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Abstract
This paper presents a novel force sensitive structure exploiting a dynamic mode for probing the
elastic properties of living cells. A key feature of this structure is the possibility of conducting
measurements in liquid environments while keeping high dynamic performances. The structure
indeed provides a steady area that can be adapted so that suspension or adherent cells can be
placed in a culture medium. The steady area is also connected to two adjacent beam resonators.
Because these resonators never need to be immersed into the culture medium during
measurements, forces applied to cells can be estimated with a high sensitivity via frequency
shifts. In this paper, we conduct an extensive theoretical analysis to investigate the nonlinear
effects of large static pre-deflections on the dynamic behavior of the structure. As a proof of
concept, we also report the fabrication, characterization and calibration of the first prototype
intended to deal with suspension cells with a diameter ranging from 100 to 500 μm. This
prototype currently offers a quality factor of 700 and a force sensitivity of ∼2.6 Hz mN−1. We
also demonstrate that the prototype is capable of measuring the elastic modulus of biological
samples in a rapid and sufficiently accurate manner without the need of a descriptive model.

(Some figures may appear in colour only in the online journal)

1. Introduction

Measuring the elastic properties of individual living cells
turns out to be of increasing interest. In particular, scientific
evidences have revealed connections between alterations in
the elastic modulus (i.e. Young’s modulus) of single cells
and pathophysiological states [1]. For instance, a dramatically
reduced Young’s modulus is a characteristic feature of
cancerous cells [2–7]. By contrast, red blood cells infected
with malaria or sickle cell disease have a significantly higher
Young’s modulus than their healthy counterparts [8, 9].

The elastic modulus of cells hence appears as a meaningful
marker to differentiate pathogenic cells and healthy cells. For
diagnostic purposes, knowing Young’s modulus of cells may
hence help to detect the presence of cancer as well as other
cell-based degenerative diseases at earlier stages. Furthermore,
elasticity measurements also have the potential to disclose the

specific effects of pharmaceuticals at the cellular level [10–
12]. Therefore, cell elasticity measurements may also prove
advantageous in drug development.

Among the large variety of macro- and microscale devices
that have been developed to investigate various mechanical
aspects of living cells (see [13–17] and references therein),
the atomic force microscope (AFM) probably remains the
most widespread tool for quantifying Young’s modulus of
different types of cells. By way of example, results published
in [2–9] were all derived from measures obtained with AFM
cantilevers.

Notwithstanding indisputable advantages, using an AFM
in order to evaluate Young’s modulus of a living cell remains a
delicate, time-consuming task. Basically, the extremity of the
AFM cantilever must be cautiously and precisely positioned
so that it can be used to indent or compress the cell. Then, a
force-deformation curve must be acquired. Conventionally, a
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Figure 1. (a) Three-dimensional schematic of the structure illustrated with a suspension cell (trapping system not represented). (b) FEA
showing the antisymmetrical vibration mode exploited to extract the elastic properties of a biological sample: the two outer beams oscillate
in antiphase whereas the third central beam remains immovable.

laser that reflects off the back surface of the cantilever onto
a position sensitive photodiode is used to detect the contact
point with the cell and to monitor the static deflection of the
cantilever. However, if the cells are maintained in a culture
medium during measurements, the alignment of the laser beam
may become delicate. Moreover, in the presence of aqueous
solutions, capillary meniscuses arise at the air–liquid interface
when the AFM cantilever is immersed and removed. The
compliant cantilever must then withstand large capillary forces
that may engender measurement artifacts. Alternatively, an
optical microscope and a video camera can be utilized [18].
The resolution is however limited by the optical components
of the microscope and measurement uncertainties can occur.
Furthermore, such vision-based techniques solely prove to be
suitable for suspension cells with a spherical shape (e.g., red
blood cells).

This paper introduces a novel force sensitive structure
that has been designed with the aim to bring new solutions to
these problems. In particular, the structure exploits a dynamic
mode to quantify Young’s modulus of both suspension and
adherent cells so that valuable information on the cell state
can be obtained in a simple and sufficiently rapid manner for
diagnosis applications.

2. Overall description of the structure

2.1. Concept

Structures exploiting resonance phenomena can outperform
equivalent structures operated in a static mode [19]. Despite
this potential advantage, resonant cantilevers are rarely used
for determining Young’s modulus of living cells. Indeed, a
major issue is that dynamic performances of AFM cantilevers
are dramatically deteriorated as soon as they are surrounded
by a viscous medium. Thereby, the quality factor of typical
resonant AFM cantilevers immersed in liquids rarely exceeds
10–30 [20, 21].

To extract Young’s modulus of a single living cell while
taking full benefit of a dynamic mode, even in the presence
of a liquid environment, we propose the suspended structure
shown in figure 1(a). It consists of a planar structure clamped at
its extremities. It also incorporates two rectangular apertures.
Finite Element Analysis (FEA) conducted with COMSOL V.4
shows that if the structure is mechanically excited at the proper

frequency, it can provide an antisymmetrical vibration mode
where the two outer beams (OBs) oscillate in antiphase. In the
mean time, the third central beam (CB) remains immovable,
as depicted in figure 1(b).

2.2. Sensing principle

Measuring the force applied to a cell is a prerequisite to
extract its Young’s modulus. Conceptually, if a static force
normal to the structure’s plane is applied to the half-span of
the CB, the whole structure deflects. Therefore, the OBs are
forced to deflect as well. When the OBs oscillate as illustrated
in figure 1(b), interactions between static and dynamic
behaviors occur. Thereby, the static deflection imposed by
the normal force affects their initial resonance frequency. In
fact, even slight static pre-deflection of beam resonators may
significantly impact their dynamics [22]. Accordingly, it is
possible to recover the magnitude of the normal force applied
upon the CB by monitoring frequency shifts of the OBs, as it
is demonstrated in section 3.

2.3. Key features

The balanced mode of vibration shown in figure 1(b) is
of particular interest for determining Young’s modulus of
individual cells. Indeed, it enables high sensitivity rates offered
by resonators without exposing cells to vibrations. Thereby,
the area located at the half-span of the CB can be adapted to
place suspension or adherent cells in liquids (see figure 2).
A main advantage offered by such a configuration is that,
unlike conventional AFM cantilevers, the oscillating OBs do
not need to be immersed in the liquid in order to measure
a force applied to a cell. Therefore, major energy losses
are avoided and high quality factor can be guaranteed. Because
the OBs always oscillate in air, potential difficulties related to
laser alignments in liquids are eliminated and measurements
based on vision techniques are not required. It is also worth
noting that since the CB is inherently force sensitive, low-
cost and commercially available microindenters can be used
to apply forces on cells during experiments. Moreover, artifact
measurements due to capillary effects are minimized since the
microindenter is not directly used as a force sensor.
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Figure 2. Top: Illustration of an open microfluidic channel for cell
studies, as reported by Ryu et al (adapted from [23–25]). Bottom:
conceptual view showing the structure equipped with a similar open
microfluidic channel (fluid inlet and outlet not represented).

3. Theoretical analysis

In this section, we demonstrate that the resonant structure can
act as a force sensitive cell substrate. To predict frequency
shifts engendered by a normal force F applied to the CB,
static and dynamic behaviors are studied independently. We
mention here that the experimental implementation of an
open microchannel such as the one sketched in figure 2 is
currently under investigation and is not addressed in this paper.
Consequently, the presence of an open microchannel is not
considered in the following analysis.

3.1. Static behavior: large deflection of the structure

A static analysis including nonlinear effects is first conducted
in order to detail how the OBs exactly behave during large
deflections of the whole structure. Due to symmetry, and
without loss of generality, our analysis can be limited to one-
fourth of the structure, as sketched in figure 3.

This quarter structure, similar in shape to a tuning fork,
is composed of three segments: the overhang (black), the
central tine (dark gray) and the outer tine (light gray). All
segments are assumed to satisfy Bernoulli’s beam theory.
One-dimensional coordinate functions are used to approximate
the displacement field of each segment. To guarantee enough
degrees of freedom, the flexural displacement w1,2,3(x) of each
segment is modeled by third-order polynomial expressions:⎧⎨

⎩
w1(x) = a0 + a1 x + a2 x2 + a3 x3

w2(x) = a4 + a5 x + a6 x2 + a7 x3

w3(x) = a8 + a9 x + a10 x2 + a11 x3.

(1)

The three polynomials in (1) are then used to calculate
the total potential energy stored by the tuning fork during
deflection:

Ut f = Ub + Us, (2)

Figure 3. Top: for predicting the quasi-static deflection of the
structure engendered by a normal force F , only the darker ‘tuning
fork’ (top view) is considered. Bottom: equivalent one-dimensional
model (side view) of the colored beams (proportions exaggerated for
illustration purposes).

where Ub is the sum of strain energies developed by each
segment during bending:

Ub =
3∑

i=1

1

2
EIi

∫ di

ci

(
d2wi

dx2

)2

dx. (3)

In (3), c1 = 0, d1 = l/2, c2,3 = l/2 and d2,3 = l. Ii are the
moments of inertia of the three segments with I1 = bh3/4
and I2 = I3 = bh3/12, E represents Young’s modulus of the
structure’s material, the width b and the length l are defined in
figure 3 and h is the structure’s thickness.

In addition, Us is the sum of energy contributions due to
the midplane stretching of the segments that occurs during
deflection:

Us =
3∑

j=1

EAj

4l

[ ∫ d j

c j

(
dw j

dx

)2

dx

]2

, (4)

where c1 = 0, d1 = l/2, c2,3 = l/2 and d2,3 = l. Aj in (4)
represents the cross section areas of the three segments with
A1 = 3bh and A2,3 = bh. The total potential energy function
can hence be written as:

� = Ut f − W, (5)

where W = F w2(l) is the work done by the punctual force F .
Applying the principle of minimum potential energy, one

sets for each unknown coefficient ai:
∂ �

∂ ai
= 0. (6)

The problem is then augmented with Lagrange multipliers
by considering a set of constraints. To obtain satisfactory
results, mechanical constraints do not need to be considered.
Enforcing geometrical constraints is enough to provide an
accurate solution. Assuming that the central tine and the outer
tine are rigidly linked to the overhang at x = l/2, and that
the central and outer tines are terminated by sliding conditions
(see figure 3), the following set of conditions can be enforced:

w1(0) = d w1

dx
(0) = 0 (7)
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Figure 4. Deflection profile and deflection amplitude when a normal
force F = 260 mN is applied at the half-span of the CB.

w1(l/2) = w2(l/2) = w3(l/2) (8)

dw1

dx
(l/2) = dw2

dx
(l/2) = dw3

dx
(l/2) (9)

dw2

dx
(l) = dw3

dx
(l) = 0. (10)

The augmented system can then be numerically solved for
different values of F . To compute such a system, an algorithm
such as the one reported in [26] was used with the following
numerical values: l = 12.5 mm, b = 0.25 mm, h = 0.1 mm
and E = 212 GPa.

To validate this modeling approach, FEA was used as
a reference tool. COMSOL simulations were conducted in
the nonlinear deflection mode with the values of l, b, h and
E aforementioned. We also specified a density of 8030 kg
m−3 and a Poisson’s ratio of 0.29 for the structure’s material.
These values were selected in accordance with the material
utilized for the prototype of section 4. For a point force
F = 260 mN applied at the half-span of the CB, figure 4
shows the deflection profile of the structure. Analytical results
are in good agreement with FEA simulations and permit to
predict the deflection of the structure accurately. It can also be
seen that the deflection amplitude of the OB is smaller than
the deflection of the CB.

This intuitive result is also confirmed by figure 5 which
compares the deflection amplitude of both beams as a function
of the force F applied. Analytical and FEA results are again in
accordance. Figure 5 also clearly illustrates that the stretching
(i.e. nonlinear) effect progressively dominates as the beams
deflection increases. Thereby, for deflections above ∼50% of
the structure’s thickness, the structure becomes clearly stiffer.

3.2. Dynamic analysis: effects of a static pre-deflection on the
oscillation of the outer beams

We now demonstrate that, if the force F is applied while
the OBs oscillate as shown in figure 1(b), the variations of
deflection imposed by F actually impact the initial resonance
frequency of the OBs. To demonstrate such a coupling between
static and dynamic behaviors, a symmetric structure again

Figure 5. Half-span deflections of the CB and one OB as a function
of the force F applied to the CB. Due to symmetry, the second OB
deflects exactly in the same manner.

Figure 6. For predicting frequency shifts, only one OB is
considered. Vibrations (dashed green lines) take place around an
equilibrium position (thick green line). The curved shape is
indirectly engendered by static deflections (proportions not to scale).

simplifies the analysis. Indeed, valuable insights into the
structure’s dynamics can be grasped by restricting the analysis
to a single OB (see figure 6).

To a first approximation, one can choose to model the OB
as a hinged–hinged beam terminated by two rotational springs
of stiffness kr1 (see figure 6). The presence of rotational springs
is justified by the facts that extremities of the OB are attached to
the overhangs. Intuitively, it can be foreseen that, although the
overhangs can be considered as axially immovable ends, they
should not act as ideal clamping supports. In the literature,
elastic rotational springs are often used to model such a
flexibility [27–29].

Again, energy approaches can be exploited to
conveniently handle the configuration of figure 6. Because the
OB is terminated by rotational springs attached to pinned ends
supports, it is conventional to assume a displacement function
in the form of a sine:

w(x) = Ds sin
(πx

l

)
, (11)

where Ds is the midspan deflection of the OB.
Ds is related to the force F applied upon the central steady

beam, and can be estimated from the previous static analysis
(see figure 3):

Ds = w3(l) − w1(l/2). (12)
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Conceptually, it is however more convenient to consider that
Ds is rather due to an unknown equivalent virtual force Fv (see
figure 6). With an energy approach, a relationship between Ds

and Fv can be derived. Considering that Fv is applied at the
beam midspan, the potential energy stored by the beam is the
sum of the following contributions:

UT = Ub + Us + Urs . (13)

In (13), Ub is the bending energy of the beam:

Ub = EI

2

∫ l

0

(
d2w

dx2

)2

dx, (14)

Us is the energy developed during the midplane stretching of
the beam:

Us = EA

8 l

[ ∫ l

0

(
dw

dx

)2

dx

]2

(15)

and Urs is the energy stored by the two rotational springs of
stiffness kr1:

Urs = kr1

2
θ2

0 + kr1

2
θ2

l , (16)

where θ0 and θl are the slopes dw
dx evaluated at x = 0 and x = l,

respectively.
Considering that the work done by Fv is W1 = Fv w(l/2),

the total potential energy function �1 is:

�1 = −Fv Ds +
[

π2kr1

l2
+ Ebh3π4

48l3

]
D2

s + Ebhπ4

32l3
D4

s . (17)

Minimizing (17) with respect to Ds yields a cubic force-
centered-deflection law:

Fv = k1 Ds + k3 D3
s , (18)

where

k1 = Ebh3π4

24l3
+ 2kr1π

2

l2
and k3 = Ebhπ4

8l3
. (19)

In (19), k1 and k3 are linear and nonlinear spring constants,
respectively.

As in [30], it can now be assumed that small deflections
of the beam about a mean deflection Ds can be described
approximately by a single stiffness value. An effective spring
constant is found by deflecting the beam from its equilibrium
position by an arbitrary amount �d (see figure 6), so that:

Fv = k1 (Ds + �d ) + k3(Ds + �d )3. (20)

Considering that vibration amplitudes �d are sufficiently
small, terms proportional to �2

d and �3
d in (20) can be

neglected. Then, an equivalent stiffness of the OB may be
approximated by:

keq = dFv

d�d
≈ k1 + 3 k3 D2

s . (21)

As often in structures involving coupled beams, vibrating
beams can be modeled to a first approximation as one degree of
freedom oscillators (e.g., [31, 32]). If the single OB is assumed
to oscillate as an undamped lumped-parameter system, the
static deflection Ds affects its natural frequency as follows:

f

f0
≈

[
1 + 3 k3

k1
D2

s

]1/2

. (22)

Figure 7. Evolution of the resonance frequency of the OBs when a
vertical force F is applied upon the half-span of the CB.
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As previously, the numerical values E = 212 GPa,
b = 0.25 mm, l = 12.5 mm and h = 0.1 mm were used
to compute (22). An order of magnitude for the rotational
stiffness kr1 was also found by using [33]:

kr1 = 4 E b h3

3 l
. (23)

Equation (23) gives kr1 ≈ 5.6 × 10−3 Nm rd−1. Nonetheless,
(23) is originally intended to estimate the rotational spring
constant of anchors for clamped–clamped beams. In our case,
the OBs are attached to the overhangs (see figure 3) which
do no act as ideal clamps. Therefore, the value of kr1 was
slightly adapted to fit prestressed modal analyses conducted
with COMSOL. For kr1 = 3.45 × 10−3 Nm rd−1, figure 7
proves that (22) accurately predicts the amount of frequency
change engendered by a force F applied to the CB.

Alternatively, and because displacements of the CB can
also be predicted with respect to the force F applied, the
amount of frequency change can also be estimated as a function
of a displacement imposed on the CB (see figure 8). It is of
interest to note that in both cases, quasi-linear regions are
predicted around points P. In particular, a force sensitivity
of 2.91 Hz mN−1 is predicted if the force applied to the CB
exceeds 100 mN (see figure 7).

5



J. Micromech. Microeng. 22 (2012) 115033 D Desmaële et al

Figure 9. Top view of the prototype and experimental arrangement.
The inset provides a microscope view of the area indicated by
dashed lines. Scale bar equals 1.5 mm.

4. Experiments

To demonstrate the possibility of extracting Young’s modulus
of living cells with the structure, we fabricated a first prototype
intended to deal with suspension cells whose diameter
approximately ranges from 100 to 500 μm. This monolithic
prototype was fabricated from a single sheet of biocompatible
stainless steel. All dimensions are those used for the theoretical
analysis. Considering the total length of the prototype
(25 mm), precision wire cut electric discharge machining
(EDM) was favored for rapid prototyping. Wire cut EDM,
however, did not permit to implement an open microchannel.

Mechanical excitation was provided by a 3 mm long, 2 mm
wide and 200 μm thick piezoelectric (PZT) element (Physik
Instrumente PIC151). This PZT element was bonded onto the
prototype with conductive paste and driven by an ac signal
with a function generator (Agilent 33120A) connected to a
laboratory power amplifier (Newtons4th LPA400).

During experiments, the prototype was suspended
between two clamps. One of the clamps was fixed to a manual
micropositioning stage that allowed horizontal translations
along the y direction. To ensure a firm attachment of the
prototype and to avoid slipping, the clamps were tightened
with screws. The whole setup (see figure 9) was mounted
on a pneumatic antivibration isolation table to minimize the
presence of external disturbances. To measure small static
deflection as well as beam oscillations, we do not use a
laser coupled to a sensitive photodiode. Instead, we used
a home made optical fiber displacement probe. This probe
was constituted of two step index multimode fibers having a
diameter of 50 μm at their extremity. Such dimensions offered
a compact sensing head that could also be implemented in a
future microfabricated version of the structure. Further details
about this fiber displacement probe can be found in [34].

4.1. Evaluation of static deflections

Experiments were first carried out to investigate the static
deflection of the prototype. To bend the structure, an indenter
terminated by a metal bead with a diameter of 500 μm
was placed beneath the CB. The stiffness of the metal bead

Figure 10. Difference of static deflection �d between the central
and the OBs. Solid line is plotted thanks to the curves from figure 5.
Circles represent experimental data. Dashed line is a fitting curve.

was much higher than the stiffness of the structure. With
a micropositioning stage (Physik Instrumente M112-1DG),
incremental motions of 10 μm along the z direction were
imposed to the CB. Considering the prototype symmetry,
deflection data were acquired only for one OB.

Figure 10 demonstrates that the prototype deflected as
expected during experiments, even though the deflection of
the OBs tends to be 12% overestimated by theory when the
deflection of the CB is above 30 μm. Several uncertainties
sources could explain this slight estimation error (e.g., values
of Young’s modulus and Poisson’s ratio used for calculations,
uncertainties related to the fabrication process, the clamping
of the prototype, etc).

4.2. Evaluation of dynamic performances

The dynamic behavior of the prototype was then explored.
In the first step, the indenter was removed and no force
was applied to the CB. To actuate the prototype, the PZT
element was driven with a sinusoidal voltage. The peak–peak
amplitude of this sine signal after the power amplifier was
9V. The excitation frequency was then swept with the function
generator in order to find the resonance modes of the prototype.
As illustrated by figure 11(a), the antisymmetrical mode of
interest was found at 3180 Hz.

When the PZT element was driven with a voltage supply
of 9 V, the peak–peak oscillation amplitude of the OBs was
22 μm. During oscillations of the OBs, a lot of attention was
paid to check if potential vibrations were transferred to the
CB. As a matter of fact, they were very limited. As shown in
figure 11(b), they never exceeded 500 nm, that is to say 2% of
the oscillation amplitude of the OBs. Droplets of water were
also deposited upon the CB with a micropipette. No particular
effect on the droplets was observed. It was also confirmed that
the presence of the small amount of liquid on the CB did not
alter the vibration mode.

In addition, we explored the frequency response of the
antisymmetrical vibration mode. With the OBs oscillating in
air, a quality factor of 700 was obtained (see figure 12). This
quality factor was not deteriorated when a liquid droplet was

6
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(a) (b)

Figure 11. Oscilloscope screenshots showing: (a) The two OBs oscillating in antiphase when the structure is driven at 3180 Hz.
(b) Vibrations measured at the half span of the CB with no force applied.

Figure 12. Experimental frequency response for the prototype of
figure 9 driven around 3180 Hz.

deposited on the CB. This is a high value when compared to
typical quality factors of AFM cantilevers in liquids (10–30).

4.3. Frequency variations induced by large displacements

The coupling between static and dynamic behaviors was
then investigated. To that end, oscillations of the OBs were
monitored while the CB was bent with the indenter. For a
total displacement of the indenter of 250 μm, the oscillation
frequency of the OBs evolved as shown in figure 13.

Contrary to theoretical predictions, it is experimentally
observed that for small deflections of the CB (i.e. deflections
lower than 100 μm), the frequency of the OBs actually
decreases. Such a behavior has been reported for buckled
and deflected beams subjected to axial loads [35–39].
Nevertheless, this decrease finally appears as a transition
period. Indeed, once the stretching effect dominates at large
deflections, a behavior very similar to the one initially
predicted is retrieved. In particular, it is worth noting that
the curve in figure 13 offers a linear displacement sensitivity
of 5.75 Hz μm−1 around the point S. This displacement
sensitivity is actually ∼17% better than the one expected
initially by theory (4.8 Hz μm−1).
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Figure 13. Frequency variations measured for a normal
displacement applied to the half span of the CB. Circles and solid
line correspond to experimental data. Dashed line represents
variations predicted by figure 8 for the same initial frequency.

4.4. Frequency variations induced by small forces

From the analysis of figure 13, it is clear that the prototype
provides a much better sensitivity when the CB is largely
bent. The CB was hence maintained permanently curved (i.e.
even with the indenter removed) to exploit the region around
the point S. Obviously, this axial translation compressed
the whole structure. As a result, the initial resonance
of the antisymmetrical vibration mode decreased from 3180 to
3080 Hz. Nevertheless, no significant impact on the dynamic
behavior of the prototype was noted.

To estimate the force F applied to the CB during small
displacement intervals, the force developed by our indenter
was characterized. By pressing the indenter against a precision
electric scale (Kern 440–33), a linear relationship was found
(see figure 14(a)). Then, frequency variations with respect
to the force generated by the indenter were measured. With
the prototype pre-deflected, only a linear increase of the
frequency was observed, as expected (see figure 14(b)).
This linear increase corresponded to a force sensitivity of
2.56 Hz mN−1. Although a pre-deflection of the whole
structure was not included in our theoretical analysis, the force
sensitivity measured experimentally was only ∼12% lower
than expected.
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(a)

(b)

Figure 14. (a) Experimental force–displacement relationship
obtained for small displacements of the indenter. (b) Linear
frequency shift measured for the structure maintained slightly
curved. Circles correspond to experimental data. Solid lines are
fitting curves.

4.5. Direct extraction of the elastic modulus of a suspension
cell

With the suspended structure, the force applied to a cell can
be measured. In addition, the cell deformation must also be
determined. Conventionally, force-deformation information is
then used in conjunction with Hertz theory to retrieve Young’s
modulus of the cell. Hertz theory, however, is subjected to a
number of important assumptions. In particular, when dealing
with a living cell, the condition of negligible force adhesion is
not always fulfilled. Furthermore, for suspension cells, Hertz
theory requires to know the radius of curvature of the cell
to be probed. As an alternative, we preferred to calibrate our
structure so that a sufficient estimation of Young’s modulus
of the cell could be rapidly obtained without the use of a
descriptive model. For calibration, two gel samples T7 and T5
were bought from the company Gelmec. They had a Young’s
modulus of 37.5 kPa and 119 kPa, respectively.

The gel samples were manually prepared so that their
size was as similar as possible to the size of the cells targeted.
Thereby, efforts were made to obtain small cubic pieces whose
edges measured approximately 500 μm. The gel samples were
then cautiously placed on a flat indenter and compressed upon
the CB of the structure. To probe only the elastic properties
of the gels, the amount of compression applied did not exceed
10% of their thickness [40]. Moreover, the velocity of the
translation steps was kept very slow (4 μm s−1) to minimize
the occurrence of viscoelastic effects [18, 41].

The same protocol was repeated with a biological entity.
Because embryos or oocytes could not be obtained easily,

Figure 15. Side view of the slightly curved prototype for measuring
the Young’s modulus of a lobster egg. The optical fiber probe used
for monitoring frequency shifts of the OBs is visible in the upper
right corner. Scale bar represents 500 μm.

(a)

(b)

Figure 16. (a) Frequency variations measured during the
compression of the commercial gel samples and the lobster egg.
(b) Interpolation curve for extracting Young’s modulus of the lobster
egg.

we used a lobster egg with a diameter of 500 μm as a viable
alternative (see figure 15). Linear frequency variations induced
during the compression of the gel samples and the lobster egg
are compared in figure 16(a).

To determine more precisely the elastic modulus of the
lobster egg, slopes ST5 and ST7 indicated in figure 16(a)
were used as single values plotted against Young’s modulus
of the gels (see figure 16(b)). Since only the elastic properties
of the materials were probed, a linear regression equation
linking these two values could be determined [42]:

Segg = 0.02914 × Eegg − 0.2329, (24)

where Segg is the slope of frequency variations measured for
the lobster egg and Eegg is its Young’s modulus. For Segg =
2.03 Hz mN−1, (24) yields a Young’s modulus of 78 kPa for the
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lobster egg. Although no reference value has been found for
lobster eggs in the literature by the authors, Young’s modulus
obtained is in accordance with orders of magnitude usually
reported for most living cells [43–45].

5. Conclusion

This paper has presented a new force sensitive structure
exploiting a dynamic mode for probing the elastic modulus
of living cells. A key feature of the triple beam configuration
reported is the possibility of conducting measurements in
liquids while keeping high dynamic performances. Another
potential advantage is the possibility of adapting the structure’s
design for addressing both suspension and adherent cells. The
first mesocale prototype has been characterized and calibrated
with commercial gel samples. Young’s modulus of a lobster
egg has also been experimentally measured without the need
of a descriptive model. Such an indirect technique might prove
to be useful for diagnosis applications since relative changes or
observation of tendencies may be sufficient to bring valuable
information on the cell state.

Although performance characteristics of the prototype are
encouraging, several challenges still need to be addressed. In
particular, presently it remains difficult to obtain repeatable
results due to our current clamping system. Likewise,
maintaining the structure in a slightly curved position turns
out to be a delicate task. A microfabricated version of the
structure aimed at solving these problems is presently under
investigation. The implementation of an open fluidic channel
coupled to a simple positioning and/or trapping system is
also ongoing. In the near future, tests with a larger number
of cells will also be conducted to validate the possibility of
implementing the suspended structure in a workable platform.
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