacing (e.g., connection to a frequency counter).
This further minimizes susceptibility to interferences and degradation of transmitted
signals.

In spite of such potential advantages, beam resonators are rarely employed for de-
termining the Young’s modulus of living cells. This is mainly due to the fact that
conventional beam resonators cannot be easily exploited when dealing with cells cul-
tured in growth medium. This is demonstrated in the next chapter where the effects
related to the presence of a surrounding fluid on a simple clamped-clamped beam are
theoretically investigated. As a solution to alleviate these effects, as well as to bring
new solutions to the above mentioned problems, the new resonant structure proposed
in this dissertation will be introduced in Chapter 3.
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Chapter 2
Sensing forces in cell studies with beam

resonators: theoretical background

Chapter 1 has revealed why measuring the elastic properties (i.e., the Young’s modulus)
of living cells is of increasing importance. To determine its Young’s modulus, the cell
must be deformed with a known force. In a first step, this chapter does not address
how to deform the cell. Instead, it focuses on how the force applied to the cell can be
measured with a simple beam resonator. As mentioned in the conclusion of Chapter 1,
the use of an oscillating beam can bring multiple benefits. Ideally, it can achieve a higher
force sensitivity than conventional force sensors operating in a static mode. In addition,
a beam operating in a dynamic mode can provide a higher immunity to noise sources.

To grasp fundamental concepts and gain insights into how forces can be measured
with a beam resonator, Section 2.1 considers a case of study where a suspension cell
applies an axial force to one extremity of a beam clamped at both ends (clamped-
clamped beam). Based on Euler-Bernouilli beam theory, an exact solution predicting the
dynamic behavior of the clamped-clamped (CC) beam subjected to the axial force is first
derived. Because energy methods will be used in Chapter 3, Section 2.2 demonstrates
that an easier energy method provides similar results and can be safely used to describe
the dynamics of an oscillating beam. Energy techniques are then employed to consider a
harsh constraint related to cell studies, namely the fact that studies must be conducted
in liquids. In particular, Section 2.3 shows that the initial performances of the CC beam
are severely altered if it is surrounded by a liquid. In Section 2.4, a parametric analysis
demonstrates that problems faced by the CC beam in liquids cannot be easily minimized
solely by changing the beam geometry. Finally, Section 2.5 summarizes different points
highlighted in the course of the chapter and makes the transition towards Chapter 3.
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2.1 Vibration of a CC beam subjected to an axial force:
exact solution

The case of study considered is illustrated in Fig. 2.1. A salmon fish egg cell with a
diameter of approximately 5 mm [139] enters in contact with one extremity of a CC
beam. The egg cell is then compressed and an axial force N is applied to the beam. For
the sake of completeness, it is supposed that N can be negative or positive. Although
this may appear unrealistic in the context described, such a consideration will permit
to compare more thoroughly solutions found in this section with the ones found in
Section 2.2.

Figure 2.1: Case of study considered: a salmon fish egg cell imposes an axial force N
when it touches the extremity of a CC beam. Straight bold line is the reference (un-
derformed) beam configuration. Thin line reprensents dynamical deformations imposed
during vibration.

For this theoretical study, the beam is supposed to obey Euler-Bernouilli theory and
the following assumptions are made:� The beam is relatively long, namely its length L exceeds its width b and thickness h.� The beam has a rectangular cross section S which is uniform over its entire length.� The beam material is homogeneous, isotropic, and linearly elastic according to

Hooke’s law. The Young’s modulus and density of this material are noted E and
ρb, respectively.� The beam motion is sinusoidal during vibration. Only the fundamental frequency
of resonance is considered.� The amplitude of vibration of the beam is much lower than any of the beam
dimension so that shear deformation can be neglected.� The beam is undamped and unforced.

Considering the above listed assumptions, the beam is governed by the following
equation of motion [140]

EI
∂4w(x, t)

∂x4
+ N

∂2w(x, t)

∂x2
+ m∗

b

∂2w(x, t)

∂t2
= 0 (2.1)

where m∗

b = ρb S and I = bh3

12
are the mass per unit length and the moment of inertia

of the beam, respectively.
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2.1.1 Effects of an axial force on the fundamental frequency

Equation (2.1) is a linear, homogeneous partial-differential equation. Assuming that
there is a separable solution w(x, t) = W (x)Q(t), Eq. (2.1) can be transformed into a
single differential equation

d4W (x)

dx4
+ σ2

d2W (x)

dx2
− Ω4W (x) = 0 (2.2)

where σ2 =
N

EI
and Ω4 =

m∗

bω
2

EI
.

In the case of an ideal CC beam, boundary conditions are

W (x)

∣

∣

∣

∣

x=0
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dx

∣

∣

∣
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x=0

= 0, (2.3)

W (x)

∣

∣

∣

∣

x=L

= 0,
dW (x)

dx

∣

∣

∣

∣

x=L

= 0. (2.4)

Substituting Eq. (2.2) into Eqs. (2.3-2.4) yields

1 − cos(α1L) cosh(α2L) +
σ2

2Ω2
sin(α1L) sinh(α2L) = 0 (2.5)

where

α1 =

√

σ2

2
+

1

2

√

(σ4 + 4Ω4) and α2 =

√

−σ2

2
+

1

2

√

(σ4 + 4Ω4). (2.6)

Equation (2.5) is a transcendental equation that can be solved numerically. In par-
ticular, if N = 0, the fundamental angular resonance frequency of a CC beam is1

ω1 =
22.37

L2

√

EI

m∗

b

. (2.7)

For numerical applications, a CC beam whose properties are listed in Table 2.1 is
considered. These dimensions have been scaled in accordance with the size of the egg
cell (∼ 5mm) considered in the case of study. However, results and comments made
afterwards would remain valid for a beam with any dimensions. Making use of these
numerical values with Eq. (2.5) and Eq. (2.7), the evolution of the ratio ω/ω1 as a func-
tion of the axial force applied N can be predicted. As seen in Fig. 2.2, the fundamental
frequency of the CC beam increases when a tensile force is applied (i.e., for N < 0). By
contrast, the frequency decreases in the case of a compressive force (i.e., N > 0). The
amount of force applied to the beam can hence be estimated by measuring the amount
of frequency variation.

1A detailed demonstration is given in appendix.
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Length (L) 12.5 mm

Width (b) 0.25 mm

Thickness (h) 0.1 mm

Moment of inertia (I = bh3

12
) 2.08 × 10−17 m4

Young’s modulus (E) 212 GPa

Density (ρb) 8030 kgm−3

Mass per unit length (m∗

b) 2 × 10−3 kgm−1

Table 2.1: Numerical values of parameters for the thin beam considered in Fig. 2.1.

Figure 2.2: Evolution of the fundamental frequency ω1 of a CC beam when a positive
(compressive) or a negative (tensile) axial force N is applied.

For large force amplitudes (i.e., |N | ≥ 0.5 N), it is interesting to note that the abso-
lute value of the slope increases with a compressive force, which means that according
to theory, the same amount of additional force can have a bigger effect if the beam
is stressed with a compressive load. For small force amplitudes (i.e., |N | ≤ 0.5 N),
the amount of frequency variation ∆ω is almost linearly related to the amount of force
applied ∆N . In such conditions, the force sensitivity sF of the CC beam can thus be
defined as

sF =
∆ω

∆N
. (2.8)
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2.1.2 Effects of an axial force on the first mode shape

Associated with ω1 is a mode shape2 W (x)

W (x) = C1

[

sin(α1x) + λ cos(α1x) − α1

α2

sinh(α2x) − λ cosh(α2x)

]

(2.9)

where C1 is a constant and

λ =
sin(α1L) − α1

α2
sinh(α2L)

cosh(α2L) − cos(α1L)
. (2.10)

Figure 2.3: Effects of an axial force on the first mode shape of a CC beam.

If there is no axial force (N = 0), Eq. (2.9) becomes

W (x) = −C1

[

sin(Ωx) − sinh(Ωx) −
(

cos(ΩL) − cosh(ΩL)

sin(ΩL) − sinh(ΩL)

)

(

cos(Ωx) − cosh(Ωx)
)

]

.

(2.11)
The first mode shape associated to ω1 for a CC without axial force predicted by

Eq. (2.11) is shown in Fig. 2.3 (solid line). By comparison, dashed and dotted lines
represent the modes shapes when a tensile or compressive force of 1 N is applied to the
beam. It can be observed that the initial mode shape is not significantly altered. For
small force magnitudes, the impact of an axial force on the first mode shape of a CC
beam is thus limited.

2Details about the derivation of the exact mode shape are also provided in appendix.
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2.2 Vibrations of a CC beam subjected to an axial force:
approximate solution via energy methods

In using conventional beam theory in the previous section, the analysis was restricted
to small deflections and slopes. This allowed a relatively simple analytic solution to
be found. However, in a number of practical situations, looking for an exact analytical
solution becomes rapidly challenging (when not impossible). Such a situation will be
encountered in Chapter 3 where the effects of large (i.e., nonlinear) static predeflections
imposed to a resonant frame made of several coupled beams will be investigated.

As an alternative to exact solutions, energy methods can be conveniently used to
grasp valuable insights on the dynamic behavior of complex resonant structures. As
a first step, one here demonstrates that Lagrange’s equation constitutes a powerful
alternative to reasonably approximate the dynamics of a simple CC beam constrained
by an axial force. Generally speaking, Lagrange’s equation for a conservative system is
[140]

∂L
∂q

− d

dt

∂L
∂q̇

= 0 (2.12)

where q represents generalized coordinates, q̇ is the time derivative of q, and the La-
grangian L is the difference between the kinetic energy Vkin and the potential energy
Vpot of the system

L = Vkin − Vpot. (2.13)

For a CC beam of length L, the kinetic energy is [141]

Vkin =
1

2
m∗

b

∫ L

0

(

∂w(x, t)

∂t

)2

dx. (2.14)

When the beam is axially constrained, the total potential energy is the sum of two
contributions Vpot = Vb + Va. The first contribution Vb is related to the strain energy
due to bending [141]

Vb =
1

2
EI

∫ L

0

(

∂2w(x, t)

∂x2

)2

dx. (2.15)

The second contribution is due to the presence of the axial force N [142]

Va = −1

2
N

∫ L

0

(

∂w(x, t)

∂x

)2

dx. (2.16)

As in the previous section, w(x, t) = W (x)Q(t). This time, however, a single mode
energy analysis of the CC beam is conducted by assuming the displacement function
W (x). A trial function that satisfies geometric conditions for the first mode shape of a
CC beam is [143]

W (x) =
1

2

[

1 − cos

(

2πx

L

)]

. (2.17)
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Figure 2.4: Comparison of the first mode shape of a CC beam (without axial load)
predicted by Eq. (2.11) (solid line) and Eq. (2.17) (dashed line).

In Fig. 2.4, it can be observed that Eq. (2.17) is indeed a reasonable approximation
when compared to the exact solution provided by Eq. (2.11). Then, energy expressions
given by Eqs. (2.14-2.16) are evaluated for the assumed mode shape

Vkin =
3

16
m∗

b L

(

dQ(t)

dt

)2

, (2.18)

Vpot =
1

16
EIL

(

2π

L

)4

Q(t)2 − 1

16
NL

(

2π

L

)2

Q(t)2. (2.19)

Lagrange’s equation (2.12) can then be used to obtain the equation of motion for
this single mode approximation

3m∗

b

d2Q(t)

dt2
+

[

EI

(

2π

L

)4

− N

(

2π

L

)2
]

Q(t) = 0. (2.20)

Since harmonic motion of the beam during oscillations is assumed, substituing
Q(t) ∝ ejωt into Eq. (2.20) yields

ω2 =
EI

3m∗

b

(

2π

L

)4

− N

3m∗

b

(

2π

L

)2

. (2.21)

In the abscence of axial load, the fundamental frequency is

ω1 =
22.79

L2

√

EI

m∗

b

. (2.22)
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It can be noticed that Eq. (2.22) is very similar to the result of Eq. (2.7) provided
by the exact solution. The effects of the axial force N on the fundamental frequency of
the CC beam can also be analysed with Eqs. (2.21-2.22) by considering the ratio ω/ω1

ω

ω1

=

√

1 − NL2

4π2EI
. (2.23)

For the same beam we considered in Section 2.1 (see Table 2.1), the evolution of
Eq. (2.23) with respect to the axial force N is represented in Fig. 2.5 (dashed line).
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Figure 2.5: Frequency variation of a CC beam constrained by an axial force. Solid line
represents the variation predicted by the exact solution of Section 2.1. In comparison,
dashed line corresponds to the approximate solution based on Lagrange’s equation and
Eq. (2.17).

When compared to Eq. (2.5) (solid line), frequency variations predicted tend to
be overestimated for tensile forces (N < 0) and underestimated for compressive forces
(N > 0). Despite discrepencies with the exact solution, it is however demonstrated that
Eq. (2.23) is sufficient to grasp the main dynamics of the CC beam under an axial force.

2.3 Vibration of a CC beam in fluids

So far, the CC beam was assumed to be undamped. In other words, all types of losses
were neglected and the beam could be considered as vibrating in vaccum. Nevertheless,
as stressed out in Chapter 1, one harsh constraint related to cell studies is that cells
should always be kept in growth medium. Therfore, interaction between the CC beam
and a cell must actually occur in a liquid environment. This section now shows that
the initial dynamic of a resonant CC beam will be dramatically impacted as soon as the
beam is plunged into liquids.
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2.3.1 Presence of a fluid: impact on the resonance frequency and os-
cillation amplitude

The CC beam of Fig. 2.1 is now considered to be entirely immersed into a fluid. In order
to neglect squeeze damping effects, the beam is supposed to be isolated in space so that
it does not oscillate in the vicinity of any stationary surfaces [144]. Other assumptions
previously made in Section 2.1 and Section 2.2 remain valid.

Studying the interaction between fluids and resonant beams proves to be a complex
problem (see for instance [145, 146, 147]). An energy approach similar to the one
of Section 2.2 can however be conveniently used to analyse such an interaction. The
Lagrange equation introduced in Eq. (2.12) must however be extended. Indeed, in
the presence of a surrounding fluid, a damping coefficient per unit length γ∗

a must be
introduced [148]

d

dt

∂L
∂q̇

− ∂L
∂q

+
∂D
∂q̇

= 0 (2.24)

where the Rayleigh’s dissipation function D is

D =
1

2
γ∗

a

∫ L

0

(

∂w(x, t)

∂t

)2

dx. (2.25)

The beam is still supposed to oscillate harmonically. It is also assumed that the
fluid does not affect the first mode shape so that it can be still described by Eq. (2.17).
Evaluation of the Rayleigh’s dissipation function then yields

D =
3L

16
γ∗

a

(

dQ(t)

dt

)2

. (2.26)

The presence of a fluid also adds a mass per unit length m∗
a. Therefore, the new

kinetic energy of the Lagrangian is

Vkin =
3

16
m∗

tot L

(

dQ(t)

dt

)2

, (2.27)

where m∗
tot = m∗

b + m∗
a. To isolate the effects exclusively engendered by the presence of

the fluid, one assumes for a moment that the salmon egg cell does not touch the beam.
If terms related to the axial force N are dropped, the total potential energy reduces to

Vpot =
1

16
EIL

(

2π

L

)4

Q(t)2. (2.28)

Making use of Eqs. (2.26,2.28), one obtains

m∗

totω
2 + j γ∗

a ω =
EI

3

(

2π

L

)2

. (2.29)
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If all terms are divided by m∗

b , the right hand side of Eq. (2.29) actually corresponds
to Eq. (2.22). Accordingly, Eq. (2.29) can be rewritten

m∗

tot ω2 + j γ∗

a ω = m∗

b ω1. (2.30)

Solving Eq. (2.30) permits to predict the new angular frequency of the vibrating
beam in fluids with respect to the undamped angular frequency ω1, m∗

a and γ∗
a [149]

ωfluid =

√

√

√

√− γ∗
a
2

2m∗
tot

2
+ ω2

1

√

γ∗
a
4

4m∗
tot

4
ω4

1
+

m∗

b
2

m2
tot

(2.31)

where mtot = m∗
tot L.

The mass and damping added by the fluid also affect the oscillation amplitude of
the beam. In [149], it has been shown that the oscillation amplitude with respect to the
angular frequency is

A(ω) =
A0

√

m2
tot (ω2 − ω2

fluid)
2 + γ2

a ω2

(2.32)

where γa = γ∗
a L and A0 is the initial amplitude of the CC beam.

To calculate ωfluid and A(ω), parameters m∗
a and γ∗

a must be known. To evaluate
the latter, it is easier to assume that the surfaces which interact with the fluid are
approximately the same for a beam with a rectangular cross section and for a beam with
a circular cross section. This approximation proves to be reasonable when considering
transverse (i.e., out-of-plane) oscillations of the beam. For a circular beam, the added
mass per unit length is given by [150]

m∗

a = ρfluid
π

4
b2 Γ1 (2.33)

whereas the damping coefficient per unit length is [150]

γ∗

a = ρfluid
π

4
b2 ω Γ2. (2.34)

In Eqs. (2.33) and (2.34), ρfluid is the density of the fluid and the terms Γ1 and Γ2 are
the real and imaginary part of the hydrodynamic function Γ [147]

Γ = 1 +
4 j K1 (−j

√
j Re)√

j Re K0(−j
√

j Re)
. (2.35)

In Eq. (2.35), K0, K1 are Bessel functions of the second kind and Re is the Reynolds
number of the fluid [151]

Re =
ρfluid ω b2

4η
(2.36)

where η is the dynamic viscosity of the fluid.
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2.3.2 Energy losses: notion of quality factor (Q factor)

For an oscillating beam, the Q factor is a measure of energy losses. Indeed, high energy
losses imply a low Q factor. Generally, three main types of energy loss mechanisms are
considered for evaluating the overall Q factor of a resonant beam [152]

1

Q
=

1

Qint
+

1

Qanch
+

1

Qfluid
(2.37)

where 1/Qint is related to structural damping and corresponds to the energy dissi-
pated internally within the resonator’s material, 1/Qanch represents the energy coupled
through the beam supports to a surrounding solid and 1/Qfluid is the energy lost due
to the presence of a surrounding fluid.

Structural damping is mainly caused by material internal frictions. It becomes only
prominent under vaccum conditions. Meanwhile, anchor loss is a frequency-dependent
loss mechanism. The correlation analysis with experiments has revealed that the anchor
loss becomes the primary energy loss source only for beam resonators whose center
frequency increases beyond 20-50 MHz [153]. For a beam surrounded by a viscous fluid,
it has been shown that viscous damping usually serves as the major energy dissipation
source and dominates all other energy loss mechanisms [154, 155, 156, 157]. To a first
approximation, the overall Q factor of a beam can hence be reduced to

1

Q
≈ 1

Qfluid
. (2.38)

Then, estimation of the overall Q factor can be conducted by using a general defini-
tion [158]

1

Q
=

1

2π

Vloss

Vkin
(2.39)

where Vkin represents the peak kinetic energy of the beam and Vloss is the dissipated
energy per cycle per time period T = 2π/ω.

When a CC beam vibrates at its first mode of vibration with a maximal deflection
equal to 1, the kinetic contribution is [150]

Vkin =
1

2
m∗

tot ω2

∫ L

0

W (x)2dx . (2.40)

Meanwhile, Vloss can be found by estimating the averaged dissipated power per unit
length due to the liquid surrounding the beam [150]

P ∗

loss =
1

2
γ∗

a W (x) (2.41)

where γ∗
a is the damping coefficient per unit length according to Eq. (2.34).
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Integrating Eq. (2.41) over the time period T and the length of the beam yields

Vloss =

∫ L

0

∫ T

0

P ∗

loss dt dx = 2π ω γ∗

a

∫ L

0

W (x)2dx . (2.42)

Making use of Eqs. (2.39-2.40) and Eq. (2.42), the Q factor can thus be written

Q =
(mb + ma)

2 γa
ωfluid (2.43)

where ma = m∗
a L, mb = m∗

b L and γa = γ∗
a L.

2.3.3 Vibration of a beam in air and in water: numerical application

For the beam of Table 2.1, Eqs. (2.31) and (2.43) can now be utilized to calculate the
fundamental angular frequency and the Q factor when the beam vibrates in air and in
water.

Air Water

Beam dimensions (mm) ρfluid = 1.18 kg m−3 ρfluid = 997 kg m−3

η = 1.18 × 10−5Pa s η = 8.59 × 10−4Pa s

L b h ω1 (rd/s) Q ω1 (rd/s) Q

12.5 0.25 0.1 21629.31 2474.53 19127.77 17.73

Table 2.2: Values of angular frequency and Q factor for the CC beam of Table 2.1
vibrating in air and in water.

Results are reported in Table 2.2. Under atmospheric pressure (i.e., in air), the
initial fundamental frequency predicted is 21629.31 rd/s. However, if the same beam
is plunged into water, its fundamental frequency drops to 19127.77 rd/s. More impor-
tantly, the Q factor is reduced by approximately 72%. This diminution has a drastic
impact on the frequency response of the beam. Indeed, the Q factor is a figure of merit
of the oscillating beam: the higher the Q factor, the sharper and more pronounced the
resonance. This is confirmed in Fig. 2.6 where Eq. (2.32) has been used to predict the
frequency response of the beam in air and in water.

As it can be observed, the resonance peak is indeed significantly wider when the
beam oscillates in water. Furthermore, the resonance amplitude of the beam in water is
∼90% less that the resonance amplitude in air. This is a severe restriction for using the
CC beam as an efficient force sensor in cell studies. Indeed, a less pronounced resonance
is less easily distinguishable from nonresonant vibrations. In water, the deflection am-
plitude of the beam may even not be high enough for good readout sensitivity, leading
to a low signal to noise ratio.
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Figure 2.6: Frequency response for a CC beam (see properties in Table 2.1) when it
vibrates in air and when it vibrates in water.

These phenomena (i.e., diminutions of the angular frequency, of the Q factor and of
the oscillation amplitude) can mainly be explained by the density of the water. Indeed,
the density of water is ∼850 times higher than the density of air. The amount of added
mass ma is hence considerably higher when the beam is surrounded by water than when
it is surrounded by air. Thus, to increase beam performances in cell studies, the beam
should be dimensioned to minimize the mass added by the presence of water.

2.4 Vibrations of a CC beam in fluids: parametric analysis

Section 2.3 has shown that the presence of a fluid can dramatically deteriorate the
dynamics of a resonant beam. Nevertheless, a single beam with fixed dimensions (see
Table 2.1) was considered so far. But what happens if the dimensions change? In
actuality, it turns out that the fundamental frequency ω1 and the Q factor are both
intimately correlated to the beam geometry. Likewise, the impact of the fluid is also
dependent upon the beam size. One may then wonder what beam dimensions should
be selected to enhance beam performances. In this section, we analyse the evolution of
relevant parameters as a function of beam dimensions.

2.4.1 Varying the beam geometry: influence on the mass added by a
fluid

Obviously, changing beam dimensions changes the beam mass mb. Nonetheless, it is
rather intuitive that variations of beam dimensions will also have an impact on the mass
added by a surrounding fluid ma. To analyse this potential effect, Eq. (2.33) is used for
calulating m∗

tot (which includes both contributions m∗
a and m∗

b) for a beam submerged
into water (ρfluid = 1.2kg m−3, η = 1.8 × 10−5Pa s). For different cross sections (b, h),
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the evolution of mtot with respect to the beam length is then plotted in Fig. 2.7.

Figure 2.7: Evolution of mtot with respect to the beam length for a CC beam immersed
in water. Dashed rectangles illustrate variations of the beam cross sectional areas S.

Figure 2.7 confirms that the amount of added mass is mainly correlated to the
surfaces of the beam that are the most exposed to the surrounding fluid. In the case
of transverse vibrations, these most influent surfaces are the top and bottom surfaces
whose area is Lb. For all pairs (b, h), mtot indeed becomes more and more prominent as
the beam length increases. In the same manner, the parameter mtot is sensitive to width
changes. For instance, for a beam 115 µm thick, the wider the beam the higher mtot.
On the contrary, varying the beam thickness has a limited influence on mtot. Thereby,
for a beam 3.5 mm wide, decreasing the thickness from 200 µm to 115 µm does not
significantly reduce mtot. Consequently, to limit the mass added by the presence of a
surounding fluid, the beam should be narrow and short.

2.4.2 Varying the beam geometry: influence on the resonance fre-
quency and Q factor

In true fact, trying to adapt beam dimensions in order to limit the mass added by the
surrounding water also has an impact on the resonance frequency and the Q factor of the
beam. Table 2.3 reports the evolution of these two fundamental parameters for beams
with different geometries that oscillate in air and in water.

Several interesting facts can be deduced from the analysis of Table 2.3. As a general
trend, it can be observed that higher Q factors can be achieved with higher resonance
frequencies. The most efficient way to increase the resonance frequency is to reduce the
beam length. For example, if a beam 1 mm wide and 0.2 mm thick is shorten by a factor
2, its resonance frequency is multiplied by 4 in air and by ∼3.5 in water.
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Beam dimensions (mm) Air Water

L b h ω1 (rd/s) Q ω1(rd/s) Q

15 1 0.2 30037.91 6441.36 24513.81 41.18

15 1 0.1 15013.60 2263.47 10576.47 16.81

15 0.5 0.1 15017.93 2170.87 12145.02 14.48

30 1 0.2 7509.19 3144.48 6907.86 20.53

30 3 0.2 7504.87 3276.48 4757.91 26.58

30 3 0.1 3748.68 1149.63 1875.04 11.89

Table 2.3: Values of resonance frequency and Q factor for various CC beams vibrating
in air and in water.

Comparatively, tuning the beam width has a limited impact on the resonance fre-
quency, especially if the beam oscillates in air. Indeed, even if the width of a beam
30 mm long and 0.2 mm thick is tripled, the resonance frequency remains almost the
same. This remark is not valid anymore when the beam oscillates in water. Indeed,
because the density of water is ∼850 times higher than the density of air, a substantial
amount of mass is added when the top and bottom surfaces of the beam are enlarged.
Thereby, the resonance frequency of a beam 30 mm long and 0.2 thick is reduced by
∼30% if its width is multiplied by 3.

However, regardless of the nature of the fluid surrounding the beam, it is interesting
to note that the Q factor is not very sensitive to variations of the beam width. Sur-
prisingly, higher Q factors are even obtained for wider beams, a behavior that seems a
little counterintuitive. In other words, this means that a reduction of the beam planar
aspect ratio L/b (while keeping constant L and h) is in favour for an increase of the Q
factor, a fact that also find confirmation in experiments [159]. On the contrary, the Q
factor is strongly correlated to the beam thickness. By way of illustration, for a beam
15 mm long and 1 mm wide, doubling the thickness of the beam permits to mutiply the
Q factor by ∼2.8 in water. Consequently, to achieve a high resonance frequency and a
high Q factor, the beam should be short whereas the ratio b/h should be minimized.

2.4.3 Varying the beam geometry: influence on the force sensitivity

A last relevant parameter to consider is the beam force sensitivity sF defined in Sec-
tion 2.1.1 (see Eq. (2.8)). As seen in Chapter 1, most biological studies involve either
suspension cells with a diameter of ∼100-150 µm (e.g., embryos or oocytes), or adherent
cells (e.g., fibroblasts, HeLa cells, endothelial cells) whose size can be as small as few
micrometers. Depending of the type of cells investigated, forces to be measured range
from nN to mN. The capability of the resonant beam to measure infinitesimal amount
of force should hence be optimized. Regarding the beam dimensions listed in Table 2.1,
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measuring such small forces is not possible. Indeed, in our case of study, the beam was
dimensioned to interact with an egg cell having a large diameter of 5 mm. Nonetheless,
varying aspect ratios for this beam allows us to analyse tendencies that will remain valid
for beams with any dimensions. By substituting different values of length L, width b
and thickness h into Eq. (2.23), Fig. 2.8 can be plotted.
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Figure 2.8: Frequency variations for CC beams with different geometries under a com-
pressive force.

Several conclusions can be drawn from the analysis of figure Fig. 2.8. First, for a
beam with a length of 15 mm and a width of 2.5 mm, increasing the thickness from
100 µm to 200 µm decreases its force sensitivity. By contrast, for a beam of constant
ratio L/h (i.e., L = 15 mm and h = 100 µm), dividing by two the width of the beam
decreases its stiffness and hence improves the force sensitivity. However, it is clear that
for the same amount of force applied, the amount of frequency change is significantly
higher for the longest beam (L = 20 mm).

Hence, for a particular ratio b/h, a resonant CC beam subjected to an axial force
should be preferably long to achieve a high force sensitivity. However, this is in contra-
diction with dimensions required for increasing the resonance frequency and improving
the Q factor. As discussed above, increasing beam length will indeed augment the mass
added by the presence of water. It will hence lower both the resonance frequency and
the Q factor. As a consequence, only a trade-off appears possible because all parameters
cannot be optimized simultaneously: the maximization of the force sensitivity leading
to the degradation of the Q factor and vice versa.
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2.5 Conclusion

This chapter has demonstrated that a simple CC beam oscillating at its fundamental
frequency could in theory be used to measure the axial force imposed by a salmon fish
egg cell. An exact solution has been derived to predict how the resonance frequency
should vary with respect to the axial force applied. An energy approach has also been
introduced and compared with the exact solution. Similar results have been found.
In addition, energy methods have allowed us to conveniently study realistic cases. In
particular, because real cell studies must be conducted into liquids, the effects of a
surrounding fluid on the beam dynamics have been studied. Severe limitations on the
beam performances have been observed and discussed. When the beam is plunged into
water, the initial resonance frequency shifts to a smaller value. Moreover, the frequency
response becomes significantly wider and the resonance amplitude is dramatically re-
duced. This leads to a very poor quality factor, which can be as low as 10-20, and a low
force sensitivity. To minimize this set of negative effects, the possibility to change the
length and the cross section of the beam has been investigated. Nonetheless, it has been
revealed that beam performances could not be enhanced simultaneously. Indeed, trying
to optimize the force sensitivity by varying the beam geometry leads to the deterioration
of the quality factor and vice versa. Hence, it is clear that a simple CC beam is not a
satisfying option to conduct proper cell analysis in a liquid environment. To measure
the Young’s modulus of cells cultured in growth medium without the aforementioned
problems, Chapter 3 next introduces a novel structure made of two beam resonators
that can be exploited to measure forces applied on cells without the need to plunge
them in the liquid.
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Chapter 3
Design of a planar resonant structure

sensitive to out-of-plane forces

In the context of this dissertation, one seeks to evaluate the Young’s modulus of adherent
and suspension cells. A quantitative measure of the elastic properties of living cells can
indeed lead to potential breakthroughs in biotechnologies and medicine, with relevant
applications in the diagnosis of cell-based degenerative diseases (e.g., cancer, malaria).
To determine the Young’s modulus of a cell, it is necessary to measure the force applied
to deform the cell. To that purpose, Chapter 1 has underlined that, compared to force
sensors operating in a static mode, resonant beams may be a valuable option to achieve
high force sensitivity with less suceptibility to noise sources. Accordingly, Chapter 2
has investigated the possibility to use a CC beam to measure interaction forces with a
single suspension cell. Unfortunately, it has been concluded that such a simple structure
is not appropriate to measure forces on cells maintained in a growth medium. Perfor-
mances of CC beams are indeed dramatically reduced in the presence of a surrounding
liquid. Furthermore, with a CC beam, it is mandatory to apply the force to be sensed
at the extremeties of the beam. In experimental conditions, such a configuration would
actually be very unpractical to use for measuring forces on cells anchored to a surface.
This chapter still focuses on force measurement aspects and introduces a novel resonant
structure designed to bring new solutions to these problems.

To discuss this structure, the chapter is organized in five sections. First, Section 3.1
provides an overall description of the structure. Key advantages offered by the structure
are also discussed. To finely grasp the behavior of the structure, energy methods are
used in Section 3.2 in order to theoretically investigate the static and dynamic behaviors
of the structure. In light of theoretical predictions, Section 3.3 provides a discussion
that explains how the structure dimensions have been selected in order to optimize
performances while taking consideration of fabrication constraints. In Section 3.4, a
numerical application is provided to predict the sensitivity of the structure. At last,
concluding remarks are given in Section 3.5.
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3.1 Overall description and key features of the structure

As already discussed, it is now clear that an oscillating CC beam cannot be used in a
satisfying manner for measuring forces on cells that are cultured in a growth medium. In
order to overcome the limitations inherent to such a configuration, the structure shown
in Fig. 3.1 is introduced.

Figure 3.1: Three dimensional schematic illustrating the concept of the planar structure
proposed in this work.

This structure is actually a modified CC beam which incorporates two rectangular
apertures. Alternatively, it can be viewed as two cantilevers serially linked via three
parallel beams. As seen in Fig. 3.1, the thickness is constant for the whole structure.
The three beams (i.e., the central beam and the two outer beams) also have the same
length. Provided that the width of the central beam is twice the width of the two outer
beams, and if the structure is mechanically excited, it provides the modes shapes re-
ported in Fig. 3.2. For cell studies, the third mode shape is of particular interest. From
now on and throughout the chapter, only this mode shape will be considered.

As it can be seen in Fig. 3.2(c), the mode shape selected is an antisymmetrical
vibration mode where the two outer beams oscillate vertically (out-of-plane mode) with
a phase lag of 180 degrees (i.e., they oscillate in antiphase). In the mean time, the central
beam remains immovable. Because the central steady beam is attached to the adjacent
outer beams that oscillate, this vibration mode actually permits to measure a force
applied perpendicular to the central beam via frequency shifts of the outer beams (this
will be demonstrated through a thorough theoretical analysis in Section 3.2). Hereafter,
we mention and discuss the advantages and possibilities offered by this mode shape.� First advantage: the structure can be used as a versatile cell substrate sensitive

to out-of-plane forces

Although force sensors constituted of several oscillating beams have been previously
reported in the literature (e.g., [160, 161, 162]), these sensors could only measure ax-
ial forces applied to their extremities (i.e., in-plane forces), as in the case of the CC
beam studied in Chapter 2. To measure forces perpendicular to the sensors’ plane (i.e.,

57



(a) (b)

(c) (d)

Figure 3.2: Mode shapes predicted by finite element analysis (FEA) conducted with
COMSOL V.4 Multiphysics package for the structure represented in Fig. 3.1. (a) First
mode shape; (b) Second mode shape; (c) Third mode shape; (d) Fourth mode shape.

out-of-plane forces), mechanical converters needed to be used (e.g., [163, 164, 165]). Un-
fortunately, such configurations would be unpratical for conduction mechanical studies
on cells. Unlike in previous devices reported, the mode shape of Fig. 3.2(c) intrinsically
permits to measure out-of-plane forces. This is an interesting feature in our context.
Indeed, it enables the use of the central steady beam as a force sensitive cell substrate
where cells could be placed. This concept is illustrated in Fig. 3.3.

Figure 3.3: Concept of a force sensitive cell substrate illustrated with a suspended
cell (trapping system for maintaining the cell not represented). To extract the elastic
properties of a cell, the third vibration mode of the structure of Fig. 3.1 is exploited:
the two outer beams oscillate in antiphase whereas the cell is placed on the third central
beam which remains immovable.

Thereby, the central steady beam could be adapted for positioning both suspended
and adherent cells. Although such an adaptation will not be addressed in this work, one
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might for instance envision to integrate a microwell similar to those reported in [166] for
positioning and maintaing an individual suspension cell. Alternatively, the half span of
the central beam could be coated with biochemicals to culture a few adherent cells.� Second advantage: the structure can be replicated for matrix configurations

The structure of Fig. 3.1 is a planar structure that has been designed to be MEMS
compatible. In other words, it is possible to scale it down via microfabrication processes.
One can hence reasonably envision to replicate the structure. In order to increase cell
analysis rates, a matrix incorporating multiple structures could be produced for the
characterization of tens of cells in parallel. Such a feature might permit to obtain
valuable preliminary statistical results within minutes, irrespective of the type of cell
investigated.� Third advantage: the structure can be equipped with a fluidic system

Because the structure provides a steady area and is MEMS compatible, one can fore-
see to exploit the steady central beam for implementing a fluidic system. Such an option
is inspired from works reported in [167, 168, 169] where the authors demonstrated the
feasibility to use open microfluidic channels (see Fig. 3.4(a)) for applying mechanical
forces with external nanoprobes on individual cells. It is however worth noticing that
in these references, the microchannel is only used for cell delivery. To monitor forces
applied to the cells, forces must be measured via the external nanoprobe. As discussed
in Chapter 1, force measurement artifacts can however occur when such a nanoprobe
enters in contact with the surface of the liquid contained in the microchannel (e.g., oc-
curence of capillary forces). Fig. 3.4(b) shows that a similar open microchannel could
be implemented into the planar structure by using microfabrication processes. Thereby,
the delivery of culture medium could be ensured to the cells positioned onto the cen-
tral beam. However, the microchannel would become inherently force sensitive, ideally
limitating force measurement artifacts. The possibility to implement such a key fea-
ture is strengthen by other works that reported the fabrication of buried microchannels
into resonant structures that aimed at detecting the presence of biomolecules into liquid
samples [170, 171, 172].� Fourth advantage: the structure does not need to be immersed into liquids

Chapter 2 has stressed out that performances of conventional CC beams are dramatically
reduced as soon as the beams are plunged into a liquid environment. However, this
critical issue is resolved with a structure that integrates a fluidic system as represented
in Fig. 3.4(b). Indeed, cells can be kept in cell medium providing vital nutrients. In
the mean time, because the microchannel is connected to the adjacent outer beams, the
latter can sense an external force applied to the cells without the need to be immerged
into the liquid. With the outer beams oscillating in air, the quality factor is not altered
anymore and high performances can be guaranteed.
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(a) (b)

Figure 3.4: (a) Illustration of an open microfluidic channel for cell studies, as reported
by Ryu et al. [168]. Forces applied to the cells must be measured via an external
nanoprobe; (b) Conceptual view showing a microfabricated structure equipped with a
similar open microfluidic channel. Here, the microchannel becomes intrinsically force
sensitive.

3.2 Theoretical analysis

3.2.1 Preliminary remarks

The adjunction of an open microfluidic channel to the planar structure appears as a
valuable concept, worth to be tested. If such a microchannel can be etched via micro-
fabrication processes, it will be seen that precision wire cut electric discharge machining
(EDM) was favoured for the fabrication of the prototype reported in Chapter 4. Wire
cut EDM, however, was inappropriate for etching an open microchannel. Consequently,
and for a better comparison between the theoretical results of this chapter and the ex-
perimental results provided in Chapter 4, the presence of an open microchannel is not
considered in the following theoretical analysis. Nevertheless, it is worth noticing that
the absence of the microchannel is not a critical issue. Finite element analysis (FEA)
indeed shows that the working principle of the structure is not fundamentally affected
by the presence or the absence of an open microchannel. Although slight discrepencies
or bias may occur, the overall analysis and results provided in the rest of this chapter
remain valid for a structure with or without a microchannel.

3.2.2 Static behavior: large deflection of the planar structure

To understand how a force F applied perpendicular to the central beam can be mea-
sured, it is first necessary to gain some insights into its static behavior. For convenience,
the whole structure is supposed to be symmetric. Without loss of generality, a symmet-
ric structure indeed permits to study the deflection of the entire structure by considering
only one fourth of the structure, as sketched in Fig. 3.5.
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Figure 3.5: Top: for predicting the quasi-static deflection of the structure, only the
darker “tuning fork” (top view) is considered. Bottom: equivalent one-dimensional
model (side view) of the colored beams (proportions exaggerated for illustration pur-
poses).

As it can be obsverved, this quarter structure has a shape similar to a tuning fork. It
is composed of three segments: the overhang (colored in black), the central tine (colored
in dark gray), and the outer tine (colored in light gray). To analyse the deflection of
this tuning fork (and hence of the whole structure), it is assumed that:� The three segments satisfy Euler-Bernouilli beam theory so that assumptions made

at the beginning of Chapter 2 apply.� During deflection, the length of each segment increases. This length increase
produces some axial stress which can increase the stiffness of the tuning fork.
This effect, often termed midplane stretching in the literature, may appear even
for deflections that are not especially large. It is thus an important effect to
consider to guarantee accurate predictions.

Nonetheless, it is worth stressing out that the midplane stretching effect is inherently
a nonlinear phenomena. In true fact, trying to find an exact solution for a structure
composed of several beams while taking into account such a nonlinear phenomenon can
become challenging. Indeed, it then becomes necessary to solve coupled differential
equations that involve integrals. This quickly leads to complex calculations. On the
other hand, energy based methods offer a powerfull alternative. In particular, they per-
mit to move from a differential eigenvalue context to an algebraic eigenvalue context.
The problem then becomes quite straightforward to solve. Moreover, Chapter 2 has
already revealed that energy techniques can be safely used to grasp the main behavior
of elastic beams (see Section 2.2). Consequently, to predict the maximum displacement
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of the outer tine when a force F is applied at the extremity of the central tine, an energy
approach is favoured.

First, one-dimensional coordinate functions are used to approximate the displace-
ment field of each segment. To guarantee enough degrees of freedom, the flexural dis-
placement w1,2,3(x) of each segment is modeled by third order polynomial expressions



















w1(x) = a0 + a1 x + a2 x2 + a3 x3

w2(x) = a4 + a5 x + a6 x2 + a7 x3

w3(x) = a8 + a9 x + a10 x2 + a11 x3 .

(3.1)

The three polynomials in Eq. (3.1) are then used to calulate the total potential
energy stored by the tuning fork during deflection

Utf = Ub + Us (3.2)

where Ub is the sum of strain energies developed by each segment during bending

Ub =

3
∑

i=1

1

2
EIi

∫ l/2

0

(

d2wi

dx2

)2

dx. (3.3)

In (3.3), Ii are the moments of inertia of the three segments with I1 = bh3/4 and
I2 = I3 = bh3/12, respectively.

In addition, Us is the sum of energy contributions due to the midplane stretching of
the segments that occurs during deflection

Us =

3
∑

j=1

EAj

4l

[

∫ dj

cj

(

dwj

dx

)2

dx

]2

(3.4)

where c1 = 0, d1 = l/2, c2,3 = l/2 and d2,3 = l. Aj in (3.4) represents the cross section
areas of the three segments with A1 = 3bh and A2,3 = bh. The total potential energy
function can hence be written as

Φ = Utf − W (3.5)

where W = F w2(l) is the work done by the punctual force F .

Applying the principle of minimum potential energy, one sets for each unknown
coefficient ai

∂ Φ

∂ ai
= 0. (3.6)

The problem is then augmented with Lagrange multipliers by considering a set of con-
straints. To obtain satisfactory results, mechanical constraints do not need to be consid-
ered. Enforcing geometrical constraints is indeed enough to provide an accurate solution.
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For instance, because the overhang is clamped at x = 0, displacement and slope are both
zero

w1(0) =
dw1

dx
(0) = 0. (3.7)

From this, it can be immediately concluded that a0 = a1 = 0. Additional geometrical
constraints can be expressed for each segment’s extremity. Thereby, assuming that the
central tine and the outer tine are rigidly linked to the overhang at x = l/2, the following
conditions can be enforced

w1(l/2) = w2(l/2) = w3(l/2), (3.8)

dw1

dx
(l/2) =

dw2

dx
(l/2) =

dw3

dx
(l/2). (3.9)

Finally, because only one-fourth of the whole structure is considered, the central and
outer tines are terminated by sliding conditions, as skecthed in Fig. 3.5. Accordingly,
their slope at x = l must be zero

dw2

dx
(l) =

dw3

dx
(l) = 0. (3.10)

The augmented system can then be numerically solved for different values of F . To
compute such a system, an algorithm such as the one reported in [173] can be used. The
interested reader is invited to consult the original reference for further details on this
algorithm.

3.2.3 Dynamic analysis: effects of a static predeflection on the oscil-
lation of the outer beams

With the tuning fork illustrated in Fig. 3.5, previous section has introduced a numeri-
cal approach to predict the deflection profile and the deflection amplitude of the outer
beams when a static force F is applied to the central beam. It is now supposed that a
proper mechanical excitation is provided to the whole structure, so that the vibration
mode where the outer beams oscillate in antiphase is activated (see Fig. 3.2(c)). This
section demonstrates that, if the force F is applied while the outer beams oscillate, the
variations of deflection imposed by F actually impacts the initial resonance frequency
of the outer beams.

To demonstrate such a coupling between static and dynamic behaviors, a symmet-
ric structure again simplifies the analysis. Indeed, and since we are only interested in
the antisymmetrical vibration mode illustrated in Fig.3.2(c), valuable insights into the
structure’s dynamics can be grasped by restricting the analysis to a single outer beam
(see Fig. 3.6).

To a first approximation, one can choose to model the outer beam as a hinged-hinged
beam terminated by two rotational springs of stiffness kr1 (see Fig. 3.6). The presence
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Figure 3.6: For predicting frequency shifts, only one outer beam is considered. Vibra-
tions (dashed green lines) take place around an equilibrium position (thick green line).
The curved shape is indirectly engendered by static deflections (proportions not to scale)

of rotational springs is justified by the facts that extremeties of the outer beam are
attached to the overhangs. Intuitively, it can be foreseen that, although the overhangs
can be considered as axially immovable ends, they should not act as ideal clamping
supports. In actual practice, the outer beam should transfer energy to the overhangs
through its attachement points during oscillations. Consequently, it is rather expected
that the overhangs should slightly distort during oscillations of the outer beam (this is
confirmed by FEA, as shown in Fig. 3.8(b)). In the literature, elastic rotational springs
are often used to model such a flexibility [174, 175, 176].

Again, energy approaches can be exploited to conveniently handle the configuration
of Fig. 3.6. Because the outer beam is terminated by rotational springs attached to
pinned ends supports, it is conventional to assume a displacement function in the form
of a sine

w(x) = Ds sin
(πx

l

)

(3.11)

where Ds is the midspan deflection of the outer beam.

Ds is related to the force F applied upon the central steady beam, and can be
estimated from the previous static analysis (see Fig.3.5)

Ds = w3(l) − w1(l/2). (3.12)

Conceptually, it is however more convenient to consider that Ds is rather due to
an unknown equivalent virtual force Fv (see Fig. 3.6). With an energy approach, a
relationship between Ds and Fv can be derived. Considering that Fv is applied at the
beam midspan, the potential energy stored by the beam is the sum of the following
contributions

UT = Ub + Us + Urs . (3.13)
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In (3.13) Ub is the bending energy of the beam

Ub =
EI

2

∫ l

0

(

d2w

dx2

)2

dx (3.14)

Us is the energy developed during the midplane stretching of the beam

Us =
EA

8 l

[

∫ l

0

(

dw

dx

)2

dx

]2

(3.15)

and Urs is the energy stored by the two rotational springs of stiffness kr1

Urs =
kr1

2
θ2

0 +
kr1

2
θ2

l (3.16)

where θ0 and θl are the slopes
dw

dx
evaluated at x = 0 and x = l, respectively.

Considering that the work done by Fv is W1 = Fv w(l/2), the total potential energy
function Φ1 is

Φ1 = −Fv Ds +

[

π2kr1

l2
+

Ebh3π4

48l3

]

D2

s +
Ebhπ4

32l3
D4

s . (3.17)

Minimizing (3.17) with respect to Ds yields a cubic force-centered-deflection law

Fv = k1 Ds + k3 D3

s (3.18)

where

k1 =
Ebh3π4

24l3
+

2kr1
π2

l2
and k3 =

Ebhπ4

8l3
. (3.19)

In (3.19), k1 and k3 are linear and nonlinear spring constants, respectively.

As in [177], it can now be assumed that small deflections of the beam about a mean
deflection Ds can be described approximately by a single stiffness value. An effective
spring constant is found by deflecting the beam from its equilibrium position by an
arbitrary amount ∆d (see Fig. 3.6), so that

Fv = k1 (Ds + ∆d) + k3 (Ds + ∆d)
3. (3.20)

Expanding (3.20) yields

Fv = k1 Ds + k1 ∆d + k3 D3

s + 3k3 D2

s∆d + 3k3 Ds∆
2

d + k3 ∆3

d . (3.21)

Considering that vibration amplitudes ∆d are sufficienctly small, terms proportional
to ∆2

d and ∆3

d in (3.21) can be neglected. Then, an equivalent stiffness of the outer beam
may be approximated by

keq =
dFv

d∆d
≈ k1 + 3 k3 D2

s . (3.22)
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As often in structures involving coupled beams, vibrating beams can be modeled
to a first approximation as one degree of freedom oscillators (e.g., [178, 179]). If the
single outer beam is assumed to oscillate as an undamped lumped-parameter system,
its natural frequency is given by

f =
1

2π

√

keq

meq
(3.23)

where meq is the equivalent mass of the beam.

At rest, Ds = 0 and the initial resonance frequency of the beam is solely proportional
to the linear spring constant

f0 =
1

2π

√

k1

meq
. (3.24)

Nevertheless, as the predeflection Ds increases, the quadratic term in (3.22) becomes
more and more prominent. As a result, the resonance frequency of the beam will vary
in accordance with the following relation

f

f0

≈
[

1 +
3 k3

k1

D2

s

]1/2

. (3.25)

In Eq. (3.25), Ds is directly dependent upon the amount of force F applied to the
central beam (see Eq. (3.12)). Consequently, one can estimate F by monitoring the
variations of resonance frequency of the outer beams.

3.3 Discussion about the dimensions of the planar struc-
ture

In Chapter 2, a parametric analysis was conducted in order to maximize the perfor-
mances of the resonant CC beam. Likewise, a similar optimization should be conducted
for the planar structure. Here, a rigorous parametric analysis should investigate varia-
tions of dimensions for the set of parameters represented in Fig. 3.7. Nonetheless, trying
to optimize the structure with the exclusive goal to achieve the best performance indices
possible can lead to unrealistic dimensions. For instance, results can lead to a structure
which in practice cannot be fabricated with the equipments and/or materials available.
Hereafter is discussed how experimental constraints actually imposed severe restrictions
for the selection of dimensions.� Determining the width b2 of the central beam

The first main constraint was directly related to the type of biological samples used
during experiments. For preliminary tests, suspension cells (lobster eggs) with an ap-
proximate diameter of 500 µm were used (motivations that led to the choice of this
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Figure 3.7: Top view of the planar resonant structure with dimensions that can be varied
to impact the structure’s performances. bo and lo are the width and the length of the
overhangs, respectively. l is the length of the tree beams. b1 and b2 are the width of
the outer beams and the central beam, respectively. The whole structure has a length
L and constant thickness h (not represented).

specific type of samples are given in Chapter 4). Because no system capable of holding
a cell (e.g., a microwell) is presently implemented, the positioning of suspended cells
during experiments is greatly facilitated if the central beam has a width similar to the
diameter of the cells. Consequently, a central beam with a width of 500 µm appeared
to be ideal for a first prototype.� Determining the width b1 of the outer beams

In order to provide the well balanced vibration mode of Fig. 3.2(c), the two outer beams
must have the same dimensions. Moreover, this specific mode mainly occurs if the width
of the central beam b2 is at least twice the width b1 of the outer beams (i.e., b2 ≥ 2b1).
However, as it will be detailed in Chapter 4, laser sensors were used to monitor the
vibrations of the outer beams during experiments. In this case, very narrow beams can
lead to weak reflectivity and detection problems. For preliminary tests, outer beams
with b1 = 250 µm were hence favoured.� Determining the thickness h of the structure

Trying to impact structure performances by varying the thickness h proved to be useless.
Indeed, at the time of prototyping (see Chapter 4), only sheets of stainless steel with a
thickness of 100 µm could be used for the fabrication of the prototype. In any event,
it must be underlined that a prototype with a lower thickness would have been very
delicate to manipulate. Because the prototype of Chapter 4 had to be manipulated
with bare hands, a thickness of 100 µm proved to be ideal to avoid any warping of the
structure.� Determining the length l of the three beams

The length l was selected in order to ensure high performances of the oscillating outer
beams. A high frequency was sought to obtain a high Q factor. Indeed, with a high
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Q factor, even small forces applied to the central beam can lead to large amounts of
frequency changes, as we realized in Chapter 2. From Chapter 2, we also learned that
the shorter the beam the higher the resonance frequency. However, the planar struc-
ture behaves in a more complex way than a simple CC beam. In particular, although
shorter beams indeed increase the frequency of the vibration mode, Fig. 3.8 shows that
a significant alteration of the mode shape may occur. This demonstrates that the over-
hangs do definitely not act as ideal clamped-clamped end conditions. A distorted mode
such as the one in Fig. 3.8(b) must be avoided at all costs for at least two reasons.
First, because the outer beams in Fig. 3.8(b) twist during oscillations. This twisting
can engender measurement instabilities with laser sensors. Second, vibrations can be
transferred to the central beam. This can pose problems to maintain the position of the
cells on the central beam. Moreover, these vibrations can provide unwanted mechanical
stimuli to the cells. For a thickness h = 100µm and a width b1 = 250µm, the length l of
the outer beams (and hence the length of the central beam) was selected to be 12.5 mm.
This value indeed represented a good trade-off for achieving a high resonance frequency
while ensuring a proper vibration mode.

(a) (b)

Figure 3.8: Images from FEA analysis showing two structures with the same dimensions.
Only the length of the beams is different. With shorter outer beams, a significant
distortion of the mode shape may occur. (a) Structure with outer beams 12.5 mm long;
(b) The same structure with outer beams 8 mm long.� Determining the width bo of the overhangs

FEA actually shows the width bo of the overhangs should not be large. This is due
to the fact that with larger overhangs, the attachment points that link the outer beams
to the overhangs become softer. A first consequence is that the resonance frequency of
the mode of interest decreases. This is not in favour of a better sensitivity. With softer
attachment points, a distortion of the mode also occurs, even though it is less important
than the one shown in Fig. 3.8(b). But again, vibrations that could be potentially
transferred to the central beam should be absolutely avoided. For the fabrication of
the prototype in Chapter 4, several FEA analysis have been conducted. As a result,
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the best trade-off has been obtained for bo = 1.5 mm. With this value, the attachment
points are sufficiently rigid. In the meantime, the outer beams are sufficiently isolated
from the central beam so that they cannot touch a large cell during oscillations.� Determining the length lo of the overhangs

With all other dimensions fixed, there is no real need to run numerous calculations
or simulations to foresee that the planar structure becomes more and more compliant as
the length of the overhangs increases. This may first appear as an advantage, because
for a particular amount of force applied to the central beam, more deflection is imposed
to the outers beams. Consequently, a higher amount of frequency change can be ex-
pected for the same amount of force applied. On the other hand, the structure become
more fragile. If the structure must be manipulated by bare hands, warping can easily
occur. Moreover, if the aspect ratio of the structure (L/h) is very high, fabrication of
the structure may rapidly become delicate. Finally, the device become cumbersome.
Therefore, the structure should not be designed to be as long as possible. A reasonable
and convenient limit was found by fixing lo = l/2 = 6.25 mm.

3.4 Static and dynamic behavior of the structure: numer-
ical application

Dimensions for the fabrication of a first prototype were selected according to the afore-
mentioned justifications. Numerical values for these dimensions (see list in Table 3.1)
can now be used to compute the theory developed in Section 3.2. To validate the an-
alytical approaches developed for predicting the static and dynamic behaviors of the
structure, FEA was used as a reference tool. To run FEA, additional material proper-
ties were specified within COMSOL V4 multiphysics package. Since stainless steel has
been utilized to manufacture the prototype of Chapter 4, a density of 8030 kg/m3 and
a Poisson’s ratio of 0.29 were set during simulations.

3.4.1 Theoretical results: static deflection

The static deflection of the structure was first investigated. To consider the midplane
strecthing effect, COMSOL simulations were run in the nonlinear (i.e., large) deflec-
tion mode. COMSOL simulations were run for the entire structure. For a point force
F = 260 mN applied at the half span of the central beam, Figure 3.9 shows that static
behavior predicted the theory developed in Section 3.2.2 is in excellent agreement with
the one predicted by COMSOL.

Several facts can be observed from Fig. 3.9. First, it is confirmed that the outer
beam indeed deflects in a way very similar to a sine, as assumed in Section 3.2.3. Second,
the deflection amplitude of the outer beam is smaller than the deflection amplitude of
the central beam. This intuitive result is also confirmed by Fig. 3.10 which compares
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Beams length (l) 12.5 mm

Outer Beams width (b1) 0.25 mm

Central Beam width (b2) 0.5 mm

Overhangs width (bo) 1.5 mm

Overhangs length (lo) 6.25 mm

Total length (L) 25 mm

Thickness (h) 0.1 mm

Young’s modulus of stainless steel (E) 212 GPa

Table 3.1: Numerical values selected for prototype fabrication and theoretical predictions
(see also Fig. 3.7)
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Figure 3.9: Deflection profile and deflection amplitude when a normal force F = 260 mN
is applied at the half span of the central beam.

the deflection amplitude of both beams as a function of the force F applied. Again,
Fig. 3.10 proves that analytical and FEA results are in accordance. It also clearly
demonstrates that the stretching effect progressively dominates as the beams deflection
increases. Thereby, for large deflection amplitudes, the structure is clearly stiffer.

3.4.2 Theoretical results: variations of resonance frequency

Once the static deflection is known, the amount of frequency change engendered can
be estimated. For COMSOL predictions, a prestressed modal analysis was run. This
consisted of the previous static analysis in which the nonlinear deflection of the structure
was obtained. This was followed by a subsequent modal analysis, which calculated the
resulting resonant frequency of the strained structure. With the analytical model devel-
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Figure 3.10: Half span deflections of the central beam and one outer beam as a fonction
of the force F applied to the central beam. Due to symmetry, the second outer beam
deflects excactly in the same manner.

oped, the amount of frequency change can be estimated with Eq. (3.25). Nevertheless,
to compute Eq. (3.25), a numerical value must be attributed to the rotational stiffness
kr1. An order of magnitude was found in [180] where a formula is given to estimate the
rotational spring constant of anchors for a CC beam

kr1 =
16E I3

l
(3.26)

where I3 = b1h
3/12 is the moment of intertia of the outer beam drawn in Fig. 3.6. For

a structure whose dimensions are given in Table 3.1, Eq. (3.26) gives kr1 ≈ 5.6 × 10−3

Nm/rd. This numerical value provides an order of magnitude for kr1. However, as
previously revealed, the outer beams do not excactly behave as ideal CC beams during
oscillations. Therefore, the value of kr1 was adapted by fitting curves with COMSOL
predictions. With kr1 = 3.45 × 10−3 Nm/rd very satisfactory results were obtained, as
seen in Fig. 3.11.

COMSOL simulations were run for the whole structure so that the specific vibration
mode where the two outer beams oscillate in antiphase could be considered. By way of
comparison, the analytical approach of Section 3.2.3 has only considered one outer beam
with approximate boundary conditions. Notwithstanding these simplifications, Fig. 3.11
proves the applicability of the analytical model developed. When analysing Fig. 3.11, a
quasi linear region is observed if the force applied to the central beam exceed 100 mN. In
particular, the inset shows that for small variations of force F applied around the point
P , a linear force sensitivity of 2.91 Hz/mN is predicted. In the mean time, it is worth
noting that most digital oscilloscopes can today at least provide frequency measurement
with an accuracy of 0.01 Hz. This means that, in theory, a minimum force of about
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Figure 3.11: Evolution of the resonance frequency of the outer beams when a vertical
force F is applied upon the half span of the central beam.

3.4 µN could be resolved by the structure. An even higher force resolution could be
obtained with a frequency counter providing higher precision.
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Figure 3.12: Evolution of the resonance frequency of the outer beams when a vertical
displacement is imposed upon the half span of the central beam.

Alternatively, and because displacements of the central beam can also be predicted
with respect to the force F applied, the amount of frequency change can also be esti-
mated as a function of a displacement imposed to the central beam. As seen in Fig. 3.12,
a linear displacement sensitivity of 4.8 Hz/µm is expected. If the frequency can be mea-
sure with an accuracy of 0.01 Hz, a minimum displacement of ∼2 µm can theoretically
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be detected by the structure.

3.5 Conclusion

This chapter has introduced a novel planar structure that constitutes the heart of this
thesis work. This planar structure is intended to act as a force sensitive cell substrate
for measuring the Young’s modulus of living cells. It provides a steady area where sus-
pended and adherent cells can be placed. Because the steady area is connected to two
adjacent beam resonators, the force applied to the cells can be estimated by monitoring
the frequency changes of the beam resonators. This is an interesting feature considering
the fact that, as outlined in Chapter 1, most MEMS dedicated to cell mechanics can
exclusively deal with only one type of cells. Moreover, the steady area could be equipped
with an open microfluidic channel. Thereby, cells could be cultured in growth medium.
In the mean time, forces applied upon cells can be sensed with the beam resonators
without the need to plunge them into liquids. This provides a solution to problems
identified in Chapter 2 that are inherent to most resonators dealing with biological sam-
ples in liquids. Furthermore, the structure has been designed to be MEMS compatible
in the sense that it can be duplicated via microfabrication processes for matrix config-
urations. An extensive theoretical analysis has been conducted to investigate the static
and dynamic behaviors of the structure. When the central beam is bent, a quasi lin-
ear displacement sensitivity ∼4.8 Hz/µm has been predicted. For measuring forces on
cells in order to extract their Young’s modulus, the force sensitivity expected is about
3 Hz/mN. Since most digital oscilloscope can today at least measure frequencies with an
accuracy of 0.01 Hz, this means that the structure can in theory detect a displacement
of about 2 µm, and resolve a minimum force of 3.4 µN. To confirm these predictions,
Chapter 4 next reports the fabrication and the experimental characterization of a first
prototype.
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Chapter 4
Experimental validation and first

investigations conducted on biological

samples

From Chapter 2, it is clear that measuring forces with a simple beam resonator in a
liquid environment is challenging. This drawback usually prevents the use of beam res-
onators for estimating the Young’s modulus of living cells. To bridge this gap, Chapter 3
has introduced a new force sensitive structure constituted of two narrow outer beams
and a wider central beam. It exploits a specific vibration mode where the two outer
beams oscillate in antiphase whereas the central beam remains immovable. A key fea-
ture of the structure is that the central steady beam has the potential to be used for
the implementation of a microfluidic system for maintaining cells in culture medium.
Meanwhile, the outer beams can be used to measure vertical forces applied to individual
cells. The fact that the resonant beams can measure forces without the need to plunge
them in the liquid is another strength of the structure. In Chapter 3, the static and
dynamic behaviors of the structure have been theoretically analysed. In this Chapter,
experiments are first conducted in order to validate the performances predicted.

To that purpose, Section 4.1 reports the fabrication of a first prototype as well as
the experimental arrangement used for its characterization. The section also details
the implementation of an optical fiber displacement probe specifically developed for
measuring the resonance frequency of the outer beams. Then, the static and dynamic
behaviors of the prototype are experimentally explored in Section 4.2. Each experimental
result is confronted to theoretical predictions. In a second part, the prototype is used
to conduct first investigations on biological samples. In Section 4.3, the prototype
is associated with an indenter. The whole system is used to compress a suspension
cell. An indirect method that could be easily automated is also presented in order to
rapidly extract a first estimation of the Young’s modulus of the cell. Finally, Section 4.4
concludes the chapter.
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4.1 Experimental arrangement

4.1.1 Overview

To validate the theoretical analysis developed in Chapter 3, a first prototype of the
planar structure (see Fig. 4.1) was fabricated in accordance with dimensions listed in
Table 3.1. As a reminder, these dimensions were selected in order to deal with sus-
pension cells with a diameter ranging from 100 to 500 µm. For preliminary tests, such
large cells indeed appeared ideal since it is relatively easy to localize them, even with
bare eyes. They are also inherently more robust to manual manipulation than smaller
cells. Considering the length of this prototype (25 mm), microfabrication processes were
not required for its fabrication. Although the planar structure has been designed to be
MEMS compatible, precision wire cut electric discharge machining (EDM) proved to be
an efficient technique for rapid and inexpensive prototyping.

Figure 4.1: Top view of the prototype and experimental arrangement used during ex-
periments. The planar structure fabricated is hold between two clamps tightened with
screws. A manual positioning stage can translate one of the clamps along the y direc-
tion. The PZT element is used to activate the resonance mode of interest. The right
inset provides a microscope view of the area indicated by dashed lines. For conciseness,
CB and OB stands for central beam and outer beams, respectively. The white scale bar
equals 1.5 mm.

The selection of the material to be used for the fabrication of the prototype was
based on three main criteria. First, wire cut EDM had to be capable of machining the
material selected with a high precision. Second, the material had to be biocompatible
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since the structure is intended to be directly in contact with living cells. Third, the
material preferably had to be reflective so that optical sensors could be used during ex-
periments (see Section 4.1.2). Several stainless steel alloys gather up all these features.
The prototype was hence cut from a single sheet of stainless steel whose thickness was
100 µm. This thickness proved to be convenient to avoid any risk of warping when the
prototype had to manipulated with bare hands.

To activate the antisymmetrical resonance mode of interest (see Fig. 3.3), mechani-
cal excitation was provided by a 3 mm long, 2 mm wide and 200 µm thick piezoelectric
(PZT) element (Physik Instrumente PIC151). This PZT element was bonded onto the
prototype with conductive paste and driven by an AC signal with a function generator
(Agilent 33120A) connected to a laboratory power amplifier (Newtons4th LPA400).

During experiments, the prototype was suspended between two clamps. One of the
clamps was fixed to a manual micropositioning stage that allowed horizontal translations
along the y direction (see Fig. 4.1). To ensure a firm attachment of the prototype and to
avoid slipping, the clamps were tightened with screws. It is also worth underlining that
the whole setup was mounted on a pneumatic antivibration isolation table to minimize
the presence of external disturbances.

4.1.2 Implementation of an optical fiber displacement probe

To extract the Young’s modulus of a cell, one must know the force that deforms the
cell. Chapter 3 has demonstrated that if a vertical force is applied to the central beam
of the structure, the force applied should provoke frequency shifts. Hence, to measure
forces with the planar structure, the resonance frequency of the outer beams must be
measured. A large variety of techniques can be employed for such a measure.

The integration of strain gauges made of sensitive films was first investigated. Such
strain gauges indeed enable straightforward detection of resonance vibrations. They
can also be easily deposited and patterned at the surface of microfabricated structures.
Besides, a PZT element has been already favored to provide excitation to the prototype.
Reciprocally, PZT sensing elements could have been bonded near the attachment points
of the outer beams to convert mechanical vibrations into electrical signals. Because
stress is maximum near attachment points, this location would have maximized the me-
chanical to electrical coupling. However, to test this configuration with the prototype
of Fig. 4.1, the only available option was to bond the PZT elements by bare hands.
With such a manual bonding, neither the amount of conductive paste deposited nor the
alignment of the PZT elements could have been precisely controlled. Accordingly, the
risk of altering the structure symmetry and distorting the vibration mode of Fig. 3.3
was high.

To avoid any alteration of the balanced vibration mode exploited, a non-contact
based measurement technique was favoured. Among other techniques (e.g., see reviews
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[181, 182]), optical fibers rapidly appeared as excellent candidates. Indeed, optical
fibers can provide exquisite displacement resolutions with high bandwidth. They are
also inherently very compact and could be used for future MEMS version of the planar
structure. For instance, optical fibers with a diameter of 125 µm can be easily found.
Moreover, dense networks of multiplexed optical fibers are extensively used in numerous
applications (e.g., in telecommunications). Optical fibers are thus inherently adapted
for measuring the frequency of multiple structures in a matrix-like configuration.

When associated with interferometric techniques, optical fibers can measure dis-
placements up to several millimeters with a resolution of 10 nm (e.g., fiber Fabry-Perot
interferometers [183, 184, 185]). Despites appealing advantages, interferometers fiber
probes involve complex demodulation techniques such as fringes counting for extracting
the information of interest. They also involve expensive optical equipments (e.g., laser
sources).

Alternatively, fiber displacement sensing heads based on variations of light intensity
can achieve similar performances [186]. Compared to interferometric methods, their
exploitation can be simpler. In this work, such a configuration was preferred. As
illustrated in Fig. 4.2, the implemented sensing head is made of two optical fibers. One
of the fiber is used as a transmitter. This transmitting fiber is connected to a light
source and guides the light toward a reflective target (i.e., in our case, the surface of the
outer beams). The second fiber is used as a receiver and collects the light reflected by
the target. Theoretically, it has been shown that the amount of optical power returning
to the receiving fiber Pr depends on the gap g between the end of the head and the
mirroring target [187]

P r(g)

P t
=

2

ζ2
exp

(

− 8

ζ2

)

(4.1)

where
ζ = 1 + 2g/za. (4.2)

In Eqs. (4.1, 4.2), Pt is the optical power exiting the transmitting fiber and za is the
light asymptotic cone apex (see Fig. 4.2).

During experiments, the light source used was a vertical cavity surface emitting laser
(VCSEL) diode (Honeywell HFE4080-321-XBA). This diode was originally intended for
high-speed data communications. Compared to most commercial laser sources, the ex-
ternal case of the HFE4080-321 is only 12.7 mm long. With a wavelength centered
around 850 nm, the light emitted from this diode proved to be insensitive to potential
disturbances originating from the ambient light. This preserved the quality of the sig-
nal of interest during measurements. As recommended by the manufacturer, the diode
was supplied with a regulated forward current of 11 mA to guarantee stable and safe
operation without temperature control. The VCSEL diode was connected to the trans-
mitting fiber via a standard ST-LP fiber connector. With a forward current limited to
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Figure 4.2: Illustration of the double-fiber displacement sensor used to measure the
oscillation amplitude of the outer beams during experiments. The inset on the right
corner shows a magnified view of the two fibers used during experiments.

11 mA, the optical power exiting the transmitting fiber was 800 µW (measured with a
powermeter Thorlabs PM100).

For the two optical fibers, step index multimode fibers with a cladding diameter
of 125 µm and a numerical aperture of 0.22 were used (Thorlabs AFS50/125Y). The-
oretically, performances of the sensor head can be modified by using two fibers with a
different core and cladding diameters [188]. In experimental conditions, however, such
a configuration proves to be very unpractical for the alignment of the fibers, especially
considering the small size of the fibers adopted here. Therefore, the possibility to im-
plement fibers with different geometries was not considered. For optimal performances,
fibers extremities were cleaved (i.e., fibers were cut perpendicularly to their longitudinal
axis). This process ensured perfectly flat endfaces. It is worth noticing that cleaving the
fibers extremities partly removed their cladding and reduced their diameter to ∼50 µm.
Such dimensions offered an even more compact sensing head, with high capabilities of
integration.

To be tested with the prototype of Fig. 4.1, fibers were aligned manually with the
help of an optical microscope (see inset in Fig. 4.2). Aligning the fibers with bare hands
proved to be a labor intensive and time-consuming operation. In effect, any offset in
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the vertical alignment, the lateral separation or the parallelism of the fibers could affect
the sensor’s performances [189, 190, 191, 192]. The two fibers were then attached to a
rigid plastic support simply by using adhesive tape. In spite of its apparent simplicity,
this method proved to be sufficient for preliminary tests with the prototype. It is worth
mentioning that possible temperature or humidity fluctuations did not significantly im-
pact the tension of the adhesive tape. The latter remained constant over time and did
not alter the fiber alignment.

At the receiving side, the fiber was connected via a FC/PC fiber connector to a
photodetector equipped with a photodiode and a high gain transimpedance amplifier
(Thorlabs PDA-10CF). Although the PDA-10CF was optimized for detecting light cen-
tered around 1550 nm, it provided a sufficient responsivity of 0.2 A/W at 850 nm. With
this photodetector, any variations of the gap g were converted into electrical signals
proportional to the modulation of light intensity entering the receiving fiber.

The double-fiber sensor shown in Fig. 4.2 was then tested and characterized on the
stainless steel of the prototype. The vertical gap g was varied from 0 to 5 mm with a
micropositioning stage (Physik Instrumente M112-1DG). Normalized variations of light
intensity captured by the receiving fiber are plotted in Fig. 4.3. Variations predicted
by Eq. (4.1) for za = 371 µm are also given for comparison. This value of za was not
computed from the a priori knowledge of the fibers parameters. In practice, these pa-
rameters can indeed fluctuate according to the surface quality of the fibers’ ends and
can be difficult to evaluate. Instead, it was more practical to determine the value of za

directly from the experimental curve.

From Fig. 4.3, it can be observed that the optical power detected by the receiving
fiber monotonically increases for a maximum distance g ≈ 500 µm. At larger dis-
tances, the optical power decays gradually, approximately like 1/g2. Good agreement is
obtained between theoretical predictions and experimental measures. This proves that,
despite the manual alignment of the two fibers, the displacement sensor worked properly.

In the subsequent experiments, the linear region offered by the fiber probe around the
point P (see Fig. 4.3) was exploited to measure both static and dynamic displacements of
the structure. During operation, the only real restriction encountered was the sensibility
of the technique to the reflectivity of the target surface. In practical terms, this means
that the sensitivity of the fiber sensor could slightly vary depending on the area of
the prototype targeted. Sometimes, a tedious recalibration of the sensor was required.
Compensation techniques however exist and could be implemented in the future (e.g.,
[193]). Moreover, it is worth mentioning that with the use of an additional optical
coupler, the same sensing principle could be used with a single optical fiber [194, 195].
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Figure 4.3: Normalized variations of light intensity captured by the receiving fiber for
variations of the gap g up to 5 mm. Solid line represents variations predicted by Eq. (4.1)
with za = 371 µm. Circles corresponds to experimental measurements.

4.2 Comparison between theory and experiments

4.2.1 Evaluation of static deflections

Experiments were first carried out to investigate the static deflection of the prototype.
The gap between the optical fiber displacement probe and the prototype’s surface was
set to ∼220 µm. This height was set in order to exploit the steep slope offered by the
fiber probe around the point P (see Fig. 4.3). This region provided a displacement
sensitivity about 9 mV/µm when the gain of the photodetector was set to 50 dB. A
commercial laser sensor providing a resolution of 0.01 µm (Keyence LK - G10) was also
used as a reference to verify displacement measured with the fiber probe.

To bend the structure, an indenter terminated by a metal bead with an approximate
diameter of 500 µm was used. The stiffness of the metal bead was much higher than the
stiffness of the structure. From now on, it is important to note that this indenter was
only controlled in position. Indeed, no appropriate force sensor could be used in con-
junction with the experimental bench arranged. As a result, the force F applied to the
central beam could not be directly controlled during experiments. In a few paragraphs,
however, this indenter will be characterized so that force information can be retrieve
from displacements (see Section 4.2.2.5). The reader could hence legitimately wonder
why the author here mentions that no force information was available. The problem
is that the characterization of the indenter logically led to a linear force-displacement

80



relationship (see Fig. 4.9). If this relationship can be safely used for small displacements
of the indenter, it cannot be used anymore if large displacements are imposed to the
structure. Thereby, several nonlinear phenomena that will be observed and discussed in
the following sections would not have been revealed.

To control the position of the indenter, a micropositioning stage equipped with a
position encoder and providing a minimum incremental motion of 50 nm was utilized
(Physik Instrumente M112-1DG). Considering the small space available, the indenter
had to be placed beneath the prototype, so that the indenter was translated along the
z direction (see Fig. 4.1). To measure deflection of the structure, the optical fiber probe
(or alternatively the laser sensor) was positioned above the structure.

Without a force sensor that could serve as a reference, Fig. 3.10 could not be di-
rectly retrieved. Comparison with theory could all the same be made by following the
subsequent steps. The indenter was translated in the z direction so that the metal bead
entered in contact with the central beam. Incremental motions of 10 µm were then im-
posed to the structure. Hence, deflection amplitudes of the central beam were known.
In the mean time, corresponding deflections of the outer beams were measured with the
optical fiber probe or the laser sensor. Considering the prototype symmetry, data were
acquired solely for one outer beam. The difference of deflection amplitudes between the
central beam and the outer beam ∆d (see inset in Fig. 4.4) could then be calculated.
This difference is plotted in Fig. 4.4 (circles and dashed line). Likewise, by subtracting
the two solid curves of Fig. 3.10, ∆d could also be extracted from theoretical predictions
(solid line).

When compared to experimental results, the deflection of the outer beams predicted
by theory is overestimated about 12% when the deflection of the central beam is above
30 µm. Uncertainties related to the fabrication process or the clamping of the prototype
could explain this slight estimation error. The latter is however more likely due to
numerical values used for calculations. For instance, values of Young’s modulus and
Poisson’s ratio selected for calculations in Chapter 3 were extrapolated from material
databases that provided typical values for various stainless steel alloys. But these values
were not experimentally checked. In any event, theoretical and experimental results
have very similar trends. This demonstrates that the prototype deflected as expected.

4.2.2 Evaluation of dynamic performances

4.2.2.1 Resonance frequency of the antisymmetric vibration mode

The dynamic behavior of the prototype was then explored. In a first step, no force was
applied to the central beam. To actuate the prototype, the PZT element was driven
with a sinusoidal voltage. The peak-peak amplitude of this sine signal was set to 9 V.
The excitation frequency was then swept with the function generator in order to find
the resonance modes of the prototype. As illustrated by Fig. 4.5(a), the antisymmetrical
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Figure 4.4: Difference of static deflection between the central and the outer beams (see
∆d in inset). Solid line is plotted thanks to the curves from Fig. 3.10. Circles are
experimental data (dashed line is a fitting curve).

mode of interest where the two outer beams oscillate in antiphase was found at 3180 Hz.

(a) (b)

Figure 4.5: Oscilloscope screenshots showing: (a) The two outer beams oscillating in
antiphase when the structure is driven at 3180 Hz; (b) Vibrations measured at the half
span of the central beam with no force applied.

As a reminder, FEA predicted the occurrence of this mode at 3015 Hz in vacuum.
It may seem a bit counterintuitive to find a higher resonance frequency for the real
prototype oscillating in air. This can actually be simply explained by the clamping
arrangement used during experiments. The prototype’s anchors were indeed hold be-
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tween clamps tightened with several screws. However, it was very delicate to obtain a
homogeneous pressure over the entire surface of the prototype’s anchors. In true fact,
the resonance frequency of the prototype proved to be very sensitive to this setting.

4.2.2.2 Vibrations at the central beam

When the PZT element was driven with a voltage supply of 9 V, the peak-peak oscillation
amplitude of the outer beams was 22 µm. During oscillations of the outer beams, a lot
of attention was paid to check if potential vibrations were transferred to the central
beam. As a matter of fact, they were very limited. As shown in Fig. 4.5(b), they never
exceeded 500 nm, that is to say 2% of the oscillation amplitude of the outer beams. This
proves that the antisymmetrical mode obtained during experiments was well balanced.
It is important to note that these vibrations could be even more attenuated simply by
reducing the oscillation amplitude of the outer beams (i.e., by decreasing the voltage
supply of the PZT element). Furthermore, these vibrations actually disappeared when
the indenter was used to bend the central beam. Indeed, a significant stabilizing effect
occurred each time the indenter entered in contact with the central beam.

4.2.2.3 Quality factor

As discussed in Chapter 2, the quality factor (Q factor) is a parameter of vital relevance
that must be maximized for every resonant structure. The Q factor of the prototype
could be experimentally evaluated by exploring the frequency response of the antisym-
metrical mode. To that purpose, the frequency of the sine voltage supplying the PZT
element was slightly swept around 3180 Hz. In ambient conditions, and with no force
applied to the central beam, a pronounced resonance peak was observed (see Fig. 4.6).

Figure 4.6: Experimental frequency response for the prototype of Fig. 4.1 driven around
3180 Hz.
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From this resonance peak, the Q factor can be extracted by using [152]

Q =
f

∆f
(4.3)

where the frequency f corresponds to the maximum vibration amplitude am, whereas
∆f is the difference between frequencies f1 and f2. Frequencies f1 and f2 correspond to
vibration amplitudes 3 dB lower than am.

Applying Eq. (4.3) with Fig. 4.6 yields a Q factor of about 700. By comparison,
calculations made in Chapter 2 for a CC beam with the same dimensions predicted a Q
factor of 2474 in air (see Section 2.3.3). Even though the outer beams of the prototype
rather oscillate as hinged-hinged beams (see Section 3.2.3), the Q factor found from
Fig. 4.6 is more than three times lower. This corroborates the fact that, somehow, a
substantial amount of energy is lost. This energy loss is most likely due to the overhangs
that act as elastic end supports. One, however, must put this remark into perspective.
For instance, a Q factor of 800 was reported for a CC beam in [196]. But in this reference,
the authors operated the CC beam in vacuum. Therefore, obtaining a Q factor of 700
in air already constitutes an excellent achievement. Furthermore, one must remain
conscious of the fact that Q factors of most cantilevers that are plunged into liquids for
biological studies do not exceed 20 [197].

4.2.2.4 Frequency variations induced by large displacements

Oscillations of the outer beams were then monitored while the central beam was bent.
Vertical translation steps along the z direction (see Fig. 4.1) were successively applied
to the central beam with the indenter. For exploring the entire dynamics of the pro-
totype, vertical steps of 10 µm were applied. Each incremental motion of the indenter
caused the oscillation amplitude of the outer beams to suddenly drop. This amplitude
drop corresponded to a frequency shift. However, with a step magnitude of 10 µm, the
amplitude drop was significant and the signal measured with the optical fiber probe was
often lost. To retrieve the frequency shift engendered, the frequency of the sine signal
sent to the PZT element driving the prototype was modified with the function generator.
The frequency was swept until a new maximum oscillation amplitude was found. The
corresponding frequency was then noted and compared to the initial frequency. This
procedure was iterated 25 times. For a total displacement of the indenter of 250 µm,
the oscillation frequency of the outer beams evolved as shown in Fig. 4.7.

Interesting conclusions can be drawn from the analysis of Fig. 4.7. Compared to
frequency variations predicted by theory, a more complex behavior is observed during
experiments. From theoretical results, only a monotonically increase of the outer beams
frequency was expected (see dashed line). Experimentally, it is actually observed that for
small deflections of the central beam (i.e., deflections lower than 100 µm), the frequency
of the outer beams slightly decreases. Such a behavior has actually been reported for
buckled and deflected beams subjected to axial loads [198, 199, 200, 201, 202, 203]. This
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Figure 4.7: Frequency variations measured for a normal displacement applied to the
half span of the central beam. Circles and solid line correspond to experimental data.
Dashed line represents variations predicted by theory of Chapter 3 for the same initial
frequency (corresponds to Fig. 3.12).

would mean that, somehow, the vertical displacement (or force) applied to the central
beam is partly converted into weak axial force components that are transferred to the
outer beams. From this hypothesis, one can try to give an explanation regarding the
frequency shift experimentally measured.

As long as the deflection applied to the central beam is small (i.e., the displacement
imposed to the central beam in Fig. 4.7 is lower than 100 µm), the curvature of the
outer beams is negligible. This situation is represented in Fig. 4.8 (a). At this stage,
axial forces seem to dominate. Because the resonance frequency decreases, it can be
supposed that these axial forces are inherently compressive. But when the deflection of
the central beam reaches 100 µm, the deflection of the outer beams is about 60 µm (this
can been seen from Fig. 4.4). At this point, the curvature of the outer beams becomes
significant (see Fig. 4.8 (b)) so that the midplane stretching effects begins to compensate
the compressive axial forces. As the curvature of the outer beams continues to increase,
the stretching effect clearly dominates and the resonance frequency of the outer beams
steeply increases.

Due to the fact that no decreasing of the resonance frequency was predicted by
theory, a significant bias is observed when compared to experimental measures. Nev-
ertheless, the decreasing of the resonance frequency measured experimentally finally
appears as a transition period. Indeed, a much steeper slope is provided at large deflec-
tions. In particular, it is very interesting to note that the curve in Fig. 4.7 offers a linear
displacement sensitivity 5.75 Hz/µm around the point S. This displacement sensitivity
is actually ∼17% better than the one expected initially by theory (4.8 Hz/µm).
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Figure 4.8: Illustration of an outer beam for explaining the experimental curve of
Fig. 4.7. a) For small deflection of the central beam (<100 µm), the curvature of
the outer beam (bold line) is negligible. During oscillations (dashed lines), compressive
forces lower the frequency of the beam. b) For large deflection of the central beam
(>100 µm), the induced deformation of the outer beam becomes significant. Stretch-
ing forces likely appear and progressively increase the resonance frequency of the outer
beam. Proportions are greatly exaggerated for illustration purposes.

4.2.2.5 Frequency variations induced by small forces

From the analysis of Fig. 4.7, it is now clear that the prototype provides a much better
sensitivity when the central beam is largely bent. Because displacement sensitivity and
force sensitivity curves are finally intimately correlated (see Fig. 3.11 and Fig. 3.12),
the same behavior should still hold when thinking in terms of force sensitivity.

Hence, to exploit higher linear sensitivities, the transition period that takes place
during small deflections of the central beam was suppressed by maintaining the proto-
type permanently deflected. This was possible since clamps were attached to manual
micropositioning stages. As previously, the indenter was first used to deflect the central
beam. A deflection of 220 µm was imposed to exploit the region around the point S seen
in Fig. 4.7. Then, one of the manual micropositioning stages was translated until the
prototype remained constantly curved at this position (i.e., even when the indenter was
removed). Obviously, this axial translation compressed the whole structure. As a result,
the initial resonance of the antisymmetrical vibration mode decreased from 3180 Hz to
3080 Hz. Nevertheless, no significant impact of this bias on the dynamic behavior of the
prototype was noticed.

Unlike in Section 4.2.1, the amount of force generated by the indenter can now
be estimated by characterizing the indenter for small displacement intervals. This be-
comes possible only because the analysis is now exclusively restricted to the linear region
around the point S. For characterizing the indenter, the latter was pressed against a
precision scale providing a mass resolution of 0.01 g (Kern 430-33). Five translation
steps of 10 µm were applied on the precision scale. A linear relationship between the
force generated by the indenter with respect to its displacement was found (see Fig. 4.9).

86



Figure 4.9: Experimental characterization of the force generated by the indenter. For
small displacements, the force was determined from measurements made with a precision
scale (see inset). Circles correspond to experimental data. Solid line is a fitting curve.

Then, frequency variations with respect to the force generated by the indenter were
measured. Since the prototype was maintained predeflected, only a linear increase of
the frequency was observed, as expected. This linear increase corresponds to a force
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Figure 4.10: Frequency variations for a force applied to the half span of the central
beam with the indenter. By translating one of the clamps, the whole prototype was
slightly curved so that only the steepest linear sensitivity offered by the prototype was
exploited. Circles correspond to experimental data. Solid line is a fitting curve.
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sensitivity of 2.56 Hz/mN. Theoretically, a force sensitivity of 2.91 Hz/mN was predicted.
Although the theoretical analysis of Chapter 3 has not initially considered a predeflection
of the whole structure, the force sensitivity is only ∼12% lower than expected.

4.3 Measuring the elastic properties of supersoft materials

Previous sections have validated the static and dynamic behaviors of the prototype. It
is worth noticing that, so far, the rigid bead of the indenter always entered directly in
contact with the central beam. In this section, the possibility to use the prototype for
biological applications is finally demonstrated by considering the presence of a living cell.

If one imagines to replace the metal bead of the indenter by a spherical suspen-
sion cells, the indenter can be used as an external actuator to deform the cell. With
the indenter placed beneath the slightly predeflected prototype, the cell can be gen-
tly pressed upon the central beam if the indenter is translated upwards (along the z
axis, see Fig. 4.1). Such a configuration is very similar to the case of a cell compressed
between two flat surfaces. In this case, the force applied to the cell can be measured
by monitoring linear frequency variations of the outer beams. If cell deformations are
also monitored during the compression of the cell, force and deformation information
acquired can be used to retrieve the Young’s modulus of the cell. Nonetheless, as seen
in Chapter 1, a descriptive model is then required.

In many works, Hertz theory is used (see Eq. (1.13)). Hertz theory, however, is sub-
jected to a number of important assumptions. In particular, when dealing with a living
cell, the condition of negligible force adhesion is not always fulfilled. Ideally, extended
models that take condiseration of adhesion and friction forces, such as the JKR (John-
son, Kendall and Roberts) or DMT (Derjaguin, Muller and Toporov) models must be
used [204]. In any event, the evolution of the contact surface area between the cell and
the flat surface must be continuously monitored during cell compression. Usually, an
optical microscope and a video camera are used (e.g., [205, 206, 207]). Large measure-
ment uncertainties can however occur. Moreover, the cell radius must also be optically
measured prior to each new compression tests.

To alleviate these difficulties, the author here proposes to adapt a technique inspired
from several works where ceramic PZT rod-shaped transducer operating in resonance
state have been used to probe the elastic properties of biological samples [208, 209,
210]. Such a technique permits to exploit the resonant prototype in an alternative
manner so that the Young’s modulus of a cell can be estimated simply and rapidly.
More interestingly, subsequent paragraphs demonstrate that, under certain conditions,
a sufficient estimation of the Young’s modulus of the cell can be obtained without the
use of a descriptive model.
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4.3.1 Calibration of the prototype with gel samples

To avoid the use of an analytical model for extracting the Young’s modulus of a cell,
the prototype was calibrated with materials that serve as reliable references. Gels of
known mechanical properties were used. Two silicone gel samples (T5 and T7) from the
company Gelmec1 were ordered. Although these silicone gels were originally intended
for vibration damping in mechanical systems, they were very soft. The gel T7 was the
softest with a Young’s modulus of 37.5 kPa. As for the gel T5, its Young’s modulus was
119.5 kPa. These two gels seemed ideal for calibration tests since the Young’s modulus
of most living cells is known to range from 1 kPa to 100 kPa [3, 211, 212, 213]. Both
gels were cautiously prepared in order to obtain small pieces with equivalent dimensions.
Efforts were also made to obtain gel samples with a size as similar as possible to the
size of the cells targeted.

As previously, the prototype was maintained slightly curved and the indenter placed
beneath the structure. Nevertheless, the metal bead mounted on the indenter was here
removed and the indenter tip was adapted so that it became perfectly flat. The gel
samples were then simply posed on the flat indenter. The indenter was then translated
towards the prototype until the gel sample entered in contact with the central beam.
This contact could be easily detected by monitoring the frequency of the outer beams
with the optical fiber probe.

From the contact point, small incremental motions of 10 µm were then applied in
order to gently press the gels upon the central beam. Compression of the gel was mon-
itored with an optical microscope coupled to a video camera that provided a side view
of the experiment arrangement. During calibration, attention was paid to verify the
contact area between the gels and the central beam. This task was however delicate,
mainly because the outer beams sometimes hid the view of the contact area. To probe
only the elastic properties of the gels, the amount of compression applied did not exceed
10% of their thickness [214]. In addition, the velocity of the translation steps was kept
very slow (4 µm/s) to minimize the occurrence of viscoelastic effects [215, 207]. For a
total displacement of 50 µm of the indenter, linear frequency variations measured are
plotted in Fig. 4.11 (dashed and dotted lines).

As one could expect, the amount of frequency change for a particular displacement
is clearly lower for the gel having the lowest Young’s modulus.

4.3.2 Direct extraction of the Young’s modulus of a lobster egg

Once reference curves were obtained with the two gel samples, the protocol previously
described was repeated for evaluating the Young’s modulus of a living cell. Ideally,
experiments could have been conducted on an animal embryo or oocyte. For instance,
mouse or zebrafish embryos/oocytes are often used in cell mechanical studies. Therefore,

1Further information can be found at http://www.gelmec.co.uk
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Figure 4.11: Frequency variations of the outer beams for two gel samples. The Young’s
modulus of the gels were known so that they could be used for calibration. Circles are
experimental data. Dashed and dotted lines are fitting curves.

values of Young’s modulus have already been reported in the literature for such cells
(e.g., [108]). Unfortunately, animal embryos or oocytes could not be obtained.

As a viable alternative, a lobster egg with a similar size was preferred for preliminary
tests. In accordance with the initial specifications of the prototype which has been
initially designed to deal with large suspended cells, an egg with a diameter of 500 µm
was selected. The egg was then handled with great care and manually placed on the
flat indenter. Once the egg was placed, the indenter was again translated towards the
prototype (see Fig. 4.12).

Figure 4.12: Side view of the slightly curved prototype for measuring the Young’s modu-
lus of a lobster egg. The latter lies on an optical fiber connector ferrule. The double-fiber
displacement probe is visible in the upper right corner. Scale bar represents 500 µm.
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As for the calibration with the gel samples, a gentle displacement of 50 µm was
applied after the egg touched the central beam. Fig. 4.13 compares frequency variations
measured with the egg with frequency variations previously obtained with the gel sam-
ples.
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Figure 4.13: Frequency variations measured for one lobster egg. The egg had a diameter
of 500 µm and was gently pressed upon the central beam. Curves obtained with the gel
samples during calibration are also shown for comparison.

Interestingly, frequency variations provoked by the lobster egg are greater than the
ones generated with the gel T7 (37.5 kPa). Notwithstanding, they are lower than fre-
quency variations measured for the gel T5 (119.5 kPa). It may hence be presumed that
the Young’s modulus of the lobster egg probed is somewhere between 37.5 kPa and
119.5 kPa. To determine more precisely its value, Fig. 4.14 is used.

To construct Fig. 4.14, slopes ST5 and ST7 (see Fig. 4.13) were used as single values.
As indicated by the two squares, these values were plotted against the Young’s modulus
of the gels. Since only the elastic (i.e., linear) properties of the materials were probed,
a linear regression equation linking the two squares could be determined [216]

Segg = 0.02914 × Eegg − 0.2329 (4.4)

where Segg is the slope of variations frequency measured for the lobster egg and
Eegg is its Young’s modulus. With Eegg = 2.03 Hz/mN (see Fig. 4.13), Eq. (4.4) yields
a Young’s modulus of 78 kPa for the lobster egg (indicated by the diamond in Fig. 4.14).

In the future, potential estimation errors could be further minimized via a more
accurate calibration of the prototype. This could be achieved by using calibrated soft
microspheres (e.g., hydrogel or collagen microspheres) having a tight size distribution
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Figure 4.14: Figure proposed for extracting the Young’s modulus of the lobster egg (see
text for further explanations).

instead of the manually prepared gels. Ideally, by using cell size sorting systems, a larger
number of cells with a similar size should also be tested to confirm the reliability and
the repeatability of the method.

The preliminary result obtained with the lobster egg however tends to prove the
applicability of the method. Indeed, although no reference value has been found in the
literature for lobster eggs, the Young’s modulus estimated is in accordance with orders
of magnitude usually reported for most cells.

Moreover, it is worth underlining that for diagnosis applications, an absolute value
of the Young’s modulus is not necessary a mandatory condition to have a useful device.
Very often, relative changes or observation of tendencies may be sufficient to bring
valuable information of the cell state. Since the planar structure could ultimately keep
cells alive in cell medium while estimating their Young’s modulus periodically over time
with a sufficient accuracy (e.g., for assessing the effects of drugs), it could already prove
to be useful for potential clinical utility.

4.4 Conclusion

This chapter has reported the fabrication and the experimental characterization of a
first prototype intended to deal with suspension cells. The experimental arrangement
used has been described. In particular, a specific optical fiber sensor for measuring the
static deflection of the structure as well as the oscillation frequency of the outer beams
has been developed and implemented. Experiments have been carried out in order
to validate the static and dynamic behaviors of the prototype. With the prototype

92



maintained slightly curved, experimental results have proved to be in good agreement
with theoretical predictions of Chapter 3. Thereby, a linear displacement sensitivity of
5.75 Hz/µm has been experimentally measured. Via the characterization of an indenter
for small displacements, a force sensitivity of ∼3 Hz/mN has also been determined.
In addition, a quality factor of 700 has been obtained in air. The prototype has also
been used with biological samples in order to demonstrate the possibility to use it as
a cell diagnosis tool. After a calibration of the prototype with gel samples, a Young’s
modulus of 78 kPa has been found for a lobster egg with a diameter of 500 µm. Since
this prototype was first intended to serve as a proof of concept, necessary improvements
could be made. The prototype has however demonstrated the capability to estimate
the Young’s modulus of a suspension cell in a rapid and sufficiently accurate manner.
Preliminary results reported in this chapter are thus encouraging. Future work and
challenges that still need to be addressed for the successful implementation of the planar
structure in a workable platform will now be discussed in the general conclusion.
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Conclusions and suggestions for future

research

In the future, versatile MEMS that will be capable of measuring the Young’s modulus
of various types of cells in a high throughput manner could mark a new milestone in
biomedical research. Indeed, the Young’s modulus of single cells has been shown to
be correlated to pathophysiological states in several major diseases such as cancer or
malaria. The Young’s modulus might hence prove to be useful to differentiate pathogenic
cells among healthy cells and detect diseases at earlier stages. Additionally, values of
Young’s modulus have the potential to disclose the specific effects of pharmaceuticals at
the cellular level. Therefore, cell elasticity measurements may also prove advantageous
in drug development.

In this context, this dissertation has presented a new force sensitive structure capable
of extracting the Young’s modulus of living cells. The first contribution and originality
of the structure reported is the use of a dynamic mode to probe the elastic modulus of
living cells. Although oscillating devices have been previously successfully used for de-
tecting the presence of target biomolecules, resonant structures have been rarely utilized
to extract the elastic properties of living cells. To the best of the author’s knowledge,
this is the first time that a resonant structure is designed to measure mechanical forces
applied to cells and extract their Young’s modulus in a liquid environment while keep-
ing high dynamic performances. The possibility to adapt the structure’s design with
minimum modifications for addressing both suspension and adherent cells also appears
as a new feature.

To develop the structure, this dissertation has considered both theoretical and exper-
imental aspects. On a theoretical point of view, a modelling approach based on energy
concepts has been developed for investigating the static and dynamic behaviors of the
structure. Compared to exact analytical solutions, such an energy approach has proved
to be convenient to handle nonlinear effects for a structure incorporating multiple beam
resonators. Therefore, the method developed in this work constitutes a valuable tool
to investigate structures with a relatively complex geometry. For instance, it could be
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transposed in straightforward manner to the theoretical study of coupled resonant me-
chanical filters where lumped parameter models based on simple spring-mass systems
are often used.

To validate theoretical predictions obtained via the modelling approach, a mesoscale
prototype intended to serve as a first proof of concept has also been fabricated and ex-
perimentally characterized. For monitoring the resonance frequency of the prototype, a
fiber displacement probe made of two optical fibers and providing a displacement sensi-
tivity of about 9 mV/µm has been implemented. With this fiber probe, a quality factor
of about 700 has been measured in ambient conditions for the prototype fabricated. A
linear force sensitivity of about 3 Hz/mN has also been obtained when the prototype
was slightly curved. The prototype reported has therefore the potential to resolve a
minimum force of at least 3.4 µN if accurate frequency counters can be used. An experi-
mental method has also been presented for calibrating the prototype and for estimating
the Young’s modulus of a suspension cell without the need of a descriptive model. Such
an indirect technique might prove to be useful for rapidly evaluating relative changes in
the Young’s modulus of cells or for observing tendencies with increased throughput cell
measurements.

Preliminary results reported in this dissertation are hence encouraging. Neverthe-
less, several of the key features considered for the initial design of the structure have not
been experimentally validated in this work. Moreover, for the successful use of the pla-
nar structure as a workable diagnostic platform, several necessary improvements could
be addressed in future research.� Recommendations for improving the structure

Tests conducted with the mesoscale prototype have shaded light on problems due
to the clamping apparatus. As for all types of resonant systems, the prototype proves
to be very sensitive to boundary conditions. With clamps tightened with screws, it is
difficult to obtain a homogeneous pressure over the entire anchors’ area of the proto-
type. Presently, this affects the repeatability of measurements. Likewise, maintaining
the structure in a slightly curved position with the manual positioning stage turns out to
be a delicate task. To overcome these problems, tests should be conducted to scale down
the structure with microfabrication processes. With a MEMS version of the structure,
the clamping system as presented in this manuscript would not be required anymore.
Moreover, with MEMS processes, previous works have shown that stresses in the sub-
strate could be controlled so that the structure could be fabricated directly curved [217].

Currently, the structure cannot be used as expounded in the initial concept since
suspension cells cannot be held. Therefore, the implementation of a trapping system for
suspension cells (e.g., a microwell, dielectrophoretic electrodes, etc.) could be investi-
gated. The etching of a microchannel or a microwell should also be further investigated.
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Tests should be conducted with the microchannel/microwell filled with liquids. In-
deed, even though it has been experimentally confirmed that the amount of vibrations
transferred to the central beam during the oscillation of the resonators is very low,
infinitesimal vibrations could all the same interact with fluids. Such fluid movements
might transfer unwanted stimuli to cells. If required, the possibility to optimize the
attachment points between the overhangs and the beam resonators via the presence of
stubs (see Fig. 4.15) or outriggers [218] might further limit the presence of vibrations at
the half span of the central beam.

Figure 4.15: Sketch depicting a MEMS version of the structure with possible improve-
ments that could be tested in future research. The sketch here represents a top view
of the structure with an open microchannel and suspension cells. The beam resonators
could be terminated by stubs to further minimize vibrations transferred to the cen-
tral beam. To measure the resonance frequency, displacement probes with only one
fiber could be tested (not represented). Alternatively, PZT or PZR elements could be
patterned.

Finally, no test has been conducted with adherent cells yet. To validate the pos-
sibility to address such cells, the miniaturization of the structure could be optimized
to exploit a higher resonance frequency. To measure the resonance frequency on a
micrometer-scale structure, a fiber sensor head made of only one fiber could be tested
[194]. Alternatively, the possibility to precisely pattern and deposit PZT or PZR ele-
ments at the basis of the beam resonators with microfabrication processes could prove
to be a more convenient option. Since the structure is inherently a force sensor, it could
also be interesting to investigate if it could be used for the force-controlled injection of
adherent cells.� Long term prospects

In the long term, MEMS embedded in complex lab-on-chip systems capable of esti-
mating the elastic properties of cells in a high throughput manner could be one of the
mainstream technologies in the next decades. MEMS have indeed the potential to let the
system moves from the laboratory to the point-of-need. For a disease such as malaria,
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which is prolific in Africa, MEMS open up the possibility for on-site analysis at low
costs. Ultimately, credit-card sized and self-contained platforms integrating microfluidic
systems, MEMS actuators, MEMS sensors and electronic processing units could enable
diagnostic assays performed within minutes. This could allow the fast screening and
monitoring of patients, and a more frequent control of drug efficiency, leading to a cus-
tomized therapy and subsequently to therapy control.

Constant progress are already paving the way for closing the gap between diagnostic
needs and available technologies. However, many microfabricated devices devoted to
the measurement of the cell Young’s modulus act today primarily as actuation means
that deform cells. Most of the time, the cell deformation must then be monitored in
a way or another via an optical equipment. One of the most widespread option is to
use visual feedback provided by a microscope and a video camera. This can be legiti-
mately explained by the fact that a microscope obviously remains an essential tool for
conducting cell analysis. Promising results have already been reported in laboratory
environments with MEMS exploiting vision feedback for suspension cells. Nevertheless,
the need of a microscope prevents the use of MEMS as portable and autonomous devices.

In this sense, the force sensitive structure presented in this dissertation has proposed
a non visual-based solution. Ideally, the Young’s modulus of cells could be estimated
with sufficient accuracy without the need of a microscope. This is in favour of a com-
pact sensing unit. On the other hand, and beyond the necessary improvements afore-
mentioned, the integration of an appropriate microactuator for replacing the external
indenter presently used would be required for portability. Because most microactuators
presently require a bulky power supply, novel actuation solutions with limited power re-
sources should be developed. In addition, the actuator design should fit the dimensions
of the microchannel. Designing a microactuator satisfying such specifications obviously
poses challenges. However, it opens up new research prospects and might also find
application in related research fields such as microrobotics.
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Appendix

Derivation of the undamped fundamental frequency of a CC
beam

From Euler-Bernouilly theory, the equation that governs the motion of a CC beam is

EI
∂4w(x, t)

∂x4
+ N

∂2w(x, t)

∂x2
+ m∗

b

∂2w(x, t)

∂t2
= 0 (4.5)

where m∗

b = ρb S and I = bh3

12
are the mass per unit length and the moment of inertia

of the beam, respectively. Other notations are defined in the list of notations provided
for Chapter 2.

Equation (4.5) is a linear, homogeneous partial-differential equation. A variety of
techniques can be called on to solve such an equation. Here, it is assumed that there is
a separable solution; that is

w(x, t) = W (x)Q(t) (4.6)

where W (x) is a function that depends only on the spatial variable x and Q(t) depends
only the temporal variable t. Since the beam is supposed to be in harmonic motion
during vibration, one can let

Q(t) ∝ ejωt (4.7)

where j2 = −1 and ω represents the angular frequency of the oscillating beam. Sub-
stituing Eq. (4.6) into Eq. (4.5) and making use of Eq. (4.7), the partial differential
equation is transformed into a single differential equation

d4W (x)

dx4
+ σ2

d2W (x)

dx2
− Ω4W (x) = 0 (4.8)

where σ2 =
N

EI
and Ω4 =

m∗

bω
2

EI
.
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If one lets W (x) = Aeλx, it can be shown that a general solution of Eq. (4.8) is
[219, 220]

W (x) = C1 sin(α1x) + C2 cos(α1x) + C3 sinh(α2x) + C4 cosh(α2x) (4.9)

where

α1 =

√

σ2

2
+

1

2

√

(σ4 + 4Ω4) (4.10)

α2 =

√

−σ2

2
+

1

2

√

(σ4 + 4Ω4). (4.11)

The unknown constants Cn in Eq. (4.9) can be determined from the boundary
conditions of the beam. In the case of an ideal CC beam, extremities of the beam are
considered to be firmly attached, so that displacement and slope are zero at both ends.
Therefore boundary conditions are

W (x)

∣

∣

∣

∣

x=0

= 0,
dW (x)

dx

∣

∣

∣

∣

x=0

= 0, (4.12)

W (x)

∣

∣

∣

∣

x=L

= 0,
dW (x)

dx

∣

∣

∣

∣

x=L

= 0. (4.13)

Substituing Eq. (4.9) into Eqs. (4.12-4.13), a set of four algebraic homogeneous
equations in the four unknowns Cn is obtained

C2 + C4 = 0 (4.14)

C1 α1 + C3 α2 = 0 (4.15)

C1 sin(α1L) + C2 cos(α1L) + C3 sinh(α2L) + C4 cosh(α2L) = 0 (4.16)

C1α1 cos(α1L) − C2α1 sin(α1L) + C3α2 cosh(α2L) + C4α2 sinh(α2L) = 0. (4.17)

Equations (4.14-4.17) can be rewritten in a matrix form as

A . C = 0, (4.18)

where the coefficient matrix A is

A =









0 1 0 1
α1 0 α2 0

sin(α1L) cos(α1L) sinh(α2L) cosh(α2L)
α1 cos(α1L) −α1 sin(α1L) α2 cosh(α2L) α2 sinh(α2L)









. (4.19)

Equation (4.18) has non trivial solutions if and only if the coefficient matrix A is
singular; that is, its determinant is zero. Setting the determinant of A equal to zero
yields

1 − cos(α1L) cosh(α2L) +
σ2

2Ω2
sin(α1L) sinh(α2L) = 0 (4.20)
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The above transcendental equation can be solved numerically to find natural fre-
quencies. It is interesting to note that if N = 0, then α1 = α2 = α and Eq. (4.20)
reduces to the characteristic equation of a CC beam without axial load

cos(ΩL) cosh(ΩL) = 1. (4.21)

Because the study is limited to the fundamental (i.e., first) resonance frequency of
the beam, one only seeks for the smallest root of Eq. (4.21) which is Ω1L = 4.73. With

the notation Ω4 =
m∗

bω
2

EI
previously introduced, the fundamental angular frequency of

a CC beam is thus

ω1 =
22.37

L2

√

EI

m∗

b

. (4.22)

To compute the mode shape associated to ω1, one can still refer to the set of algebraic
equations (4.14-4.17). Indeed, Eq. (4.14) and Eq. (4.15) allow us to immediately
conclude that C2 = −C4 and C3 = −α1

α2
C3. A third constant can be eliminated by using

Eq. (4.16). Thereby, one obtains

W (x) = C1

[

sin(α1x) + λ cos(α1x) − α1

α2

sinh(α2x) − λ cosh(α2x)

]

(4.23)

where

λ =
sin(α1L) − α1

α2
sinh(α2L)

cosh(α2L) − cos(α1L)
. (4.24)
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Abbreviations and Notations

List of Abbreviations

AC Alternative Current

AFM Atomic Force Microscope

CC Clamped-Clamped

EAP Electro Active Polymers

EDM Electro Discharge Machining

FEA Finite Element Analysis

GUV Giant Unilamellar Vesicle

MEMS Micro Electro Mechanical Systems

PDMS Polyimethylsiloxane

MT Magnetic Tweezers

OS Optical Stretcher

OT Optical Tweezers

PZR Piezoresistive

PZT Piezoelectric

Q factor Quality factor

RCB Red Blood Cell

SCD Sickle Cell Disease

VCSEL Vertical Cavity Surface Emitting Laser
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List of Notations

Chapter 1

b Width of thermal beams

bmc Width of microchannels

B Magnetic field

cl Speed of light in vacuum

C(ω) Clausius-Mossotti factor

d0 Position of capacitor plates at rest

E,Emp, Esi Young’s moduli

E∗, E1, E2 Effective Young’s modulus and Young’s moduli

Fc Force applied to cell

Fcapa Force resolved by capacitance changes

Felectro Electrostatic force

Fmag Magnetic force

Fmp Force applied to passive microposts

Fos Force developed by divergent laser beams

FPmag
Force of magnetic microposts

Ftherm Thermal force

gce Comb electrode gap

h Thickness of thermal beams

hmc Thickness of microchannels

Imp Moment of inertia of microposts

J Electric field

k Thermal conductivity

Ks Constant related to cells
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Lc0, Lc Lengths related to cells

L,Lp Lengths related to thermal beams

Lmp Length of microposts

Lw Length of magnetic nanowires

Mmb Magnetic moment of microbeads

nm Refractive index of media

nc Refractive index of cells

Nce Number of comb electrodes

Ntb Number of thermal beams

Pl Optical light power

rtb Electrical resistance

R1, R2 Radii of curvature

Re Reynolds number

Rrl Fraction of reflected light

tce Comb thickness

Tbvol Volume of thermal beams

U,Uout, Us Voltages

X,Y Spatial coordinates

α Thermal expansion coefficient

δc Cell deformation

∆mp Deflection of microposts

ǫ Permittivity constant

η Fluid viscosity

µ⊥ Component of dipole moment perpendicular to B

ν Volumetric flow rate

τw Wall shear stress

ω Angular frequency
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Chapter 2

A0, A(ω) Amplitudes of oscillation

b Beam width

D Rayleigh’s dissipation function

E Young’s modulus

I Moment of inertia

h Beam thickness

L Beam length

L Lagrangian

m∗

b Beam mass per unit length

mb Beam mass

m∗
a Mass per unit length added by a fluid

ma Mass added by a fluid

m∗
tot Total mass per unit length m∗

tot = m∗

b + m∗
a

mtot Total mass mtot = mb + ma

K0,K1 Bessel functions of the second kind

N Axial force

P ∗

loss Averaged dissipated power per unit length due to a fluid

S Beam cross sectional area

sF Force sensitivity

Re Reynolds number

t Temporal variable

T Time period T = 2π/ω

q General coordinates

q̇ Time derivative of q

Q Overall quality factor

Qint Losses related to structural damping
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Qanch Losses due to beam supports

Qfluid Losses due to the presence of a fluid

Va Energy related to axial forces

Vb Bending energy

Vkin Kinetic energy

Vloss Dissipated energy per cycle per time period

Vpot Potential energy

w(x, t) Transverse deflections

W (x) Mode shape

x Spatial variable

γ∗
a Damping coefficient per unit length due to a fluid

γa Damping coefficient due to a fluid

Γ Hydrodynamic function

η Fluid viscosity

ρb Density of beam material

ρfluid Density of surrounding fluid

ω Angular frequency

ω1 Undamped fundamental angular frequency

ωfluid Fundamental angular frequency in fluids
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Chapter 3

A Cross sections

b Width of tuning fork’s segments

bo Width of overhangs

b1 Width of outer beams

b2 Width of central beam

Ds Midspan deflection

E Young’s modulus

f0, f Frequencies

F,Fv Punctual force and virtual punctual force

Ii Moments of inertia

h Thickness

kr1 Stiffness of rotational springs

k1, k3 Linear and nonlinear spring constants

keq Equivalent stiffness

l Length of outer beams

lo Length of overhangs

L Total length

meq Equivalent mass

T Time period T = 2π/ω

Utf Total potential energy of tuning fork

Ub Strain energy due to bending

Urs Energy stored by rotational springs

Us Strain energy due to stretching

UT Total potential energy

wi(x) Transverse displacement functions

W ,W1 Work done by punctual forces
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x Spatial variable

Φ,Φ1 Total potential energy functions
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Chapter 4

Eegg Young’s modulus of lobster egg

g Gap between the fibers flat ends and the reflective target

Pt Optical power exiting the transmitting fiber

Pr Optical power captured by the receiving fiber

Q Quality factor

Segg Rate of frequency change

za Light asymptotic cone apex
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