This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS

Asynchronous Event-Based Visual Shape Tracking
for Stable Haptic Feedback in Microrobotics

Zhenjiang Ni, Aude Bolopion, Joél Agnus, Ryad Benosman, and Stéphane Régnier

Abstract—Micromanipulation systems have recently been re-
ceiving increased attention. Teleoperated or automated microma-
nipulation is a challenging task due to the need for high-frequency
position or force feedback to guarantee stability. In addition, the
integration of sensors within micromanipulation platforms is com-
plex. Vision is a commonly used solution for sensing; unfortunately,
the update rate of the frame-based acquisition process of current
available cameras cannot ensure—at reasonable costs—stable au-
tomated or teleoperated control at the microscale level, where low
inertia produces highly unreachable dynamic phenomena. This pa-
per presents a novel vision-based microrobotic system combining
both an asynchronous address event representation silicon retina
and a conventional frame-based camera. Unlike frame-based cam-
eras, recent artificial retinas transmit their outputs as a continuous
stream of asynchronous temporal events in a manner similar to the
output cells of a biological retina, enabling high update rates. This
paper introduces an event-based iterative closest point algorithm to
track a microgripper’s position at a frequency of 4 kHz. The tempo-
ral precision of the asynchronous silicon retina is used to provide a
haptic feedback to assist users during manipulation tasks, whereas
the frame-based camera is used to retrieve the position of the ob-
ject that must be manipulated. This paper presents the results of
an experiment on teleoperating a sphere of diameter around 50
pm using a piezoelectric gripper in a pick-and-place task.

Index Terms—Dynamic vision sensor, haptic feedback, micro-
manipulation, microrobotics, tracking algorithm.

1. INTRODUCTION

ERSATILE 3-D manipulation systems that are able to op-
V erate in ambient conditions on micrometer-sized objects
would greatly increase the potential applications of microtech-
nology [1]. However, the development of such systems faces
a major obstacle: the lack of position and force feedback [2].
Sensors have been developed [3], [4], but their integration into
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dedicated tools increases significantly the complexity and cost
of the tool fabrication. In particular, even if some microgrip-
pers offer sensing capabilities (at the expense of a complex
design) [5]-[7], most still lack force measurement capabili-
ties [8], [9].

Vision is a promising way to avoid the complexity of inte-
grating sensors [10], [11]. Visual information can be converted
to force measurements to monitor the efforts applied on the
objects during manipulation [12], [13]. This is achieved by us-
ing deformable tools after a calibration step [14]. In particu-
lar, the stiffness of the tools must be determined in order to
relate the measured deformations to the applied forces. How-
ever, the precise value of the force might not be necessary to
control micromanipulation systems, whether in the teleoperated
or the automated mode. In these cases, the position feedback
obtained from vision sensors might be sufficient. In all cases,
highly dynamic phenomena due to the low inertia at this scale
must be recorded. Most of the existing vision-based systems
provide feedback at a couple of tens of Hertz, and their com-
plexity depends on the size of the observed scenes [15]. Thus,
they cannot ensure the proper monitoring of highly dynamic
motion.

Conventional frame-based cameras’ lack of dynamic infor-
mation and their redundancies set an important limit to poten-
tial micromanipulations in automated or teleoperated modes.
Event-based computer vision based on address event represen-
tation (AER) provides a sound solution to high-speed vision
problems [16]. This newly developed discipline is motivated by
mimicking biological visual systems [17]. The dynamic vision
sensor (DVS) silicon retina used in the research presented in
this paper reacts to changes of contrast, which are then con-
verted into a stream of asynchronous time-stamped events [18].
The reduction of redundant information makes this technique
promising for high-speed tracking.

The use of event-based retinas requires the development of
time-oriented event-based algorithms, in order to benefit fully
from the properties of this new framework [19]. Neural shape
coding is a difficult issue as there is almost an infinite number
of representations of shapes in the real world. A computation-
ally efficient method is HMax: It models a biological visual
system to extract features of different forms for object recog-
nition [20]. However, the shapes of micromanipulators are not
very complex. As will be shown, simpler algorithms making full
use of the high temporal resolution of the DVS (microsecond
precision) allow the fulfillment of the high-frequency require-
ments of micromanipulation. The iterative closest point (ICP)
is an efficient algorithm, dedicated to minimizing the differ-
ence between a data point set and a model point set [21]. Many
variants have been proposed to enhance its performance and
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adaptability [22]. However, 2-D image processing can only be
achieved at a frequency of several 10 Hz, depending on the
number of points to be matched [23]. Although this is suffi-
cient for many robotic applications, these frequencies are far
from sufficient for automated or teleoperated micromanipula-
tion, which requires refresh rates greater than 1 kHz to ensure
the stability of the control loop, because of the highly dynamic
physical phenomena involved [24].

This paper presents an event-based iterative closest point
(EICP) algorithm directly applied to the silicon retina’s out-
put. It allows us to track the manipulation tool at a frequency
of 4 kHz. The positions of static objects are provided by a con-
ventional frame-based camera. This approach was validated by
a teleoperated pick-and-place task using a piezoelectric gripper,
involving a sphere with a diameter of about 50 m. Haptic feed-
back directly estimated from the output of both the event-based
retina and the conventional frame-based camera is provided to
assist users during the manipulation. The first 3-D pick-and-
place manipulation with haptic feedback using a microgripper
is successfully achieved. Stable vision-based teleoperation has
been achieved in this project by the use of event-based retinas
and the EICP algorithm.

This paper is based on several previous papers. In [19], DVS
was used to develop an event-based Hough transformation to
specifically track circles. Hough transformations rely on a vot-
ing scheme and maximum detection within the accumulation
spaces to identify the location of a shape. That paper ends by
showing that this can be used to detect the rapid dynamics of
Brownian motion. In this paper, we develop a new method to
track an arbitrary complex shape, which uses an incremental
method that is able to compute, in real time at several kilohertz,
the geometric transformation that maps a complex reference
shape to the events acquired by the DVS. This method is related
to the family of ICP techniques applied to asynchronous events.
This paper also combines the use of a frame-based camera and
an event-based camera. Apart from the new vision algorithm,
the contribution of this paper includes the action of the DVS
at very high frequency as a position sensor, providing valuable
haptic feedback. A previous paper treated virtual haptic guides
for pick-and-place operations at the microscale [25]. However,
itused a homemade atomic force microscopy (AFM) composed
of two independent cantilevers, which made the system very
difficult to use. The cantilevers were equipped with force sen-
sors (two optical levers) that provided haptic feedback, but this
increased the complexity of the setup since the laser beams had
to be aligned with the cantilevers and photodiodes. It was, thus,
definitely not a system that could be used by nonexpert users.
For these reasons, a simple gripper was chosen for the project
presented here. Compared with [25], where the two AFM can-
tilevers were equipped with force sensors, the gripper used in
this project is sensor deprived. Vision is, thus, used to compute
the haptic feedback. At the microscale, the integration of sensors
inside the manipulation tools increases the complexity and cost
of the fabrication. Here, we show that event-based cameras can
provide this feedback. The integration of this sensor is, then, a
sound solution for microscale applications. Its high frequency
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Fig. 1. Setup of the micromanipulation platform.

and low data load enable the monitoring of the rapid dynamics
common at the microscale.

This paper is organized as follows. The experimental setup
is presented in Section II. Section III gives details about the
vision algorithms used to compute the haptic feedback, which
in turn is described in Section IV. The proposed approach is
validated by the experimental results presented in Section V.
Finally, Section VI concludes this paper.

II. SETUP

Several tools have been developed to manipulate micrometer-
sized objects in ambient conditions. The most common ones in-
clude cantilevers and grippers. Cantilevers can be used for 2-D
manipulations, such as pushing or pulling [2]. Pick-and-place
operations have also been demonstrated using two protruding tip
cantilevers, but the complexity of the setup limits its applicabil-
ity [25]. A microgripper designed at the FEMTO-ST Institute'
(see Fig. 1) is used in this project to perform 3-D manipula-
tions that will enable a large range of applications, including
microassembly. It is based on a pair of piezoelectric beams with
two degrees of freedom (DOFs), called a duobimorph, as the
actuation principle of the two fingers [26]. On each actuator,
four electrodes referred to a central ground and two voltages are
necessary to impose the displacements, based on the deflections
of the piezoelectric beam. This configuration offers a number
of capabilities: not only an open-and-close motion but an up-
and-down motion that allows, for example, a fine up-and-down
approach or a fine alignment of the finger tips as well. Objects
are grasped by means of two silicon end-effectors, fabricated
by a deep reactive-ion etching (DRIE) process. They are de-
signed to minimize the sticking effects between the end-effector
and the objects, in order to facilitate the release of the objects.
The end-effectors are fixed on the piezoelectric actuators with
reversible thermal glue. The gripper is controlled with instruc-
tions sent from a PC to a high-voltage interface (four channels of
+/ — 150 V) via an RS232 link. Such a microgripper presents
a typical stroke of open/close motion and up/down motion of,
respectively, 320 and 200 pum at the end of the finger tips for
+/ — 100V. The gripping force is on the order of a millinewton.

Uhttp://www.femto-st.fr/
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The gripper is mounted on a three-axis motorized microma-
nipulator® to allow accurate positioning with respect to the
substrate (see Fig. 1). The manipulator that is used relies on
stepper motors with a step size of 0.040 pm. It is a cable-driven
system with cross roller bearings; it has a submicrometer reso-
lution, and a travel range of 25 mm. The manipulator was, orig-
inally, controlled through a serial port. However, to increase the
communication frequency, a joystick is emulated by program-
ming the manipulator’s parallel port using a PCI6259 National
Instrument acquisition card.

As shown in Fig. 1, the observed scene is monitored by two
optical sensors which record the same view. The light beam is
divided into two optical paths, and redirected to an asynchronous
event-based silicon retina and a conventional frame-based cam-
era (GigE vision, Basler). The scene recorded by both sensors
is magnified by a 10x objective (Olympus).

Haptic feedback is provided to users by an Omega haptic
device,? with 3 DOFs for both displacement and force feedback.
Forces higher than 5 N are saturated to avoid any damage to
the interface. Both the micromanipulator and the gripper are
controlled through the use of this device.

A single PC (Intel Xeon core, 2.93 GHz) operating under
Windows 7 runs the threads corresponding to the gripper, the
micromanipulator, the vision detection, and the haptic feedback.

III. VISUAL TRACKING
A. Event-Based Artificial Vision

Information about a visual scene is transmitted in an asyn-
chronous manner by biological retinas, unlike frame-based cam-
eras, and with less redundancy. The event-based vision sensor
compresses the digital data in the form of events, removing re-
dundancy, reducing latency, and increasing the dynamic range
compared with conventional imagers. A complete review of the
history and the existing sensors can be found in [17].

The DVS used in this study is an AER silicon retina with
128 x 128 pixels [18]. As shown in Fig. 2(a), when the change
in scene reflectance in log units exceeds a set threshold, a +1 or
—1 event is generated by the pixel, depending on whether the
log intensity increased or decreased. Because the DVS is not
clocked (as are conventional cameras), the timing of the events
can be conveyed with a temporal resolution of approximately 1
us. Thus, the “effective frame rate” is typically several kilohertz.
The absence of events when no change of contrast is detected
implies that the redundant visual information usually recorded
in frames is not carried in the stream of events. Events are
transmitted to a computer using a standard universal serial bus
connection.

Let us denote by ev(p,t) an event occurring at time ¢ at
the spatial location p = (x,y)”. Fig. 2(b) shows an example
of the spatiotemporal visualization of a set of DVS events, in
response to the microgripper’s closing on a microsphere. An
event ev(p, t) describes an activity in the spatiotemporal space.
Similar to biological neurons, its influence lasts for a certain

2Sutter Instrument, http://www.sutter.com/MP285
3Force Dimension, http://www.forcedimension.com
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Fig. 2. (a) Principle of the generation of events of DVS pixels, adapted from
Lichtsteiner et al. [18]. Events with 4+ 1 or —1 polarity are emitted when the
change in log intensity exceeds a predefined threshold. (b) Events are generated
in (X, Y, t) space when the gripper closes on a sphere. Images (1)—(3) are shown
at chosen temporal locations; they correspond to the accumulation maps of the
events, namely, the projection of all events over a time interval on a single plane
(X,Y), regardless of their timings.

amount of time after it has been active. This temporal property
of events can be introduced in the form of a decay function
applied to model this phenomenon. We can then define S(¢),
which is the spatiotemporal set of events active at time ¢, by

S(t) = {ev(p,t,;)|e¥ > 5,,} )

with 7 being the time constant parameter of the decay function
and ¢; being the predefined threshold.

B. Event-Based Iterative Closest Point Algorithm

The principle of ICP algorithms is to use iteratively a model
point set delineating the desired object contour to match an ac-
quired data point set (the matching step). Each step estimates
a rigid transformation between the known model and the data,
which expresses their geometric relationship (the tracking step).
The ICP algorithm is particularly adapted to the task of tracking
the gripper’s position, as most of its constituent shapes remain
unchanged over time; more importantly, the scale of the obser-
vation remains unchanged during all the tracking. Let G(t) be
the set of positions of 2-D model points defining the shape of
the gripper at time ¢. M., (t) is the set of pixellic locations of
active pixels of the silicon retina at time ¢, which is defined by

M., (t) = {p € R*|ev(p,t) € S(t)} - ©)

Following the ICP algorithm, a matching function is needed
to pair the model points with the active pixels of the silicon
retina. An active event is matched with an element of G(¢) by
computing the minimal distance between the event’s position
and all points of G(t) that have yet to be paired.
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We can then define the matching function by
match : M, (t) — G(t)

arg min d(p, px) 3)
ke{l,...Ng}

P'—>Pkak|

where d(p, px) is the Euclidean distance between two points,
and N is the size of G(t).

It, then, becomes possible to estimate the rigid body trans-
formation (R, T) between M., (t) and G(t) by minimizing a
mean square cost function

. 2
pesn > [ Ap—T—mach(p) |© 4
peEM,., (1)
where R is the rotation matrix belonging to the 2-D special
orthogonal group SO(2), and T is the translation vector. See
[21] for details of this minimization. Fig. 3 provides the principle
of the event-based algorithm.

Algorithm 1 Event-based Iterative Closest Point Algorithm
Require: Event ev(p,?)

1: for every incoming ev(p,t) do

2:  Update the content of S(¢) and M,,(¢).

3:  Compute match(p).

4:  Estimate (R,T) according to equation (4).

5:  Update the position of model points of G(¢) using (R,T).
6: end for

The gripper closes at a speed of 13 pixels/s (lpixel =
1.5 pm), producing a mean rate of 14 000 events/s. The edge
width of the gripper in the DVS focal plane is around three
pixels. When the gripper finger passes a pixel, 10.6 events, on
average, are generated on it. Therefore, according to the times-
tamp, one pixel remains active for 2.46 ms. The decay function
permits a pixel’s activity to be considered during a certain pe-
riod after it has been spiked, which is tuned to about 10—15 ms.
The EICP is event driven, and its update rate has a mean value
of 4 kHz. The algorithm is implemented in Java under the Java
tools for Address-Event Representation (AER) neuromorphic
processing open-source software project [27].

As far as we know, high-speed tracking of relatively complex-
shaped micromanipulation tools by using software alone has yet
to be reported. However, the general visual tracking performance
of an ICP algorithm has been experimentally demonstrated. The
closest performance can be found in a hardware implementa-
tion of a frame-based technique in [28], where it is shown that
the processing speed reaches a rate of 200 frames/s for 512 data
points and 2048 model points. That paper also demonstrates that
a software implementation of the same algorithm runs at a rate
of 39 Hz with extra optimization. The use to be presented here
of an event-based camera using a classic PC with no particu-
lar software speeding process, outperforms existing algorithms,
since several kilohertz are reached.

The performance benefits of using DVS over frame-based
cameras is significant. A DVS does not generate frames: Its
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pixels are autonomous and react asynchronously to temporal
contrast changes. The current shape registration algorithms are
designed to work on image frames, usually acquired at a fixed
rate. An acquired frame must then be processed, an edge de-
tection must be applied, and in a second stage, the registration
algorithm is used to track the object. This operation is time con-
suming. The data load of a classic frame grabber at a frequency
of 1 kHz would be so huge that the computation power needed
would require specific hardware or a computer grid. The benefits
of a DVS is that it encodes during its acquisition process a com-
pression and a natural edge detection. Thus, the amount of data
provided by a DVS is really low: The seminal paper [18] shows
that this can amount to 10% of an equivalent frame camera of
the same resolution. The second advantage of its computation is
that it introduces an alternative approach to visual processing by
introducing the timing of the changes as a main computational
feature and not gray-level values.

The frame-based camera in our system serves as a comple-
ment to the DVS silicon retina solely for static object detection.
The focal planes of both the DVS (128 x 128 pixels) and the
frame camera (659 x 494 pixels) are related by a homography
transform, as both observe the same 2-D plane [29]. The ho-
mography is estimated offline by extracting from both sensors’
focal plane the coordinates of six corner points of the gripper
fingers and linking them to the actual metric of the gripper’s
points in the scene (see Fig. 4). During the application, the cir-
cle corresponding to the sphere to be manipulated is detected
using a frame-based Hough transform through the conventional
camera output. Once detected, its location is converted into the
coordinate system of the focal plane of the event-based retina.
This operation provides the locations of both the gripper and the
sphere in the same coordinate system. It, then, becomes possible
to estimate the distance J, between the gripper’s fingers. If an
object is detected between the two fingers, the relative finger—
object distance on the left and the right sides d,;, d,, and the
distance between the center of the sphere and the gripper J, (see
Fig. 4) are estimated as well. These distances will be used to
compute the haptic feedback.

IV. HApPTIC COUPLING

A. Manipulation Modes

Fig. 5 represents the coupling between the haptic device and
the microgripper. The operator applies a force Fy, to the haptic
device and receives a force feedback Fy, based on the distance
between the gripper and the sphere 0., 0., ., and 6, de-
termined from vision. Using the haptic interface, the user can
control the displacement of the micromanipulator as well as the
opening and the closing of the gripper. Scaling factors g and
Qe are introduced to convert the position of the haptic handle
to the variables used to control the position and the actuation of
the gripper.

To ensure ease of manipulation, different modes have been
defined with adapted haptic feedback.

1) Planar displacement: The operator controls the dis-

placement of the gripper in a plane parallel to the
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Principle of EICP tracking. The first row is a sequence of conventional images showing the closing of the gripper. The middle row shows the events’

accumulation maps. The last row is the convergence of the EICP model to the gripper edges. The four images in the first column (a) show the initial state when the
gripper is fully opened. The model set (solid lines) is trying to match the corresponding closest events, which are represented on an accumulation map (AC map),
and the rigid body transformation (R, T') is estimated to update the model position. In (b), the model is converging to the real gripper’s position, until it converges
to the gripper’s location (c). Finally, in (d), while the gripper is closing, the model’s position is updated simultaneously.

circle detected gripper tracked

Fig. 4. Calibration between the (left) classical image and (right) the DVS
accumulation map. Six points [crosses (1)—(6)] have been chosen to calculate
the homography transform H. The (left) detected circle is transferred by UDP
socket so that the DV part has (right) both gripper and circle position available.
6, and &, describe the distance between the gripper’s fingers and the sphere
on the left side and the right side, d,. is the distance between the two fingers,
and ¢, is the distance between the center of the fingers and the center of the
sphere.

e )
Haptic ‘g

interface

Manipulator

Fig. 5. Haptic coupling scheme. The user controls the position of the gripper
and the actuation of the gripper’s fingers using the haptic interface and receives
haptic feedback through the device. The haptic force is based on the distance
between the gripper and the sphere, determined from vision algorithms. Scaling
factors oy and «,. convert the position of the haptic handle to the variables
used to control the position and the actuation of the gripper.

substrate: the (x, y) plane. No force feedback is provided:
Fl =[0 0 0].

2) Vertical displacement: The operator controls the dis-
placement of the gripper along the vertical direction. A
constant repulsive force feedback is provided along the
z-direction so that the user has to make an effort to ap-
proach the gripper to the substrate to avoid unexpected
contact: FL =[0 0 Fj.].

3) Gripper control: The operator controls both the open-
ing and closing of the gripper and its position along
the y-axis to align the gripper with the middle line of
the sphere. A 2-D force feedback (explained in detail
in the next paragraph) is provided to assist the user:
FL =[Fhoe 0 Fyyl.

The operator selects the appropriate manipulation mode on a
graphical user interface developed in C++. To avoid any large
and sudden changes in force feedback during transitions be-
tween different modes, the haptic force is filtered by a second-
order low-pass filter for the first couple of seconds after the
selection of the desired mode. The filter is then deactivated to
enable all the force variations to be sent to the user without
smoothing. Note that even if the haptic feedback is delayed be-
cause of the time response of the filter, this is not an important
issue as it occurs before the user actually starts to manipulate
the gripper in the chosen mode.

B. Gripper Control

To increase the success rate of the pick-and-place operation,
two criteria should be met: The sphere should be grasped on its
middle line, and the grasping force should be enough to lift the
sphere yet controlled to avoid any damages to the object. The
haptic feedback must assist the user in these two operations.
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To help the user align the gripper with the middle line of the
sphere, a haptic force corresponding to a spring of stiffness k
between the position of the gripper and the sphere is provided

Fiy = ko, 5)

where ¢, is the distance between the center of the gripper and
the center of sphere along the y-axis (see Fig. 4).

A haptic feedback Fj,,. is provided so that the user can mon-
itor the grasping force. Contrary to what is commonly proposed
in the literature, we are not, here, interested in computing the ex-
act efforts applied to the object, but only in deriving information
to assist the user while performing a given task. The calibration
process which enables relating the tool deformations to the ap-
plied force is, thus, unnecessary. While closing the gripper, the
user has to counteract a haptic force F}, .

=T .
Fype = Fhaxe =, if notin the contact zone (6)

Feontact, if in the contact zone.

Here, 5;, is the free space between the two fingers of the
gripper. If the sphere is situated between the fingers, then
69{ = 04 + 04, Which corresponds to the sum of the distances
between each of the fingers and the sphere; otherwise, 65 =0,.
Fax 1s the maximum force that can be transmitted to the user
when the gripper is close to the sphere but has not yet entered
the contact zone. « is a constant chosen to tune the decrease
of the haptic force as the distance between the two fingers in-
creases. Fontact 1S the force sent while the gripper is grasping
the sphere. The step between Fi, .« and Fiontact must be high
enough to indicate clearly the contact between the sphere and
the gripper. The contact zone is reached if ¢,; and ¢, are less
than a given distance §; = 3 pum (which corresponds to 6% of
the sphere diameter). The gripper will then reach the noncontact
zone if 0,; and ¢, are greater than §o = 7.5 pm. This hystere-
sis avoids undesirable frequent transitions between contact and
noncontact modes because of noise or tracking error. The hys-
teresis values §; and 5 were chosen, based on our experience,
for a comfortable user sensation. The force step that is sent to
the user when contact is detected is filtered to avoid large and
sudden force changes. Even if the user does not receive the max-
imum force feedback at the instant of contact, the increase in
the force can be distinctly felt, and therefore, it can be inferred
that contact has happened.

V. EXPERIMENTAL RESULTS
A. Influence of the Sampling Rate on Stability

To visualize the influence of the sampling rate on the stability
of the haptic feedback, an experiment consisting of grasping a
sphere is performed for different resampled frequencies from
the vision algorithm output. The estimated distances are trans-
ferred to the haptic thread with resampled dynamics manually
set to 10 and 100 ms for comparison with the unfiltered output
of the EICP. For each frequency, the object is grasped and re-
leased three times (without being lifted). The results are given
in Fig. 6. It can be seen that as the frequency decreases, the
effort is less smooth. This is very disturbing for the user, who
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Fig. 6. Haptic forces during the grasping operation for different frequencies

of the vision feedback. The haptic force Fj,,. that helps monitor the grasping
force is provided. Note that, for each experiment, the user grasped the sphere
three times and released it. As the frequency decreases, oscillations appear.

has to counteract this variation. The user attenuates the oscilla-
tions by grasping firmly the haptic handle, which is equivalent
to adding damping to the system. The plots show the attenu-
ated oscillations. Fig. 6 does not represent an unstable response
from a control point of view, since the user manages to limit
the oscillations. However, the haptic feedback is highly uncom-
fortable and the user has to concentrate to counteract it. For low
frequencies, the system’s performance decreases, which makes
it unsuitable for complex 3-D manipulation.

B. Pick and Place of Microspheres

Some experiments were performed to validate the use of
event-based vision in computing haptic feedback. The micro-
spheres are glass beads of about 50 ym in diameter from Poly-
sciences, Inc., Warrington, PA.* To avoid issues of sticking while
releasing the spheres, a Gel-Pack substrate was selected. When
the gripper lets go off the sphere, the Gel-Pack substrate pro-
vides enough adhesion to prevent the sphere from sticking to
the gripper.

The experiment consists of positioning the gripper with re-
spect to the sphere (in plane displacements), grasping it, picking
it up, moving it, putting it down, and, finally, releasing it. The
precision of gripper tracking during this process is depicted in
Fig. 7, where the ratio of the mean ICP tracking error to the
microsphere diameter is calculated. It can be seen that when the
gripper closes, the tracking error converges to a constant value,
which corresponds to 7% of the diameter of the sphere. The
“picking up” operation may cause a z-axis defocusing; there-
fore, the error slightly increases. The “putting down” operation
produces similar results. For the sake of clarity, it has been
omitted from the figure.

“http://www.polysciences.com/
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Fig. 9. Haptic force F},,. used to control the grasping force. It is computed

Fig. 7. Gripper position tracking error. Images represent different steps. (a)  using (5) with the following coefficients: Feontact = 5 N (set to the maximum

and (b) Gripper converges to the gripper contour from its initial position. (c)
and (d) Gripper closes, and its position is tracked. (e) Sphere is lifted and the
gripper starts to defocus. This induces a smoothing of contours that then lowers
the tracking precision.
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Fig. 8. Haptic force F},, that assists the user to align the gripper with the
middle line of the sphere during the grasping operation. Equation (5) is used
with the following parameters: k£ = 50 000 N/m (a misalignment of 100 pm
produces the maximum force admissible by the haptic interface 5 N). The
displacement scaling factor along the y-axis is set to az = 2.5 x 10%. Video
available in supplementary materials.

To assist the user in aligning the gripper with the sphere, hap-
tic feedback is provided for both the grasping and the releasing
tasks. The results are given in Fig. 8 for the grasping. They are
similar for the releasing stage, which is, hence, omitted.

The user controls the position of the gripper along the y-axis.
A haptic force I}, that corresponds to a virtual stiffness between
the center of the gripper’s fingers and the center of the sphere is
transmitted to the operator. At the beginning of the experiment,
the gripper is misaligned, and the user feels an attractive force
that pulls the user to the correct position. After 13 s, the gripper
is correctly aligned, and the haptic feedback drops to zero.

The evolution of Fj,., i.e., the haptic force that helps the
user monitor the grasping force, is given in Fig. 9 for both
the grasping and releasing stages. When ¢; < 11.8 s, the user
closes the gripper on the sphere. As the free space between the
gripper’s fingers and the sphere decreases, the operator has to
counteract an increasing haptic force Fj,,.. Att; = 11.8 s, the
gripper enters the contact zone, and the user feels a large and
sudden increase of the haptic force. The sphere is grasped. Due

admissible force of the haptic interface), Finax = 2 N,and o = 1.44 x 10’8 (a
distance of 100 xzm produces a haptic force of 1 N). The opening/closing scaling

factor is set to a,. = 1.8 X 10-3m.V~1. Video available in supplementary
materials.
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Fig. 10. Vertical haptic force F},, sent to users during lifting, moving, and
putting down operations. To perform the vertical displacements, a scaling factor
o =125 x 10° is used.

to an initial misalignment of the finger tips (along the vertical
z-axis), this grasping causes a rotation of the sphere between
the two fingers and amplifies the misalignment. Thus, the right
finger goes down, and the left finger goes up. Since the gripper is
mounted with an angle of about 45° with respect to the horizontal
plane (see Fig. 1), a shift between the finger tips along the y-axis
can be observed by the projection on the top view in the inset
of Fig. 9 [or more clearly in the insets of Fig. 7(d) or (e)]. At
to = 15.6 s, the operator begins the pick-and-place operation.
To avoid any disturbance during this operation, F},,. is set to
zero. The user starts to release the sphere at time t3 = 43.5 s.
As the gripper contacts the sphere, a constant haptic force is
felt (equal to 5 N), which helps the user open the gripper. At
ty = 45.3 s, the gripper is opened, and the fingers are out of the
contact zone. The haptic force drops suddenly. It can be noted
that it does not reach 0, as the force is still assisting the user to
open the gripper (and avoid unexpected closing).

For the entirety of each of the grasping and releasing oper-
ations, the user receives haptic feedback, which helps in the
performance of the task.
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During the lifting and the putting operations, a constant repul-
sive haptic force field, which is set to 2 N, is provided to avoid
any involuntary contact with the substrate (see Fig. 10). When
the sphere has been lifted above the substrate to the desired
height, the user can move it freely in the (z, y) plane paral-
lel to the substrate (o} = 4.0 x 10%, o} = 2.5 x 10*).% For this
operation, the haptic feedback is turned off.

A high-frequency capability for the sensor is of the utmost
importance for real-time applications at the microscale, since the
low inertia of the objects induces rapid dynamics. In addition,
due to the scale difference, position and/or force scaling factors
are necessary to decrease the movements performed by the user
so that they can be used as an input for the micromanipulation
system and to enhance the force so that it can be used as a haptic
feedback (if the interaction force between the gripper and the
sphere is measured). To ensure stability, the ratio of these scal-
ing factors multiplied by the square of the sampling rate of the
system and the stiffness of the contact must be less than the iner-
tia of the haptic device (see [30]). Ensuring stability is possible
either by adapting the scaling factors or by increasing the sam-
pling rate. Adapting the scaling factors leads to time-consuming
experiments or very weak haptic feedback. In practice, this ren-
ders the system uncomfortable and difficult to use. A sensing
capability higher than 1 kHz is commonly recommended [24].
Getting high-frequency sensing is the only solution to provide
usable haptic feedback systems. In this paper, the vision sensors
and detection algorithms provided a high-frequency feedback
that enabled users to successfully perform a 3-D teleoperated
manipulation on micrometer-sized objects (a video demonstrat-
ing the process is available in supplementary materials). The
results in this paper will surely benefit teleoperated or auto-
mated microassembly and open new perspectives for complex
micromanipulation.

VI. CONCLUSION

To overcome the lack of sensing capabilities at the microscale,
avision-based system has been proposed. To enable a wide range
of applications, in particular, for automated or teleoperated mi-
cromanipulations, the frequency of the vision feedback must be
higher than 1 kHz, as the low inertia present at this scale induces
highly dynamic phenomena. This is ensured by the output of the
DVS sensor, which conveys temporal contrast in the scene in
the form of time-stamped events. An EICP algorithm has been
proposed to track the tool at more than 4 kHz. This feedback
is combined with the output of a classical frame-based camera,
which is used to derive information about static parts of the
scene, and, in particular, the position of the object that must be
manipulated. This approach was tested with a pick-and-place
experiment of a glass sphere with a diameter of about 50 pum
using a piezoelectric gripper. The task was realized by tele-
operation with haptic feedback. This application is especially
challenging as a frequency of more than 1 kHz is required for
the system’s stability. The influence of the frequency rate on

SDifferent factors are used along the three axes of the micromanipulator
to achieve easy positioning. They are set according to the user’s comfort of
manipulation.
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the system’s stability has been experimentally highlighted, and
the benefits of the DVS sensor over conventional frame-based
cameras with lower frequencies have been shown. A successful
pick-and-place task of micrometer-sized objects with 3-D hap-
tic feedback based on vision tracking was performed with this
system.

These results can be easily extended to other applications,
involving different objects or tools. In particular, vision-based
force measurement could be performed with the DVS sensor
after the calibration of the tool. Fully automated manipulation
also would benefit from the high frequency of the feedback to
guarantee the system’s stability. Future research projects include
the use of a model of the gripper to avoid tracking drift from the
loss of focus, while performing out-of-plane movements.
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