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The goal of the research is to reconstruct the unknown cost (objective) function(s) 

presumably used by the neural controller for sharing the total force among indi-

vidual �ngers in multi�nger prehension. The cost function was determined from 

experimental data by applying the recently developed Analytical Inverse Optimiza-

tion (ANIO) method (Terekhov et al. 2010). The core of the ANIO method is the 

Theorem of Uniqueness that speci�es conditions for unique (with some restrictions)

estimation of the objective functions. In the experiment, subjects (n = 8) grasped 

an instrumented handle and maintained it at rest in the air with various external 

torques, loads, and target grasping forces applied to the object. The experimental 

data recorded from 80 trials showed a tendency to lie on a 2-dimensional hyper-

plane in the 4-dimensional �nger-force space. Because the constraints in each trial

were different, such a propensity is a manifestation of a neural mechanism (not the

task mechanics). In agreement with the Lagrange principle for the inverse optimiza-

tion, the plane of experimental observations was close to the plane resulting from 

the direct optimization. The latter plane was determined using the ANIO method. 

The unknown cost function was reconstructed successfully for each performer, 

as well as for the group data. The cost functions were found to be quadratic with 

nonzero linear terms. The cost functions obtained with the ANIO method yielded 

more accurate results than other optimization methods. The ANIO method has 

an evident potential for addressing the problem of optimization in motor control.

Keywords: Grasping, prehension synergy, motor redundancy, inverse optimization,

Uniqueness Theorem, Principal Component Analysis

When manipulating hand-held objects, people adjust the digit forces to the 
weight of the handle, external torque, friction conditions, and object geometry. The
task of holding an object is highly redundant: In 5-digit grasps there are 30 variables
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to control (3 force and 3 moment components at each contact times 5 digits) while 
a rigid object in space has only 6 degrees of freedom. However, when performing 
a prehension task performers do this in similar ways (Zatsiorsky et al. 2004). Such 
a similarity agrees with an idea that the central controller selects the force sharing 
pattern based on some unknown optimization criteria (Crowninshield and Brand 
1981; Tsirakos et al. 1997; Prilutsky and Zatsiorsky 2002, Todorov 2004).

For the multi�nger prehension, several candidate objective functions have been
suggested and tested in the literature (Zatsiorsky et al. 2002b; Pataky et al. 2004b; 
Aoki et al. 2006; Niu et al. 2009). While some of them worked better than others, i.e.,
their application resulted in a better correspondence with the experimental data, all 
of them were based on guesses made by the researchers. In other words, the inverse 
optimization problem—�nding a cost function from experimental data—was not 
considered and replaced by comparing the functioning of various optimization cri-
teria in direct optimization. Such a try-and-compare approach has been common in 
biomechanics of human motion (for reviews see Collins 1995[AUQ1]; Tsirakos et al.
1997; Prilutsky 2000; Engelbrecht 2001; Todorov 2004, Erdemir et al. 2007[AUQ2])
since analytical inverse optimization methods did not exist. Another approach con-
sists in selecting, a priori, a parameterized class of putative objective functions, e.g.,
an assumption is made that the function is linear or quadratic, and then the function 
parameters are estimated from experimental data. Such a methodology was mainly 
used outside the motor control area, in particular using methods of linear program-
ming (Ng, Russell 2000; Abbeel, Ng 2004; Syed et al. 2008; Ziebart et al. 2008). 
An interesting new approach has been recently suggested by Körding and Wolpert 
(2006). We discuss this method in more detail in the Discussion.

Force distribution among digits in multi�nger prehension is an example of 
a more general problem of distributing activity among several effectors acting in 
parallel (the most popular case of such a problem is sharing activity among a group 
of muscles serving a joint—Challis, Kerwin 1993; Herzog and Binding, 1993; Pri-
lutsky and Zatsiorsky 2002; Ait-Haddou et al. 2004). Several attempts have been 
made recently to solve the inverse problem of optimization for such tasks analyti-
cally (Sieminski, 2006[AUQ3]; Bottasso et al. 2006) but these methods were not 
applied to multi�nger grasping. As compared with other distribution problems, for 
instance with the muscle sharing problem, multi�nger prehension provides three 
important research advantages: (a) all the variables of interest, e.g., digit forces and
moments, moment arms, the task parameters, etc., can be directly measured; (b) the
task parameters such as the object weight and geometry, applied external torques, 
etc. can be varied by a researcher according to the method requirements; and (c) the
performance of different optimization functions can be validated experimentally.

The present research was performed with the following goals:

(1) To test applicability of the ANIO method to studying the multi�nger prehension.

(2) To compare the cost functions obtained in different subjects. Do all the subjects
use functions of the same class, e.g., quadratic function with linear terms?

(3) To compare the performance of the cost functions determined analytically 
using the ANIO method to performance of other cost functions.

The paper has the following structure. In Section 1, a recently developed
analytical inverse optimization (ANIO) method (Terekhov et al. 2010; Park et al. 
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2010; Terekhov and Zatsiorsky 2011) is described. The ANIO is a general math-
ematical method. To apply the method to a particular task, the method should 
be adjusted. In Section 2 the experiment is described and the main experimental 
results are presented. Section 3 formulates the inverse optimization problem for 
the task of multi�nger prehension and addresses the computational procedures of 
the ANIO method to determine a group of unknown objective functions. In Section 
4 the performance of the objective function computed from the ANIO method is 
presented and compared with the performance of other cost functions. Section 5 
is devoted to a general discussion.

Analytical Inverse Optimization (ANIO) Method

The mathematics behind the method, including the proofs of all the lemmas and 
theorems, are described in Terekhov et al. (2010). The Appendix to this paper 
presents the main Uniqueness Theorem on which the ANIO method is based. The 
main concepts of the ANIO are explained here in a basic form.

The objective function is assumed to be an unknown additive function J which 
is composed of unknown scalar differentiable functions gi. An optimization problem
with additive objective function is de�ned as:

Let J: Rn → R1

Min: J(x) = g1(x1) + g2(x2) + - - - + gn (xn) (1)

Subject to: CX=B

where X=(x1, x2,. . . , xn) ∈ Rn, gi is an unknown scalar differentiable func-
tion with g’(∙)>0 in the feasible region, C is a k�n matrix, rank C=k, and B is a 
k-dimensional vector, k<n. Such a problem can be referred to as <J, C>.

Lagrange Principle for the Inverse Optimization Problem

The necessary conditions for solving the direct optimization problem are known 
as the Lagrange principle. Since every experimentally observed point is assumed 
to be a result of minimization of some objective function, the Lagrange principle 
must hold. For the inverse optimization problem with additive objective functions
and linear constraints the following formulation of the Lagrange principle is
valid.

If the objective functions gi in equation (1) are continuously differentiable then
they satisfy the equation: Cg X 0

�
( )′ = , for every experimentally observed X*. Here

C I C CC C–
T T

–1�
( )= . CT denotes the transpose of matrix C.

Essentially Similar Objective Functions

Estimating the objective function from observations does not necessary lead to 
a unique solution. For example, multiplying an objective function by a positive 
number or adding a number does not change the optimal solution. Two objective 
functions are called essentially similar on the same set if for every possible con-
straint their optimization leads to the same result.
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Problem Splitability

If minimization of the objective function can be performed independently for
certain subsets of variables the problem is splittable. Splittabilty limits the inverse 
optimization. It was proven in (Terekhov et al. 2010) that the optimization prob-
lem (1) is splittable if and only if breve matrix C

�
can be made block diagonal by 

reordering the rows and columns with the same indices.
The theorem of uniqueness is presented in Appendix. The theorem provides 

suf�cient conditions for uniqueness, up to linear terms, of solutions of the inverse 
optimization problem. According to the theorem, if the experimentally observed 
values X* form a k-dimensional hypersurface, where k is the number of constraints 
in the problem, then the solution of the inverse problem-is unique up to linear 
terms. In this case the equation provided by the Lagrange principle can be used to 
determine the objective function. In particular, if the experimental hypersurface 
can be de�ned by the equation Cf X 0

�
( )′ = , where f X f x f x,..., n n

T

1 1( )( )( )( )′ = ′ ′
and fi are arbitrary scalar functions, then the sought functions gi coincide with fi up 
to linear terms (speci�c details are explained later in the text).

Experiment: Multifinger Prehension

In the experiment subjects maintained at rest a vertically oriented handle. The sub-
jects used a prismatic grasp in which the �ngers and the thumb contact the object 
in the same plane (the grasp plane, Figure 1).

Methods

Subjects. Eight young male subjects participated in the experiment (age 27.6
± 3.0 yr, mass 74.7 ± 9.0 kg, height 176.3 ± 9.2 cm, hand length from the middle 
�nger tip to the distal crease of the wrist with hand extended 18.4 ± 0.9 cm, hand 
width at the MCP level with hand extended 8.9 ± 0.7 cm). They were all right-hand 
dominant according to their hand usage during eating and writing. None of the 
subjects had a history of neuropathy or trauma to their upper limbs or professional 
training that might affect their hand function, such as playing musical instruments. 
All subjects gave informed consent according to the policies of the Of�ce for
Research Protections of The Pennsylvania State University.

Apparatus. Five six-component force/moment transducers (Nano-17, ATI
Industrial Automation, Garner, NC, USA) were mounted on an aluminum handle
at the bottom of which a horizontal aluminum bar was attached (0.7 m long), see
Figure 1. The subjects were instructed to keep the handle vertical and static by
watching an air bubble level placed at the top of the handle. The level (diameter:
32 mm) included a central circle (diameter: 15 mm) and an air bubble (diameter:
5mm) in the enclosed liquid. If the bubble was within the central circle, the trial
was accepted by the researcher; otherwise the trial was repeated. We found that
when the moment of force exerted by the subject was within ±40 Nmm (0.04 
Nm) of the target moment of force, the bubble was at the edge of the central circle. 
Four transducers were used to measure forces and moments of force applied by 
the �ngers, and the �fth transducer measured the force and moment of force
produced by the thumb. The surface of each sensor was covered with sandpaper 
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(the coef�cient of friction =1.34 ± 0.05, Aoki et al. 2006). Sensor signals were set 
to zero before each trial

The distance between the centers of two �nger sensors was 3.0 cm, and the 
thumb sensor was positioned across the midpoint between the centers of the middle
and ring �nger sensors. The combined mass of the handle, sensors, and the bar was 
1.01 kg. Four loads, 0.25 kg, 0.5 kg, 0.75 kg and 1.0 kg could be attached at different
points along the bar. Their suspension at different locations generated �ve external 
torques: 0.2 Nm and 0.4 Nm clockwise and counterclockwise, as well as a zero 
torque. There were a total of 20 different load/torque conditions in the experiment.

Experimental Procedure. The subjects were instructed to perform �ve trials at
each torque/load combination. In the �rst trial, the subjects applied the natural
normal force (grasping force), while holding the handle in the air. In the next

Figure 1 — An instrumented handle and recorded forces in the experiment. (A) Schematic draw-
ing of the apparatus with �ve sensors and an air bubble level mounted on a handle with a T-shaped 
attachment. (B) Local coordinates on each transducer. (C) Total normal force generated in the tasks 
(examples: external torque 0.4 Nm with load of 0.5 Kg).
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four trials, a target line was shown on the monitor with different grasping force
magnitude, which was determined by increasing the recorded natural normal
thumb force by 0% (i.e., essentially repeating the �rst trial but with the grasping
force prescribed), 25%, 50% and 75% separately in each trial. The thumb normal
force was prescribed due to the necessity to apply the method to a large number
of trials (see Terekhov et al. 2010).

The subjects were asked to match the target line while keeping the handle 
vertical without any angular or linear movement. The sequence of the four trials 
with the prescribed grasping force (0%, 25%, 50% and 75% of force increase) was 
randomized. Before the experiment, subjects were given an orientation session to 
familiarize themselves with the experimental tasks and apparatus. Then, subjects 
washed their hands to normalize skin condition.

The subject sat in a chair with the right upper arm positioned at approximately 
45° abduction in the frontal plane and 30° �exion in the sagittal plane. The elbow 
joint was �exed approximately 90°. The forearm was pronated 90° such that the 
hand was in a natural grasping position. A computer monitor located in front of 
the subject showed the thumb normal force exerted by the subject on the handle (in 
statics the magnitude of the thumb normal force equals the sum of the magnitudes 
of the four �nger forces). The subjects were coached to keep the handle vertically 
by looking quickly at the bubble level located at the top of the handle while mainly 
watching the monitor.

Subjects were instructed to take the handle from the rack and keep the handle 
vertically and statically in the air by monitoring the air bubble level. When the 
handle was stabilized and the natural grasping force was applied by the subject, 
data recording would start.

The subjects were told by the investigator to “Keep the handle vertical and 
static as precisely as you can, and match the target line by increasing or decreasing 
the gripping force if necessary”. After the data collection in a trial stopped, the 
subject placed the handle back on the rack and took a 30-s break. After the subject 
completed all the �ve trials at a given torque/load combination, the investigator 
would change the load and/or the location of the load along the bar, and informed 
the subject that he could start the next trial. Sensor signals were set to zero before 
each trial.

The order of external torques and loads, and the force-speci�cation percentages
within each torque/load condition was randomized. Each trial took 10 s. During 
the experiment each subject performed 20 trials of natural grasping force exertion 
(4 loads×5 torque) and 80 trials of prescribed grasping force magnitude (4 loads×5 
torque×4 grasping force magnitudes). The total duration of each experiment was 
approximately two hours.

The percentages of the actual sum of �nger normal force increase were cal-
culated across all trials, which were 3% ± 5%, 27%± 4%, 50%± 5% 74% ± 6% 
(mean ± SD) in the tasks of 0%, 25%, 50% and 75% force increase. The matching 
error was small.

Data Analysis. Software written in LabVIEW (National Instruments, NC, USA)
was used to convert digital signals into the force and moment of force values.
Data processing was performed using Matlab software package (Mathworks, In.,
Natick, MA, USA). The raw force/moment data were �ltered with a third-order,
zero-lag Butterworth low-pass �lter at 10 Hz.
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Since the thumb and virtual �nger (VF, an imagined �nger with the same 
mechanical effect as the combined action of all four �ngers of the hand) normal 
forces compose a force couple and hence generate a free moment (Zatsiorsky, 
2002a), the pivot point used to calculate the moment of normal force (Mn) was 
arbitrarily de�ned at the center of force application (CFA) of the thumb. Therefore, 
the moment arms of index, middle, ring and little �ngers in producing the Mn were 
yin = 45±din–Δ th mm, ymi = 15±dmi–Δth mm, yri= –15±dri+Δth mm, and yli= –45±dli

+Δth mm, respectively, where di is the CFA of each �nger with respect to the sensor 
center where the �nger was placed on (see Figure 1); Δth is the CFA of the thumb 
with respect to the thumb sensor center. The minus sign for ring and little �ngers 
is because they generated clockwise (negative) moment of force. The method of 
determining di is described elsewhere (Niu et al. 2009).

Statistical Analysis. The Linear Mixed Model (LMM) in SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA) was used to do the statistical tests. The LLM is more powerful
to analyze repeated measures observations than other models, such as Generalized
Linear Model (GLM) (Littel et al. 2006). Repeated measures (RM) ANOVA on �nger
normal forces were performed with the factors: TORQUE, LOAD, and TARGET
FORCE. In addition, four-way RM-ANOVA was employed to analyze the effects
of TORQUE, LOAD, TARGET FORCE and METHOD on the RMS differences
between optimal solutions and experimental observations, where METHOD included
�ve levels corresponding to the procedures of ANIO, MBIO, and three direct
optimization methods explained in Section 4. Akaike’s Information Criteria (AIC)
as a criterion of goodness-of-�t was used to determine the best covariance structure
for the RM-ANOVA model (Akaike 1974). We found that First Order Autoregressive
Model [AR(1)] covariance structure was more appropriate to analyze the data than
other covariance structures. AR(1) model assumes that the expected within-subject
correlation decreases exponentially with the spacing of the factor levels between
measurements. It has been also shown (Howell 2002) that AR(1) is better than
Compound Symmetry (CS) covariance structure in repeated measures studies, thus
the sphericity assumption testing was not required in this study. Pairwise comparison
using the Bonferroni correction with family con�dence coef�cient .95 was calculated
for the signi�cant effects in the RM-ANOVA post hoc tests.

Experimental Results

Only results which were used in the subsequent optimization procedure—i.e.,
normal forces exerted by individual �ngers— are reported here.

The increase of the grasping force was accomplished by the increases of all 
four �nger normal forces. Figure 2 shows, as example, the index and little �nger 
normal forces at various external torques, loads, and target grasping forces. As 
expected, the individual �nger forces increased with an increase of the supported 
load and target grasping force. With a change of the external torque, the index and 
little �nger forces changed in opposite directions.

Three-way RM-ANOVA showed that TORQUE, LOAD and TARGET FORCE
all had signi�cant main effects on F

in

n (p < .001 for all). Bonferroni pairwise com-
parison showed that increased signi�cantly for every level of the factor TARGET 
FORCE from 0% to 75% (p < .001 for each). None of the two- and three-way 
interactions was signi�cant (p > .5).
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Similar to the index �nger force, F
mi

n , F
ri

n  and F
li

n increased with the increase of
LOAD (p < .001 for each), and TARGET FORCE whose effect, however, depended
on the external torque. For those �ngers, the interaction TORQUE×TARGET
FORCE, which re�ected the conjoint effect of TORQUE and TARGET FORCE 
on the normal forces, was statistically signi�cant (p < .001 for each). No sig-
ni�cant TORQUE×LOAD interaction effects were found for any �nger. Pairwise 
comparisons with Bonferroni corrections showed that F

mi

n , F
ri

n  and F
li

n  increased 
signi�cantly with an increase of TARGET FORCE at each level of TORQUE (p
< .05 for each).

The moment arms of �ngers with respect to the thumb, yi (i=in, mi, ri, li), were 
46.5 ± 4.3 mm, 14.4 ± 1.5 mm, –15.3 ± 2.0 mm and –45.9 ± 2.2 mm (average± SE
across all tasks and subjects). Three-way RM-ANOVA was performed to inspect 
the effect of TORQUE, LOAD and TARGET FORCE on yi. It was found yin was 
affected signi�cantly by TARGET FORCE (p = .042), with a signi�cant differ-
ence between 75% and 0% normal force increase (p = .029); yri was affected by 
TORQUE (p = .018), with a signi�cant difference between L2 and R2 (p = .006); 
ymi and yli were not affected by any factors signi�cantly (p > .051).

Figure 2 — Index and little �nger normal forces at various torques, loads, and target levels of force. 
Group averages over eight subjects are shown.
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The principal component analysis (PCA) was performed on the observations 
(80 points for the individual subjects and 640 points for all the subjects combined) 
. In the analysis of individual subject’s data, it was found that 93.53 ± 0.43% of 
the total variance across subjects was accounted for by the �rst two principal
components which had the larger eigenvalues. The �rst two principal components 
explained 88.14% variance in the pooled data across all subjects.

Therefore, it has been concluded that the experimental observations tend to lie 
on a 2-dimensional hyperplane in the 4-dimensional space (although the constraints,
i.e., the load, the required total force and the resisted moment, were different in 
all 80 trials; see section 2 for more details). An example of the projections of the 
hyperplane onto a three-dimensional space ( F F F, ,

in

n

mi

n

li

n ) and the �nger force dis-
tribution in the space is presented in Figure 3B.

Computational Procedures of ANIO Method

The ANIO method is a general mathematical method that can be applied to many 
real life problems. This section explains the formulation of optimization problem 
for the experiment described in Section 3.3, and speci�es the ANIO computational 
procedures for the task of static multi�nger prehension.

Formulation of Optimization Problem

The conditions of static equilibrium for the studied task (described in Section 2 above)
should satisfy three equality constraints (balancing external forces in the horizontal 
and vertical directions and balancing an external moment applied to the handle) and 
two inequality constraints (the normal force should be suf�ciently large to prevent 
the object slipping from the hand and the �nger forces are nonnegative and cannot be
larger than the maximal �nger force), for a more detailed explanation see Zatsiorsky,
Latash (2009). Because the surfaces of the sensors were covered with sandpaper the 
friction at the �nger tips was large and slipping was not a problem in the current study.

It was previously shown that sharing percentage of the total normal force
among the �ngers is quite reproducible across trials with �xed load force and 
external torque (Zatsiorsky et al. 2002 a, b; Shim et al. 2003). This observation 
allows assuming that particular force sharing patterns result from minimization 
of a certain objective function. The inverse optimization problem was de�ned as

Min J g Fi i

n

i 1

4

∑ ( )=
=

Subject to 
F F F F F

F Y F Y F Y F Y M

in

n

mi

n

ri

n

li

n

total

n

in

n

in mi

n

mi ri

n

ri li

n

li

n

+ + + =

+ + + =







(2)

where F F F F F, , ,
in

n

mi

n

ri

n

li

n
T

=    is a 4 × 1 nonnegative vector of �nger forces 

(the subscripts in, mi, ri, and li refer to the index, middle, ring, and little �nger, 
respectively), superscript n indicates that normal forces are considered, F

total

n  is 
the sum of four �nger normal forces, Y Y Y Y Y, , ,

in mi ri li

T

[ ]=  designate the moment 
arms of the normal �nger forces, Mn is moment of normal force. The constraints 
can be written as CF=B.



204

Figure 3 — The experimental data in various projections. (A) The scatter plot of �nger forces pro-
jected onto the principal components with the largest (abscissa) and smallest (ordinate) eigenvalues. 
Data points from Subject 1. (B) The �nger force distribution in 80 trials and the hyperplane containing
experimental data (experimental hyperplane) projected onto a three-dimensional space. Data points 
from Subject 1. (C) The same hyperplane as in Figure 3A with �ve “mechanical” planes added. The 
latter planes are randomly picked up from 80 planes representing the trials with different mechanical 
constraints and projected onto the three-dimensional space. Each of the “mechanical” planes is plotted
by using the following procedure: (1) 100 solutions satisfying each constraint set (each trial’s mechani-
cal requirements) are computed; (2) index, middle and little �nger’s forces from the 100 solutions are 
picked out and the principal component analysis (PCA) is performed on them; (3) the lesser principal 
component obtained from the PCA is used to plot the plane in three dimensions. The angle between 
the experimental plane and the “mechanical” planes in the projected space (89.8°) is different from the
real angle in the four-dimensional space (79.5°) due to the projection. Note: the observed data points, 
their principal components and experimental plane, are all obtained in a 4-dimensional space of �nger 
forces . To visualize the data, we projected them in 2-D and three-dimensional spaces, respectively. 
The projection of the 4-D experimental hyperplane and observed data onto a three-dimensional space 
could cause visual distortion of their real orientation and relative distances. The further explanation 
is provided in the text (see Section 2. Problem Speci�cation).
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C
Y Y Y Y

1 1 1 1

in mi ri li

=










B
F

M

total

n

n
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 (3)

The linear constraints provided two equality requirements on normal force 
F
total

n  and moment of normal force Mn.
The 20 trials of natural grasping force exertion for each subject were not

included in the inverse optimization procedures, since the subjects were free to 
choose arbitrary force magnitude instead of the prescribed force shown in equation
(2); therefore, only 80 trials (80 points in the 4-D �nger force space) from each 
subject were used to compute the unknown cost function

Implication of Planarity of Observations
in the Optimization Modeling

For a system of two linear equations with four unknowns (equation (2) above), the 
solutions should evidently lie on a 2-dimensional hyperplane in the 4-dimensional 
�nger-force space (provided that F

total

n  and Mn in the right hand side of the equa-
tion (2) do not vary). Such a plane, named “mechanical” hyperplane, is de�ned by 
the “purely mechanical” constraints with the speci�c values of F

total

n  and Mn. This 
de�nition makes “mechanical” hyperplane identical to the uncontrolled manifold 
(UCM) as de�ned within the UCM hypothesis (Scholz, Schöner 1999; reviewed 
in Latash et al. 2007).

In the present experiment the constraints were different in different trials. As a 
result, every experimentally obtained data point (�nger normal forces) corresponded
to a particular combination of F

total

n  and Mn, and lied on its own “mechanical” 
hyperplane. There should be as many “mechanical” hyperplanes as the F

total

n  and 
Mn combinations employed in the experiment, i.e., 80 “mechanical” hyperplanes. 
In case the points of �nger force applications on the sensors do not change across 
the trials, i.e., Y in equation (2) is the same across trials, the “mechanical” hyper-
planes would be parallel to each other (Figure 3C presented �ve exemplary parallel
“mechanical” hyperplanes in projection into a three-dimensional space).

The “mechanical” hyperplanes represent only the mechanical constraints of the
tasks. They do not re�ect the optimality of actual task performance. The requirement
of optimality imposes additional constraints on the performance, and hence on the 
distribution of the experimental recordings. If a point (solution) were randomly 
picked up from each “mechanical” hyperplane, the 80 points would form a four-
dimensional “cloud” instead of being obliged to be on a certain low-dimensional 
hyperplane. However, in the current study it was found that the experimental points
were con�ned to a plane (for an example see Figure 3A and 3B) and the plane was 
different from any “mechanical” hyperplane (Figure 3C). In this experiment, the 
dihedral angle between experimental hyperplane and “mechanical” hyperplane 
equaled across subjects 83.7° ± 4.5° (standard deviation). The planarity of the 
experimental observations for the whole set of trials is not a direct consequence 
of the task mechanics. It is a nontrivial �nding indicating that the �nger forces are 
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speci�ed in such a way due to certain motor control mechanisms. Most probably 
these mechanisms are based on optimality principles. The orientation of the two-
dimensional hyperplane containing the experimental observations (the experimental
plane) might be signi�cantly different from the one of any of the “mechanical” 
hyperplanes derived from equation (2).

In the next session, the planarity of the observations is used to compute the 
unknown cost function.

ANIO Computational Procedures

The computational procedure to �nd an optimization cost function involves several
steps.

Step 1. Identify whether the optimization problem is splittable or not by observ-
ing the (4 × 4) matrix C I C CC C–

T T
–1�

( )= . If C
�

 is block-diagonal, or can be 
made block diagonal by identical reordering its columns and rows, the problem is 
splittable and should be divided into subproblems each of which is nonsplittable 
and can be solved individually.

In the experiment of multi�nger prehension, the C
�

 matrices were computed 
and the optimization problem was found to be nonsplittable in all cases.

Step 2. Determine the observed hyperplane mathematically. The hyperplane 
can be de�ned as

  AFn = b (4a)

where A is a 2 × 4 matrix composed of the transposed vectors of the two lesser 
principal components obtained from the PCA; b is a 2-dimensional vector de�ned as

b AF
n� , (4b)

and F F F F F, , ,n

in

n

mi

n

ri

n

li

n
T

=   is the vector of the average �nger normal forces 

(the horizontal lines above the symbols signify averaging). Note that the hyperplane

determined from equation (4a) is prone to experimental errors (“noise”).

As it was mentioned above (Section 2.2), the hyperplanes containing the data 

points recorded in the experiment were determined (see Figure 3).

Step 3. The goal of this step is to compare the experimentally determined 

hyperplane derived by using equation (4a) with the theoretical plane derived from 

the Uniqueness Theorem. According to the Theorem, if there are functions f Fin in

n( ), 
f Fmi mi

n( ) , f Fri ri

n( )  and f Fli li

n( )  satisfying ( )′ =Cf F 0n
�

, then the objective function

) ) ) ) )( ( ( ( (= + + +J F f F f F f F f F
n

in in

n

mi mi

n

ri ri

n

li li

n  is essentially similar to the true one 

up to linear terms (prime symbol denotes a derivative of a function fi with respect 

to its argument F
i

n , where i = in, mi, ri and li).

The objective function J in the current experiment can be determined based 

on the following consideration: the experimental data points tend to form a two-

dimensional hyperplane AFn=b while all the experimental observations should also

comply with ( )′ =Cf F 0n
�

. To satisfy both these requirements, )(′f F
n  should be 

a linear function of Fn . As a result, the following formulation can be obtained

)(′ = +f F k F wi i

n

i i

n

i
(5a)
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Therefore

) )( (= +f F
k

F w F
2

i i

n i

i

n

i i

n2
(5b)

where i = in, mi, ri and li.
An optimal solution would be expected to de�ne a plane ( )′ =Cf F 0n

�
 in the 

four-dimensional space.
The Uniqueness Theorem predicts that if:

(a) matrix C were precisely known and the moments arms of the �nger forces 
were not varying from trial to trial (the CFA’s and di were constant),

(b) the subject’s performance were perfect, i.e., the equilibrium were ideally
maintained (no tremor or minute tilting of the object) and the exerted forces 
satis�ed constraints (2) without a slightest deviation, and

(c) the central controllers of the subjects were strictly ful�lling the optimization 
function, then the hyperplanes of the experimental data, i.e., the plane de�ned 
by equation (4a), and the plane of optimal solutions ( )′ =Cf F 0n

�
would

coincide.

We cannot expect, however, actual performance to be ideal. Hence, a given 
experimental plane should be considered an approximation of the (unknown) plane
of perfect performance. The latter plane (the plane of optimal solutions ( )′ =Cf F 0n

�
) 

corresponds to a minimal dihedral angle α with respect to the estimate of the
experimental plane. To �nd the angle the average values predicted from the ANIO 
method were forced to coincide with the average experimental data.

Step 4. The values of ki can be numerically computed by minimizing the
dihedral angle between the two above mentioned planes: (i) the plane of optimal 
solutions ( ) ( )′ = + =Cf F C KF W 0n n

� �
 and (ii) the plane of experimental observa-

tions AFn =b with kin = 1 for normalization in the optimization procedure, where 
K = diag(kin, kmi, kri, kli) is a 4 × 4 diagonal matrix with ki on the main diagonal; 
the vector W= [win, wmi, wri, wli]T is chosen to have minimal vector length. Thus 
we get �W CKF– n

�
.

In the case of multi�nger prehension, minimization of angle α was achieved 
numerically by selecting proper values of ki (for normalization kin = 1 was selected).
The minimal values of α were equal to 2.66 ± 0.74° for the individual subjects and 
it was 2.81° for the lumped group data. Hence, the estimated experimental plane 
and the plane of optimal solutions were close to each other.

Step 5. The desired objective function is:

∑ )(=
=

J g xˆ
i

i

n

i

1

(6a)

where )()( = + +g x rf F q F consti i i i

n

i i

n

i, r is a nonzero number, consti can be any
real number, qi is any real number satisfying the equation �Cq 0

�
, where q=(qin, qmi, 

qri, qli)T (see detailed explanation in Terekhov et al., 2010). After combining equa-
tions (6a) and (5b) and arbitrarily assuming r = 1, consti = 0, and qi = 0 we obtain:
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This step completes the computation of the optimization cost functions from 
the experimental data.

Step 6. To validate the reconstructed objective functions, optimal solutions 
for different values of vector B (equation 3) can be computed and compared with 
the observations: the solutions should be all lying on the plane ( )+ =C KF W 0n

�
.

In the task of multi�nger prehension, this step involves validation of the
obtained cost functions by performing direct optimization of �nger forces. Though 
the ANIO method rests on a solid mathematical theory, it did not consider effects 
of the experimental noise. In the present experiments, the experimental data did 
not form an ideal plane but instead were scattered around such (see e.g., Panel A 
in Figure 3 and Panel B in Figure 4). The validation allows ensuring robustness of 
the ANIO with respect to the experimental noise. The validation was done for the 
individual subjects as well as for the group data.

Figure 4 — Projections of the two-dimen-
sional plane of �nger forces. (A) Projection 
onto the three-dimensional space: Middle
�nger –Ring �nger –Little �nger. (B) The
scatter plot of �nger forces projected onto
the principal components with the largest
(abscissa) and smallest (ordinate) eigenvalues.
The small angle between the experimental data
and optimal solutions was due to approxima-
tion discrepancy between the experimental
plane and the plane of optimal solutions, a
dihedral angle of 2.81°. (C) Projection onto 
the three-dimensional space: Middle �nger
–Ring �nger –Little �nger. Dots represent the 
observed experimental data; stars represent the
optimal solution obtained from the optimiza-
tion procedure. PanelA is for Subject 1. Panels
B and C are for all subjects.
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Validation of the Objective Functions from ANIO 
and Comparison of Their Performance 

with Other Cost Functions

The Optimization Results of ANIO

The objective functions were reconstructed from the experimental data follow-
ing the sequence of steps described above. The procedures were applied to the 
data points from individual subjects as well as to the pool of data points from 
all subjects. Original computer codes were written in Matlab software package 
(Mathworks, Inc., Natick, MA, USA). The optimal solutions were computed by 
applying the constrained nonlinear multivariate function “fmincon” from Matlab’s 
optimization tool box.

Individual Subjects. The experimentally determined coef�cients of Equation 6b
are presented in Table 1. All the functions had a similar form across subjects, in
particular the coef�cients of the second-order terms ki were positive for all subjects
and the relations kin<kmi=kri<kli were maintained, which was proved statistically.

Table 1 The Estimation of Parameters ki and wi from the ANIO 

Method

Subject # kin kmi kri kli win wmi wri wli

1 1 2.63 2.23 6.92 -2.34 1.88 3.37 -2.91

2 1 1.59 1.82 2.73 -0.32 0.48 0.10 -0.26

3 1 1.31 1.38 4.46 -1.70 1.21 2.25 -1.76

4 1 1.87 3.09 5.23 -2.47 2.96 1.37 -1.86

5 1 0.85 1.33 1.51 -0.71 1.34 -0.24 0.38

6 1 2.68 1.30 2.09 -0.72 -0.22 2.10 -1.15

7 1 1.42 1.18 2.17 -0.11 -0.22 0.82 -0.48

8 1 1.87 1.83 2.40 -0.11 0.28 -0.21 0.03

The averages of the second-order term coef�cient over all subjects were 1.78 
± 0.24, 1.77 ± 0.24, and 3.44 ± 0.72 (average ± SE) for the middle, ring, and little 
�ngers, respectively. Paired t test showed that kmi was signi�cantly larger than 1 
(the normalized value for kin) with p = .005; kmi and kri were the same (p = .978) 
but both smaller than kli (p < .05). win was signi�cantly smaller than wmi and wri (p
= .012 and 0.001) but it was the same as wli (p = .78); wmi is the same as wri (p = 
.67). To estimate how different were the �CKF 0

�
planes for individual subjects, we

computed the maximum angle between the planes for subject 1 and other subjects, 
and then the maximum angle between subject 2 and others, and so on. The aver-
age (± SE) of the maximum pairwise dihedral angle between the two hyperplanes 
was 15.83°±1.59°

The absolute errors between the predicted normal force and the measurement 
were reasonably small, 0.30 ± 0.01, 0.41 ± 0.02, 0.40 ± 0.02, 0.30 ± 0.01 N across 
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subjects for the index, middle, ring and little �ngers, respectively. Figure 4A illus-
trates the correspondence between the experimental data and the data obtained 
from the inverse optimization method for one of the subjects.

Since the natural grasping force varied among subjects and torque/load con-
ditions, the �nger normal forces expressed in percent of the virtual �nger (VF) 
normal force and their prediction were normalized by the grasping force and the 
root mean square (RMS) differences between them were computed. The differ-
ences were small (Table 2).

Table 2 The RMS Differences Between the Observed Normal Force 

Sharing Percentages and The Values Predicted from Optimization (In 

% of The Total Normal Force).

Subject # 1 2 3 4 5 6 7 8
Average
± SE

Index 
�nger

1.62 1.25 1.29 2.20 2.07 2.00 2.06 2.29 1.85 
± 0.15

Middle 
�nger

2.47 2.02 1.70 2.89 2.49 2.16 2.82 2.69 2.41 
± 0.16

Ring 
�nger

3.53 1.58 1.47 2.33 2.67 3.12 2.30 2.67 2.46 
± 0.27

Little 
�nger

2.17 1.25 1.10 1.85 2.14 2.03 2.08 2.12 1.84 
± 0.16

Average 
± SE

0.25
± 0.46

1.53 
± 0.21

1.39 
± 0.15

2.32 
± 0.25

2.34 
± 0.16

2.33 
± 0.31

2.32 
± 0.20

2.44 
± 0.16

2.14 
± 0.10

The data averaged across eight subjects are presented with standard errors.

Group Data. The angle between the plane �CKF 0
�

 and the principal components
plane was 2.81°. The computed plane �CKF 0

�
contained 87.96% of the raw

data variance. This result suggested that it was possible to �nd an estimate of a 
uni�ed objective function that could �t all eight participants in this experiment. 
The obtained cost function was:

)( ) ) ) )( ( ( (= + + +

+ +

J F F F F

F F F F

1

2
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(7)

The coef�cients of the second order terms were close to the averaged coef-
�cients of the objective functions from the individual subjects.

The data points from all subjects also dispersed around a two-dimensional 
plane in the four-dimensional space of the �ngers’ normal forces (Figure 4C). The 
relations between the experimental data and the data predicted by the optimization 
algorithm are presented in Figure 5.

The absolute errors between the predicted normal forces and the measurements
were 0.49 ± 0.02, 0.67 ± 0.02, 0.57 ± 0.02, 0.46 ± 0.02 N for the index, middle, 
ring and little �ngers, respectively. The maximum absolute error was 2.08, 2.77, 



Analytical Inverse Optimization 211

2.53 and 1.90 N for each �nger across all trials. The RMS differences between the 
observed normal force sharing percentages and the prediction from optimization 
were 3.81%+0.46%, 4.81%+0.46%, 4.57%+0.57% and 3.7%+0.38% for the index,
middle, ring and little �ngers, respectively.

Comparing the ANIO Performance with the Performance
of Other Cost Functions

So far, to the best of our knowledge only one method for inferring from experimental
data the optimization cost functions has been suggested in the literature (Bottasso 
et al. 2006). The method was developed for the multibody models of the neuro-
musculoskeletal system (Multibody Inverse Optimization method, MBIO method).
The method has not been validated for multi�nger prehension. The method involves
limiting the search space for the cost function based on the researcher’s knowledge 
and intuition and then solving a nested optimization problem, i.e., �nding a cost 
function that best matches the experimental data. The (unknown) cost function is 
assumed to lie in a search space that depends on a set of parameters p, i.e., the cost 
function belongs to a known parameterized class of objective functions. When test-
ing the method we tried quadratic, cubic, and quadric polynomials as the objective 
functions but for the cubic and quadric polynomials the optimization procedure 
failed to converge to the experimental data. Therefore we limited the choice to the 

Figure 5 — The scatter plots of the experimental data and the optimal solution for all eight 
subjects. (A) index �nger; (B) middle �nger; (C) ring �nger; (D) little �nger.



212  Niu, Terekhov, Latash, and Zatsiorsky

quadratic functions and used the following polynomial form SJ of �nger normal 
forces without interaction terms as the possible cost function:

) ) ) )( ( ( (

)( = + + +

+ + + +

S F P p F p F p F p F
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where )(=P p p p p p p p p, , , , , , ,in mi ri li in mi ri li

T

,2 ,2 ,2 ,2 ,1 ,1 ,1 ,1
 is an unknown (8 × 1) 

vector of coef�cients in the objective function SJ; the �rst subscript of p denotes 
individual �ngers (in, mi, ri, li); and the second subscript denotes the order of 
the terms (1 is for the �rst-order term and 2 for the second-order term). Note that 
cost function (8) is of the same class as equation (6b). The difference is that cost 
function (6b) was obtained from experimental data in the ANIO procedure while 
quadratic polynomial (8) was suggested by the researchers.

The goal of the MBIO method is to �nd the best estimate of the coef�cients 
P in the polynomial objective function SJ, i.e., a set of coef�cients that minimizes 
the error (Euclidean distance) between the vectors of experimental observations 
and optimal solutions. The MBIO method involves breaking the entire optimiza-
tion procedure into two complementing optimization subroutines: outer and inner 
optimizations. The inner objective function minimizes polynomial SJ with respect 
to the normal �nger forces. The outer optimization searches the space of the
coef�cients of SJ to minimize the discrepancy between the solutions of the inner 
optimization and the experimental observations. The structure of the optimization 
procedure is hierarchical: the optimal solutions generated by the inner subroutine 
are used by the outer.

The problem can be reformulated as the following.
Let Z: �R R

n 1, J: �R R
n 1
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subject to �p 1
in,2
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n is the solution of the inner optimization problem.
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where k =1, . . . 80 is the trial number; F F F F F, , ,
k

n

in k mi k ri k li k

T

, , , , )(=  is a (4 

× 1) vector of normal �nger forces in trial k; Ftotal k
n

, is the virtual �nger normal 

force in trial k; Mk

n
 is the moment of normal force in trial k; superscript E denotes 

experimental observations; h(P) is the constraint on vector P that normalizes the 
coef�cient pin,2  of the Fin k

n

,  to be 1. J indicates summation of SJ over 80 trials.
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The nested optimization problem described above is dif�cult to solve directly 
by general numerical methods. To simplify the solution, Bottasso et al. (2006) 
proposed transforming the inner optimization problem into its dual problem, the 
Lagrange equation. As a result, the newly generated Lagrange equation together 
with h(P) worked as constraints for the objective function Z. The MBIO method 
requires huge computational work; for individual subjects the optimization should 
be performed in a 488-dimensional space (8 polynomial coef�cients + 80 trials×4 
�nger forces +80 trials × 2 slack variables in the Lagrange’s functions =488).

We compared the ANIO performance with the MBIO performance (using
the software codes that we wrote) as well as with the performance of three other 
cost functions that have been used previously in the studies on optimization of the 
�nger forces in multi�nger prehension tasks (Zatsiorsky et al. 2002b, Pataky et al. 
2004b, Niu et al. 2009).

1. Energy-like function over Fn.
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2. Cubic norm function over Fn.
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3. Entropy-like function F3. The function, �rstly introduced in robotics (Hersh-
kovitz et al. 1995, 1997), resembles the entropy function in information theory 
and is minimal when the grasping force is evenly distributed among the �ngers.
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The optimal solutions for the three latter functions were calculated by using 
Matlab’s fmincon routine (Mathworks, Inc., Natick, MA, USA).

RM-ANOVAs were performed for each �nger with the factors of TORQUE, 
LOAD, TARGET FORCE and METHOD, where METHOD included �ve levels 
corresponding to the procedures of ANIO, MBIO, and another three direct optimi-
zation methods. It was found that the effects of TARGET FORCE, LOAD and the 
interaction METHOD×TORQUE were signi�cant (p < .0001 for each). One-sided 
multiple Bonferroni comparison test with ANIO as the control proved that ANIO 
method yielded signi�cantly smaller or equal absolute errors to other methods at 
all TORQUE levels for each �nger (p < .02 for each).

To further check the performance of the employed optimization method we used
three parameterization variables: (a) the dihedral angle between the hyperplanes 
predicted by a given optimization method and the plane composed by the experi-
mental data; (b) the root mean square (RMS) difference between the experimental 
data and the data predicted by the optimization procedures, and (c) the average 
data predicted by the optimization method (with the exception of

the ANIO method, because the average data in this method coincided with the 
experimental data due to the employed optimization algorithm). For the sake of 
illustration the obtained results are presented in Table 3. Note that because some 
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of the above parameters were computed for the entire subject group the statistical 
testing was inapplicable in this case.

The MBIO method in general worked well yielding the solutions that were 
close to the ANIO method and the experimental data (Figure 6). However the MBIO
accuracy was slightly worse than that for theANIO method (Table 3). This difference
cannot be however attributed to the methods themselves. In MBIO method, we tried
500 different starting points in the solution space based on uniform distribution for 
each variable, and the solution with the minimal error was selected. Nevertheless, 
it is still possible that the difference between the performance of the ANIO and 
MBIO methods was due to an inappropriate selection of the starting point in the 
MBIO method. Since the numeric optimization was based on the gradient descent 
method, we can assume that the obtained MBIO solutions correspond to the local 
minimums, nearest to the starting points. Finding an optimal starting point in a 
488-dimensional space is a challenging task requiring huge computations.

The program to compute the objective function by the MBIO method that we 
developed failed to work with the group pooled data. The size of the vector used in 
the optimization procedure was too large for solving such a nonlinear problem (the 
vector size was 3848 × 1). The method needs further improvement on its numerical 
computation algorithm.

The optimal solutions that the objective functions F1, F2, and F3 generated 
were all situated on two-dimensional hyperplanes in the four-dimensional space. 
However, the dihedral angles between these hyperplanes and the plane of the
optimal solution ( )′ =Cf F 0n

�
were large (Table 3). Since the observations and 

the solutions predicted by the objective functions F1, F2, and F3 were concentrated 
around their respective averages (see Table 3), the average differences between the 
observations and optimal solutions caused by the hyperplane deviation were not 

Table 3 Comparing the Performance of the Employed Optimization 

Methods.

Parameters Fingers Experiment ANIO MBIO F1 F2 F3

(a) Dihedral 
angle

— — 2.81° 5.24° 21.55° 24.64° 18.25°

(b) RMS Sharing 
percentages

Index — 3.8% 4.8% 4.1% 4.8% 3.6%

Middle — 4.8% 6.1% 6.2% 7.0% 5.6%

Ring — 4.6% 5.3% 3.6% 3.8% 3.6%

Little — 3.7% 4.24%. 3.2% 3.9% 2.9%

(c) Average 
values (N)

Index 5.50 5.50 4.96 4.94 4.82 5.09

Middle 3.49 3.49 4.13 4.45 4.59 4.32

Ring 4.30 4.30 4.62 4.09 4.25 3.97

Little 3.80 3.80 3.38 3.58 3.43 3.70

(a) The angle between the observed data and the optimal solution, (b) the averaged RMS difference 
between the observed normal force sharing percentages and the values predicted from optimization, 
and (c) the average values of the experimental observations and the optimal solutions from the ANIO 
method and the direct optimization (N). ANIO: Analytical inverse optimization; MBIO: Multibody 
inverse optimization; F1: Energy-like function; F2: Cubic norm function; F3: Entropy-like function
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large. The absolute errors between the optimal solutions and the observations were 
small, less than 1 N for each �nger. We may expect however that due to the large 
values of the dihedral angles the errors will greatly increase when the individual 
data deviate from the group average. However, the sharing percentage errors were 
all larger than 10%. This discrepancy is due to the relatively small force of natural 
grasping which results in the small error value but large sharing percentage error 
when the data are normalized by the total grasping force.

Discussion

Before discussing the goals of the study posed in the Introduction section, we 
want to brie�y address two questions: (A) How was the conclusion that the cost 
function is quadratic reached (no cost function types were assumed a priori in 
this research)? (B) How does the ANIO method compare with other methods of 
inverse optimization?

(A) In brief, the cost function is quadratic because the distribution of the
experimental data were (approximately) planar. In other words, the planarity of the 
distribution of the experimental data demonstrates that the derivatives were linear 
and hence the cost function was quadratic. If the cost function were not quadratic, 
e.g., it were cubic, the optimal solutions would not compose a two-dimensional 
plane, instead they would form a curved surface, e.g., a paraboloid or a hyperboloid
in case of a cubic cost function. The reason is straightforward; the derivative of 
the cubic cost function is quadratic which results in a curved surface for optimal 
solutions subject to varied constraints.

Figure 6 — The observations from Subject 1 and the reconstructed planes from ANIO 
and MBIO methods projected onto the three-dimensional space: Index �nger–Middle
�nger–Little �nger.
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(B) Other methods of inverse optimization involve, as a rule, assumptions either
about a cost function or about its class, e.g., an assumed cost function is quadratic 
but its coef�cients are unknown. Then the parameters of the selected cost func-
tion are determined (as we did using the MBIO method) and/or the cost function 
performance is compared with the performances of other cost functions (as we did 
in this paper with functions F1, F2, and F3). A notable exception to this practice 
is a method developed by Körding and Wolpert (2006). The authors proposed an 
approach to estimating what the subjects considered as “being as accurate as pos-
sible” in a particular exemplary task. The reported results are probably the closest 
to what we did. However, these results do not intersect with our current work. The 
two methods address similar issues: “measuring the loss associated with error” in 
the K&W paper and reconstructing the cost function in our study. In both studies, 
the cost functions were derived from experimental data, and the quadratic cost 
functions play a special role. Otherwise the studies and the methods are quite dif-
ferent. The K&W study deals with a kinematic task where the end-point accuracy 
in a single direction was considered a measure of optimality of the performance. 
The quadratic cost (loss) function was selected before the experiment and then its 
applicability was tested (the function worked well only for small errors). In our 
study, a satisfactory accuracy of performance (total force and moment production) 
was required and was included as a 2-D constraint in the equations. The forces 
of individual �ngers were optimized. Neither a class of the cost functions nor its 
parameters were assumed. Rather, with an assumption of additive cost function, they
were determined (reconstructed) from the experimental data. It was found that an 
optimal cost function was a second order polynomial with linear terms. Essentially,
we studied the famous force sharing problem which has been commonly studied 
as the problem of sharing muscle forces at a joint (e.g., Seireg, Arvikar 1975; 
Dul et al. 1984; Herzog 1996; Ait-Haddou et al. 2000, 2002, 2004). In terms of 
mechanics, Körding and Wolpert (2006) studied kinematics of a serial kinematic 
chain, while we studied statics of a parallel mechanism (human hand as a parallel 
mechanism is discussed in Zatsiorsky, Latash 2008 and the differences between 
the mechanics of the serial and parallel mechanisms are described in Zatsiorsky, 
2002, Section 2.3.7). The K&W method cannot be immediately applied for studying
the sharing problem (at least, we do not know how to do this). The ANIO method 
cannot be applied to the K&W problem (at least, we do not know how to do this). 
Our understanding is that these methods do not overlap but rather complement 
each other. On the whole, the problem of optimization in motor control is a large 
problem. It consists of several sub�elds, which require different methods, such as 
for instance K&W and ANIO methods.

The further discussion addresses the three goals posed above at the end of the 
Introduction section.

Does the ANIO Method Work: Is It Possible to Reconstruct
the Unknown Cost Function from Experimental Data?

For the studied case of the multi�nger prehension the answer is “yes”, at least within
the simpli�cations of the experiment and analyses. The validation results presented
above in Section 3 support this conclusion. The above answer is evidently limited 
to the studied prehension task: prismatic vertical grasps with all the points of the 
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digit force application in the grasp plane and the external moment in the plane of 
grasp (the axis of the moment is orthogonal to this plane). The task mechanics 
allowed describing it with linear equations and applying the classical methods 
of linear algebra. Whether this method will work for more complex grasps, for 
instance the grasps used by the pitchers performing curve ball pitches, cannot be 
said without additional analysis. Another simpli�cation was limiting the analyses 
to normal forces only.

The ANIO method is based on the Uniqueness Theorem which proves that 
the optimal solutions of the additive cost functions should be on the hypersurface, 
de�ned by the equation ( )′ =Cf F 0n

�
. The present experiment con�rmed that the 

experimental data lied on a plane or were very close to it, thus showing that there 
may be an optimization process underlying the production of digit forces. Moreover,
the experimental plane was such that it allowed the approximation of the speci�c 
type ( ( )′ =Cf F 0n

�
), thus proving that the objective function indeed may be addi-

tive. Note, that not every surface can be approximated with this kind of equation.
In the PCA, 93.53 ± 0.43% of the total variability was accounted by the two 

largest eigen values, i.e., the main part of the data variability was along only two 
eigenvectors. In principle, the planarity of the solution space (the distribution of 
the experimental data) may be a consequence of a small magnitude of variation of 
the task constraints in the right hand side of equation (2) across the trials (if this 
variation were zero the �nger force data would be on a hyperplane). To check for 
such a possibility, we selected a random point based on a uniform distribution from
0 to 15 for each �nger force from each 2-dimensional plane (these planes satisfy 
the mechanical requirements of the tasks, they are “pure” mechanical planes) and 
performed the PCA on 80 points reconstructed from 80 solution spaces, one for a 
trial. Such resampling and PCA procedures were repeated 500 times for each sub-
ject. The variance explained by the �rst two principal components varied between 
60% and 80% among all subjects’ resampling results, which is signi�cantly smaller
than the variance from the observations (93.53 ± 0.43%). One-sided t test was per-
formed for each subject to compare its variances explained by the �rst two principal
components after the resampling and the variance value observed in the experiment
(Figure 7). The observed variances along the �rst two principal components were 
larger than the variances generated by the resampling (p < .001 for all subjects, 
see Figure 7A for the boxplot). Hence, the observed variances along the last two 
principal components were smaller, i.e., the experimental data had a tendency to 
lie closer to a plane than the data obtained from the resampling procedure. The 
increased planarity of the solution space can be attributed to the intervention of 
the motor control mechanisms.

The planes of the experimental data and the planes determined from the
resampling procedure were quite different (Figure 7 B). Note that all the 500 four-
force-value sets obtained from the resampling procedure satisfy the task mechanical
requirements. In other words, the value sets located on the plane based on resa-
mpled data could solve the task. They are different however from the experimental 
observations. It seems that the central controller compels the data to lie onto the 
experimental plane following an optimization procedure, i.e., by minimizing a 
certain cost function.

The term “reconstruction of the cost functions used by the central controller” 
should not be taken literally. More accurate expression would be: the cost function 
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Figure 7 — The illustration of the numerical resampling results: a random point was picked
from each hyperplane (corresponding to each trial); 80 points were generated corresponding
to the 80 trials for each subject. The PCA was performed on the resampled points. Such 
a resampling was repeated 500 times for each subject. (A) The boxplot of the variance 
explained by the �rst two principal components computed based on the resampled data. 
Asterisks represent the value of the variance explained by the �rst two principal components
observed in the experiment for each subject. (B) Numerical resampling for subject 1 with 
the variance of 74.26% explained by the �rst two principal components. A projection of the 
4-dimensional plane onto the 3-dimensional space of the Index-Middle-Little �nger forces. 
The dihedral angle between the observed plane and the resampling plane is shown with 
thick lines. The angle in this example is 49.3°. The mean value of the angle and its standard 
deviation are 51.1° and 9.4°, respectively.
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reconstructed with the ANIO method approximates (or estimates) a cost function 
presumably used by the central controller. The ANIO-reconstructed cost function 
was quadratic. The quadratic form of the objective function is a direct consequence
of linear approximation of the experimental data (hyperplane). Since the experi-
mental data were “noisy”, it is quite possible that “true” (or ideal) experimental data
would form a different hypersurface, for example, a part of a hyperboloid, or even a
more extravagant object. For such a surface, the estimated objective function would
be different from the quadratic polynomial. Nevertheless, in the same way as the 
PCA hyperplane can be thought to approximate an ideal hypersurface, the quadratic
polynomial approximates the “true” objective function. We evidently do not think 
that the central controller directly uses quadratic functions (most probably, it does 
not know algebra); rather, it uses the procedures whose outcome in this particular 
case can be well approximated by the quadratic polynomials as cost functions.

There are many questions in this �eld that remain unsolved. An example of 
such a question is: How do the results of the current study which seem to suggest 
that a certain optimization function may explain the experimental �ndings on �nger
forces in multi�nger prehension agree with the previously reported data on the 
trial-to-trial variability of the forces recorded during repetitive attempts at the same
task in seemingly constant conditions (Zatsiorsky et al. 2002a, Shim et al. 2003, 
2005). We may hypothesize that the trial-to-trial variability is due to the slightly 
changed locations of the points of �nger force application in different trials, but 
we cannot either prove or disprove this assertion due to the lack of experimental 
data. We are going to perform a study in which the same subjects will be tested 
repeatedly over several days to answer the two questions: First, can the trial-to-trial
variability be explained by the different positioning of the �ngers in the individual 
trials? and, Second, do the determined cost functions remain the same for a given 
subject over several days?

A very intriguing question is whether the obtained cost function indicates 
that the central controller minimizes a certain mechanical variable whose minimal 
level corresponds to a minimum of a quadratic objective function or such an out-
come is a by-product of minimization of an unknown physiological characteristic 
rather than a mechanical one. Such a candidate physiological variable can be, for 
instance, total activity of a set of neurons involved in the control of a motor task. 
Gelfand and Tsetlin (1966) pointed out that the ensembles of neurons which are 
not pacemakers, i.e., the cells that need external input to become active, have a 
natural tendency to go from activity to rest. For the sake of illustration imagine 
a set of active neurons with only excitatory synapses among the cells that form 
a closed system, i.e., they do not receive inputs from other parts of the brain and 
sensory organs. If one cell becomes inactive it ceases to send excitation to other 
cells. This may be suf�cient to deactivate another cell. As a result, a cascade of 
deactivation occurs and the activity of the entire network decreases or even comes 
to a close (“the principle of minimization of neural activity”, or “minimal �nal 
action”, Latash 2008, 2010[AUQ4], which is analogous to Hamilton’s principle of 
least action in classical mechanics). Such a “physiological” minimization may be 
associated with a decrease in many biomechanical variables, such as, for instance, 
force, power, energy expenditure, etc. As a result of evolution and learning, the 
“physiological” minimization will be associated with minimal values of some bio-
mechanical variables to a larger degree than with minimization of other variables. 
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In addition, it is possible that the goal of the optimization is not to minimize an 
output, e.g., the energy expenditure—after all there is no energy receptors in the 
body, but to decrease the input, especially unpleasant one, such as for instance the 
tissue deformation and the afferent signals associated with it.

For the �nger tip deformation, it has been shown that �nger mechanoreceptor 
activity is strongly associated with strain energy (Dandekar et al. 2003). Based 
on this information, Pataky (2005) suggested using for optimization of intra�nger 
normal-tangential force coordination a quadratic polynomial whose terms are the 
strain energy of the individual elements in a �nite element model. The optimization
results agreed well with the experimental observations. The results of McNulty et 
al. (1999[AUQ5]) who found that �ngertip mechanoreceptors generate afferent 
signals suf�ciently strong to activate �nger �exor motoneurons also lend credibility
to this hypothesis. It is quite possible that the Pataky’s hypothesis on strain energy 
minimization can be extrapolated to multi�nger prehension.

Do All Subjects Use Cost Functions of the Same Class,
E.G., Quadratic Function with Linear Terms?

Based on the results of the current study we can conclude that the functions are 
similar, quadratic polynomials with linear terms (see Table 1). The values of ki

coef�cients were however different. Presently we do not know whether the sets of 
ki coef�cients represent a stable trait of individual subjects or they are changeable 
and vary from one test session to another. We are going to explore this issue in 
future studies.

Performance of the Cost Functions Determined Analytically
Using the ANIO Method In Comparison
with Other Cost Functions.

The cost functions reconstructed with the ANIO method worked better than other 
functions. With respect to the MBIO method, this may be due to an inappropriate 
selection of the starting point for the numerical optimization. The method assumes 
that a parameterized class of the objective functions is somehow known. In the 
current work we used a class of the objective functions (quadratic polynomials with
linear terms) yielded by the ANIO method. The MBIO method is supposed to �nd 
such parameters of the objective functions that the distance between the experimen-
tal data and the theoretical predictions is minimal. However, in the current work 
we found that the objective function estimated using the ANIO method resulted 
in smaller errors than the one provided by the MBIO method. Theoretically, this 
looks impossible, since MBIO is supposed to provide the best possible estimate 
on the given class. However, we used a method of numeric optimization for the 
MBIO and it seems that this method converged to a local minimum rather than to 
the global one, and thus resulted in a set of parameters of the objective function, 
which are “better than any ones around”, but yet are not the best ones. We believe 
that, if not for the problem of convergence, the MBIO and ANIO methods could 
form a strong tandem for solving inverse optimization problems: ANIO methods 
could be used to estimate a parameterized class of the objective functions, while the
MBIO method would allow �nding the best possible parameters within that class.
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The better performance of the ANIO method in comparison with objec-
tive functions F1, F2, and F3 is understandable. The F1, F2, and F3 functions are 
just educated guesses. So, there is nothing strange in the fact that these guesses 
were not very precise. It so happened that the ANIO method yielded a quadratic 
function in this experiment. The F1 function is also quadratic. The terms of the 
ANIO function however included coef�cients ki, i.e., the function was a weighted
function of quadratic values of the �nger forces while the terms in F1 function 
are not weighted.

The functions inferred from the experimental data,ANIO and MBIO functions,
both worked better than the F1, F2, and F3 functions. This result could be expected 
provided that both ANIO and MBIO methods work. They did. The ANIO yielded 
more accurate results. It is quite possible that the better performance of the ANIO 
method will not be seen in other motor tasks.

Still we think that the ANIO method has the following advantages over other 
methods:

(A) ANIO is a nonparametric method meaning that it does not assume that the 
objective functions belong to a known parameterized class of objective
functions. For real-life applications, the ANIO method can be also used to 
choose a parameterized class of the objective functions basing on experimental
data. In the present work, the fact that the experimental data tended to form a 
hyperplane in the space of the �nger forces dictated the choice of the class of 
the objective functions: second-order polynomials.

(B) The method is based on the Uniqueness Theorem that provides suf�cient
conditions for the uniqueness of solutions of the inverse optimization problem 
with additive objective function and linear constraints. As long as the conditions
are satis�ed, one can be sure that the method yields a unique solution. Of 
course, this property holds only for ideal experimental conditions. For real-
life applications, it could be very useful to verify that the chosen experimental 
conditions are suf�cient for estimating the objective function. For example, 
in the current work, estimation of the objective function would be impossible 
without varying the external torque in the experiment.

We would like to emphasize the uniqueness issue of ANIO method. Of course,
given limited and nonideal experimental data it would be naive to expect that the 
estimated objective function is the “true” one and all other possible functions are 
false. However, what the ANIO method states is that the “true” objective function 
used by CNS– assuming that it exists—is suf�ciently well approximated by the 
estimated objective function. Moreover, if someone will ever propose another
additive objective function, which would approximate the �nger force sharing
more precisely than the ANIO method does, this new objective function will be 
close (on the experimentally observed range of the normal forces) to the quadratic 
approximation obtained in the current study. It must be noted, that though the 
mathematical formulation of that hypothetical new objective function could be 
different from the quadratic polynomial, their “plots” must be close. This state-
ment comes from the theorem of uniqueness and in our opinion represents a major 
strength of the ANIO method.
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Optimization and Motor Control

While optimization approaches have been used in many studies to address problems
of motor redundancy, we would like to emphasize their general limitations. First, 
these approaches are typically formulated in terms of performance variables pro-
duced by elements (such as digits, muscles, joints, etc.) of a multielement system. 
It is well known, however, that muscle activation level and its mechanical output 
(force, length, their derivatives, and any variables computed from them, such as 
apparent stiffness and damping) cannot be prescribed by the CNS independently of
the external conditions of action execution. This is due to both length and velocity 
dependence of muscle force and to the action of re�exes (reviewed in Rothwell 
1994; Feldman and Latash 2005).

Second, descriptions of optimization approaches frequently create an impres-
sion that their authors truly believe that the CNS computes costs of different versions
of a planned action and then selects an action with the minimal cost. We would 
like to distance ourselves from this simplistic understanding. Cost functions, in 
particular those computed with the ANIO method, may allow to describe behaviors
with high accuracy. The fact that such a description is possible and valid across 
families of tasks is by itself nontrivial. It implies that the functioning of physiologi-
cal mechanisms involved in the production of natural movements can be described 
with high accuracy using such methods. The physiological mechanisms themselves
are largely unknown; they are likely to involve manipulation of physiological vari-
ables that de�ne performance only indirectly, with an important role played by the 
external force �eld. It is likely that sets of those variables are also redundant and 
may be studied using optimization approaches applied to those physiological vari-
ables, rather than to outputs of the motor elements of the system (Feldman 2011). 
It is also possible that laws of physics (physiology) de�ne behaviors without any 
explicit or implicit optimization, but those behaviors can be accurately described 
using optimization approaches.

The main results of this study may be interpreted within the framework of a 
recent hypothesis that combines the ideas of synergic control within a hierarchi-
cal system and those of control with referent con�gurations (Latash 2010a,b).
According to the referent con�guration hypothesis (which is a daughter of the 
equilibrium-point hypothesis, Feldman 1966, 1986), neurophysiological control 
signals lead to setting referent values for important performance variables. This, 
relatively low-dimensional, task-speci�c input is mapped on higher-dimensional 
spaces of body variables (for example, joints, digits, muscles, and motor units) via 
a hierarchy of few-to-many mappings organized in a synergic way with the help of 
feedback loops. The last statement means that the “many” output variables covary 
across trials or along time to produce a stable value of the “few” variables.

At each step of the hierarchy, the low-dimensional input is shared among the 
higher-dimensional set of elements—a typical problem of redundancy. Theoreti-
cally, patterns of this sharing could be de�ned by pure chance or they could re�ect 
a nonrandom principle based on physical/physiological mechanisms. Optimization
approaches search for such nonrandom principles that could be applied across 
large groups of tasks in variable conditions. A series of recent studies have shown 
that the ANIO method allows to reconstruct cost functions in young and elderly 
persons, and in conditions when veridical and nonveridical feedback is provided on
performance (Park et al. 2011a[AUQ6],b[AUQ7]). The similarity of the functional 
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forms of the cost functions suggests that they re�ect a relatively general principle. 
On the other hand, lawful changes in the coef�cients of such functions in the
mentioned comparisons have allowed for offering their biomechanical interpreta-
tion. We believe that the application of this method may ultimately help get closer 
to understanding of physiological mechanisms involved in the coordination of
redundant neuromotor systems.

Another important limitation of the ANIO method is that, so far, it has only 
been used to reconstruct cost functions for static tasks. We hope to develop this 
method in future to make it applicable for tasks with quickly changing performance
variables that are more typical of everyday motor repertoire.

Finally, the scope of motor control problems, to which the ANIO method can 
be applied is limited by the assumption of linearity of the constraints. Currently, 
we see only two classes of problems where the constraints can be assumed linear 
with reasonable precision. The �rst one concerns the problem of force distribution 
among muscles in static tasks: as long as the posture is �xed, the muscle force lever
arms may be assumed constant and the Jacobian of the mapping between the muscle
forces and joint toques is a �xed matrix. The second class includes various problems
of �nger force sharing in tasks where the �ngertip positions are �xed. Similarly, in 
such tasks, the constraints are linear and the corresponding matrix is �xed.

In a recent review on the optimality principles in sensorimotor control it was 
mentioned that “It would be very useful to have a general data analysis procedure 
that infers the cost function given experimental data and a biomechanical model. 
Some results along these lines are obtained in the computational literature, but a 
method applicable to motor control is not available” (Todorov 2004, p. 908). The 
present paper attempts to develop such a method.

Summary

(a) The experimental data recorded from 80 trials with different constraints
(load, moment of force, and target grasping force) have a tendency to lie on a 
2-dimensional hyperplane in a 4-dimensional �nger-force space. Because the 
constraints in each trial were different such a propensity is a manifestation of 
motor control mechanisms (not the task mechanics).

(b) The experimental data were found consistent with the hypothesis that the normal
force distribution is based on minimization of an additive objective function. 
This �nding allowed for reconstructing the optimization objective functions. 
The functions happened to be quadratic with linear terms in all subjects.

(c) The estimated objective functions are unique (up to linear members) in a
sense, that any additive objective function, explaining the experimental data 
with the same or higher precision, must be close to the estimated quadratic 
objective function (up to linear members) or to a function essentially similar 
to the estimated one.

(d) The central controller not only drives the �nger forces to the optimal plane 
but also selects the latter plane to be different from the planes expected from 
simple mechanical considerations.

(e) The ANIO method demonstrated good performance in reconstructing the
unknown cost functions from experimental data (small RMS errors, small 
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dihedral angle between the planes composed by the observations and optimal 
solutions, relative simplicity of numerical computations). The method is based
on dependable mathematical theory and has an evident potential for examining
the inverse optimization problem in motor control.
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Appendix

Uniqueness Theorem

An optimization problem with an additive objective function is de�ned as:

Let J: R R
n 1�

Min: ( ) ( ) ( )( ) = + + +J x g x g x g x
n n1 1 2 2

� (12)

Subject to: CX=B

where X=(x1, x2,. . . , xn) ∈ Rn, gi is an unknown scalar differentiable function with 

g’(∙)>0 in the feasible region, C is a k×n matrix and B is a k-dimension vector, 

k<n. This problem can be recorded as <J, C>. Such an objective function is called 

additive.

Assume that the optimization problem (12) with k ≥ 2 is nonsplittable. If the 

functions gi(xi) in problem (12) are twice continuously differentiable and there 

exist twice continuously differentiable functions fi such that fi�  is not identically 

constant and ( )′ =Cf X 0
�

 for all X X*� , where ( )( ) ( )( )′ = ′ ′f X f x f x, , n n

T

1 1
� and 

( )=C I C CC C–
T T

–1�
, then g x rf x q x consti i i i i i i) )( (= + +  for every x X

i i

*� , where

X
i

* ={s| there is X X*� : x s
i
� } and X* is the set of the solutions for all B R

k� , 

and the constants qi satisfy the equation �Cq 0
�

 where ( )=q q q, ,
n

T

1
� . Primes 

designate derivatives.

Equation ( )′ =Cf X 0
�

(X X*� ) reveals the relation between the objective

function and the experimental observations. According to the Lagrange principle, 

if the experimental data correspond to solutions of an inverse optimization problem

with additive objective function and linear constraints then they must satisfy the 

equation ( )′ =Cf X 0
�

.The Uniqueness Theorem provides the conditions when the 

inverse optimization problem can be solved in a unique way (up to linear members)

and consequently when the equation ( )′ =Cf X 0
�

 is suf�cient for estimation of the 

objective function.


