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Data association is of crucial importance to improve target tracking performance in many complex visual
environments (non-linear dynamics, occlusions, etc). Usually, association effectiveness is based on prior
information and observation category. However, association becomes difficult if targets are similar. Prob-
lems also arise in cases of missing data, complex motions or deformations over time. To remedy, we pro-
pose a new method for data association, that uses the evolution of the dynamic model of targets. The
main idea is to measure an adaptive geometric accuracy between possible trajectories of targets, by only
using positions as information, that constitutes its main advantage.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Traditionally, multiple target tracking consists in estimating
states of moving targets from their associated available measures
to get a track (Vermaak et al., 2005). The main difficulty is to deter-
mine over time the correct assignments of given measures to a tar-
get whose model is generally unknown. The literature contains
some classical approaches to solve the problem of data association:
we distinguish deterministic approaches from probabilistic ones.

Deterministic approaches determine the best associations by
using a score function (Vermaak et al., 2005). The simplest method
might be the nearest-neighbor standard filter (NNSF) (Rong and
Bar-Shalom, 1996) that selects the closest valid measure to a pre-
dicted target and uses it for its state estimation. The proximity is
generally given by the Mahalanobis distance. This filter has been
used in many simple target tracking problems (Song et al., 2005;
Konstantinova et al., 2003). But since it does not take into account
the possibility of incorrect associations, its performance might be
poor in some cases (especially for multi-target tracking, for exam-
ple when two measures are equidistant from the same target or if
target tracks cross) inducing association errors and degrading per-
formance over time.

Probabilistic approaches are based on posterior probability esti-
mation and make an association decision using a probability error
(Rasmussen and Hager, 2001). Probabilistic data association filter
(PDAF) (Cox, 1993; Singer et al., 1974) is an extension of the Kal-
man Filter (Bar-Shalom and Fortman, 1988) and an approximation
of the optimal Bayesian filter. It considers two assumptions: (i) a
ll rights reserved.

uisson).
measure is associated with a track or is a false alarm, and (ii) a
track generates at most one measure. Here, a probability of associ-
ation between the target and each measure is computed and used
to weight the measures for the track update. Because of its simplic-
ity, PDAF was used in target tracking problems (Jaward et al., 2006;
Yilmaz et al., 2006), but its formulation has some limitations. First,
it assumes that all measures come from the track being updated,
that is not true in case of dense target conditions. Secondly, PDAF
gives poor performances if the signal to noise ratio is small: in such
cases, for example, the ‘‘good’’ measure can be located outside the
validation region, and the filter cannot estimate the state of the tar-
get. Joint probabilistic data association filter (JPDAF) (Fortmann
et al., 1983; Bar-Shalom and Li, 1995) is an extension of PDAF to
the multiple target case (this number is known and constant): it
works by running one PDAF per target, under the same hypothesis
than PDAF, enforces an exclusion principle that prevents two or
more trackers from latching onto the same target by calculating
target-measure association probabilities jointly. JPDAF computes
all possible joint events and their probabilities. Then, the algorithm
determines to which of the marginal events this joint event con-
tributes. JPDAF uses a weighted sum for all measures near the pre-
dicted state, each weight corresponding to the posterior
probability for a measure to come from a target. JPDAF is widely
used for target tracking because it deals with complex cases (Ras-
mussen and Hager, 2000; Chen et al., 2001) and provides an opti-
mal solution in the Bayesian framework. However, the number of
possible hypothesis increases exponentially with the number of
targets, requiring prohibitive computation times, and tracks cannot
be deleted or created. Multiple hypothesis tracking (MHT) was pro-
posed by Reid (1979) for multiple target tracking. The number of
targets is unknown, and varies over time. Reid’s algorithm defines
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a systematic way in which multiple data association hypotheses
are made and evaluated for the problem of multiple targets dealing
with false alarms and cluttered background. When new data are
available, each hypothesis is expanded into a set of new hypothe-
ses by considering all association possibilities, that are propagated,
implying the computation of each possible hypothesis, updated for
each new available measure. To avoid an exponential increasing of
the complexity of the algorithms, MHT eliminates less probable
hypotheses, merges similar ones and keeps most probable. MHT
is a recursive algorithm and easy to implement that consists in cre-
ating a tree: each hypothesis gives a path in this tree. This ap-
proach is very efficient because it considers all possible data
association hypotheses, adds, removes or merges tracks, and in
cases of conflicts, waits for more measures to decide for data asso-
ciation (Vermaak et al., 2005; Gelgon et al., 2005), and is then less
sensible to false alarms. However, this exhaustive enumeration of
hypotheses makes this approach very slow and costly. Probabilistic
multiple hypothesis tracker (PMHT) (Gauvrit et al., 1997) supposes
a target generates zero or several measures, and, contrary to the
previous approaches, makes the posterior estimation of the state
once all the measures are available, making it inappropriate for on-
line tracking applications.

Usually, association effectiveness is based on prior information
and available measures. In cases of lack of prior information, insuf-
ficient knowledge about the dynamics, large interval of time
between two available observations, deformable or non distin-
guishable target (i.e. same color or same shapes), the association
becomes difficult. Likewise, when only dealing with target posi-
tions, and if a measure is equidistant from several targets, all target
association probabilities get close values, also making difficult the
data association. No association method can efficiently handle all
the cases previously illustrated.

In this paper, we propose a novel method for data association
based on a geometric criteria, called energetic association filter
(EAF). The idea is to define a term E, inspired by the evolution of
the target dynamical model, from which, we deduce the probabil-
ity of association between a given target and all available mea-
sures. The main advantages are it requires few parameters and
prior knowledges: only information about target positions in the
image plan are used. Besides, it handles the problem of association
if a measure falls within the validation region of several targets and
is equidistant from them. The outline of this paper is as follows. In
Section 2, we introduce the notations used throughout the paper.
In Section 3, we expose our approach for data association (EAF),
derive its geometrical representation and its mathematical formu-
lation. The proposed method is then tested on several sequences in
Section 5. Finally, concluding remarks and perspective works are
given in Section 6.

2. Definitions and notations

In this paper, k = 1, . . . ,K is the discrete time, l = 1, . . . ,L is the
index associated to a measure and m = 1, . . . ,M the index associated
to a target. The set of targets at time k is given by

x1
k ; . . . ; xM

k

� �
; xm

k � X , the state space. We mainly deal with predic-
tions, because we focus on a missing data problem without knowl-
edges about the real dynamical model: we then work into an
optimal filtering framework, requiring prediction and correction
steps: the prediction of target xm

k is denoted x̂m
k . At each time k, a

sensor delivers zero or one observation containing at least one
measure, giving the set y1

k ; . . . ; yL
k

� �
; yl

k � Y, the measure space.
Observations are supposed to be i.i.d. samples of a Gaussian distri-
bution. A target is characterized by its own dynamic model. We
then dispose M models one for each target, plus one model for false
alarms, and then have M + 1 tracks. In this paper, we also make the
following assumptions (Bar-Shalom and Fortman, 1988):
1. A measure yl
k is associated to a track or considered as false

alarm (false-track);
2. A track contains at most one measure at time k.

The global complexity for data association is OðL� ðM þ 1ÞÞ. To
reduce the computation time, some algorithms introduce a valida-
tion region (Bar-Shalom and Fortman, 1988), that only contains
measures with strong association probabilities, and exclude the
others. This produces an ellipsoid (Cox, 1993) whose center is
the predicted measure, and size and direction of axes are respec-
tively given by the eigenvalues and by their associated eigenvec-
tors of the covariance matrix. Then yl

k belongs to the validation
region Vm

k of predicted target x̂m
k if:

yl
k � ŷm

k

� �T
Rm

k

� ��1 yl
k � ŷm

k

� �
6 c2 ð1Þ

where ŷm
k is the predicted measure, defined by the projection of the

predicted state x̂m
k into the measure space (see Eq. (3)), ðyl

k � ŷm
k Þ is

the estimation error between the predicted measure ŷm
k and the cur-

rent measure yl
k, and Rm

k its covariance matrix (Therrien, 1989).
Fig. 1(a) shows the predicted measures ŷm

k (black circles), after their
projection into the measure space, and their validation regions
(ellipses). The measures yl

k, with l = 1, . . . ,4 (gray squares), that
belong to these regions are candidate to data association.
3. Energy association filter (EAF)

Generally, an effective data association method is based on
measures. A sensor provides various measures such as shapes, col-
ors, positions, directions, etc. Furthermore, if the measure is limited
to the position, falls inside the validation region of several targets
and is equidistant from them, an association ambiguity will occur
if we use NNSF or JPDAF. Moreover, targets can be quite similar:
even if information about the color or shape is available, the
association task is difficult, even impossible in case of complex
dynamics.

In this section, we describe our contribution for data association
restricted to one category of measures: positions. Furthermore, it
only needs few prior information concerning targets: exclusively
the two anterior predicted positions are used as input for our algo-
rithm. We first explain the concept of our approach before giving
its mathematical formulation.

3.1. Concept

Prediction is made using a dynamic model which parameters
are generally known or learned from a training sequence to repre-
sent plausible motions, such as constant velocity or damped oscil-
lations (Blake and Isard, 1998; North et al., 2000). For complex
dynamics, such as non-constant velocities or non-periodic oscilla-
tions, the choice of the parameters for the dynamic model is diffi-
cult. Furthermore, the learning step becomes impossible in cases of
missing data (dynamics between two successive measures are
unknown). For these reasons, the parameters of our dynamic mod-
el are set in an adaptive and automated way once measures are
available (El Abed et al., 2006).

Predicted state x̂m
kþ1 of target m and its corresponding measure

(i.e. after projection into the measure space) ŷm
kþ1 at instant k + 1

are given by:

x̂m
kþ1 ¼ fkþ1 x̂m

k

� �
þ Vkþ1 ð2Þ

ŷm
kþ1 ¼ h x̂m

kþ1

� �
þWkþ1 ð3Þ

where fk+1 models the dynamics of the state at time t and h is the
projection of the state into the measure space. Vk+1 and Wk+1 are
respectively the state and measure noises. Consider now an



Fig. 1. (a) Validation regions. Projection of three predicted states into the measure space to give ŷm
k

� �
m¼1;2;3 (black circles) and their validation regions (ellipses). The measures

yl
k

� �
l¼1;...;4 (gray squares), that belong to these regions are candidate to data association. (b) The two computed predicted measures: ŷm

kþ1

� �#1 is obtained by using the initial
dynamic model (prediction ‘‘without association’’), and ŷm

kþ1

� �#2 is obtained by using the updated dynamic model (prediction ‘‘after association’’). Dashed lines correspond to
the estimated tracks without and after association.
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available observation at instant k, containing one measure yl
k, equi-

distant from several predicted measures. We suggest to determine
the association probability at instant k by predicting at instant
k + 1 the measure associated with predicted target x̂m

kþ1 in two
different ways.

Prediction ‘‘without association’’ (#1). The new state is predicted
into the state space without taking into account any available mea-
sure (i.e. no measure comes from the target: we use Eq. (2)). The
prediction of the state x̂m

kþ1

� �#1, and its projection into the measure
space ðŷm

kþ1Þ
#1 (i.e. predicted measure) are then given by:

ðx̂m
kþ1Þ

#1 ¼ fkþ1 x̂m
k

� �
þ Vkþ1 ð4Þ

ŷm
kþ1

� �#1 ¼ h x̂m
kþ1

� �� �
þWkþ1 ð5Þ

Prediction ‘‘after association’’ (#2). The new measure ŷm
kþ1

� �#2 is
predicted into the measure space by associating the measure yl

k

to the previous predicted measure (i.e. by taking into account the
available measure). This prediction is given into the measure space
by:

ŷm
kþ1

� �#2 ¼ f #2
kþ1 yl

k

� �
þ V#2

kþ1 ð6Þ

f #2
kþ1 is the dynamic model into the measure space, and V#2

kþ1 a Gauss-
ian noise. This adaptive modeling will be explained in next
subsection.

Our goal is to analyze the effect of an adaptive parametrization
of the dynamic model of the state on its future prediction. The
comparison of predictions ‘‘without association’’ and ‘‘after associ-
ation’’ gives the influence of the available measure on the predicted
track. In Fig. 1(b), we show an example of the predicted measure
obtained with these two models at different times. At times k � 1
and k � 2, the same dynamic model (the initial one fk+1) is used
to predict the state of the target (see Eq. (4)). At time k + 1, two
predictions are made: one without association, and one after asso-
ciation of measure yl

k with the target it comes from. During the
interval ]k, k + 1[, we can see the parametrization of the dynamic
model (i.e. use of the current measure) significantly changes the
predicted track. Our approach then consists in comparing these
two trajectories to determine the measure-target association prob-
ability. In next subsections, we derive the mathematical model of
EAF.

3.2. Data association algorithm

We define a term inspired from the evolution of the target’s dy-
namic model, described in terms of displacements in the state
space. This term provides the measure-target association probabil-
ity, and requires the predicted measures at times k � 1 and k � 2.
We suppose only one sensor observes the dynamic scene, and
can deliver at most one observation at each time, containing at
least one measure. Each measure can be associated with a target,
or be a false alarm. The score for the association of predicted mea-
sure ŷm

k with measure yl
k is given by a linear combination of three

terms:

E ŷm
k ; y

l
k

� �
¼ 1

3

X3

i¼1

aiE
i ŷm

k ; y
l
k

� �
ð7Þ

ai is a weighting factor introduced to emphasize the relative impor-
tance attached to each term Ei and is given by:

ai ¼
1PM

m¼1
Ei ŷm

k ; y
l
k

� � ð8Þ

Each term deals with one category of movement into the observa-
tion space. First term E1 only considers linear translations cases
and corresponds to the Mahalanobis distance: it is inappropriate
in cases of complex dynamics (non linear displacements, oscillatory
motions, non-constant velocities, etc.). To remedy, we add a second
term E2 which measures the geometric accuracy between two
dynamic models (i.e. ‘‘without association’’ and ‘‘after association’’),
and indicates their closeness. Finally, to distinguish some cases,
such as occlusions between targets, we add a third term E3, indicat-
ing the proximity of evolution. The global term E is only computed
for a measure that falls within several validation regions (measures
not included in any validation region of targets are considered as
clutters). In our case, the validation region corresponds to the one
described in Section 2. We now detail subsequently the three parts
of E.

� Distance term E1 (case of linear translations).

E1 corresponds to the Mahalanobis distance between the measure
and its prediction at instant k, and is given by:

E1ðŷm
k ; y

l
kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yl

k � ŷm
k

� �T
Rm

k

� ��1 yl
k � ŷm

k

� �q
ð9Þ

where ŷm
k ¼ h x̂m

k

� �
þWk, and Rm

k is the covariance matrix. This dis-
tance leads to association errors if measures and predictions are
equidistant, or in cases of crossed trajectories.

� Evolution term E2 (case of complex dynamics)

To consider the case of complex dynamics, such as oscillatory
motions or non-constant velocities, we add the evolution term
E2 ŷm

k ; y
l
k

� �
. It introduces the notion of geometric accuracy between

two sets of features whose evolutions are different. These dynam-
ics are:
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1. The current dynamic model, that predicts the measure ŷm
kþ1

� �#1

without considering the new available measure yl
k, i.e. without

updating the parameters of the dynamics (Eq. (5));
2. The updated dynamic model, that considers the measure yl

k is
generated by mth target and updates the parameters of its
dynamic model to predict the new measure ŷm

kþ1

� �#2 of the tar-
get (Eq. (6)).

E2 ŷm
k ; y

l
k

� �
measures the geometric closeness between the tra-

jectories of two dynamic models. Our idea is to evaluate the
parameters of the dynamic model in two cases: if the measure yl

k

comes from this target or not. We compute predicted measures

ŷm
kþ1

� �#1 and ŷm
kþ1

� �#2, and then determine S1, intersection surface
between the two circumscribed circles of triangles ŷm

k�2; ŷ
m
k�1; ŷ

m
k

� �
and ŷm

k�1; ŷ
m
k ; ŷm

kþ1

� �#1
	 


, and S2, intersection surface between the
two circumscribed circles of triangles ŷm

k�2; ŷ
m
k�1; y

l
k

� �
and

ŷm
k�1; y

l
k; ŷm

kþ1

� �#2
	 


, see Fig. 2(a). E2 ŷm
k ; y

l
k

� �
is given by:

E2ðŷm
k ; y

l
kÞ ¼ jS1 � S2j ð10Þ

By comparing these two sets we measure the ratio of similarity, de-
fined by Rs ¼ 1� a2E2 ŷm

k ; y
l
k

� �
, between the predictions at k + 1 gi-

ven by two different dynamic models for mth target. The
similarity between dynamic models is then maximal if E2 ŷm

k ; y
l
k

� �
is minimal (i.e. surfaces S1 and S2 are similar). Decreasing
Fig. 2. Geometrical representation of E terms. (a) Intersection surfaces S1 and S2; (b) Diffe
intersection surface S (dashed area); right: case of two predicted measures ŷm

kþ1

� �#1 and
E2 ŷm
k ; y

l
k

� �
means that prediction ŷm

k and measure yl
k are close, so

are the two predictions ŷm
kþ1

� �#1 and ŷm
kþ1

� �#2 and their associated
dynamic models, showing yl

k is generated by target xm
k .E2 ŷm

k ; y
l
k

� �
is

considered reliable if ŷm
k and yl

k are on the same side comparing to
axis ŷm

k�2; ŷ
m
k�1

� �
(see left part of Fig. 2(b)). If ŷm

k and yl
k are diametri-

cally opposite or if their positions are in opposite side comparing to
the axis ŷm

k�2; ŷ
m
k�1

� �
, both surfaces S1 and S2 are quite similar, which

implies E2 ŷm
k ; y

l
k

� �
to be close to zero (see right part of Fig. 2(b)). In

such cases, corresponding to trajectory crosses, E2 ŷm
k ; y

l
k

� �
is not suf-

ficient to solve the association problem. We then incorporate a third
term E3 ŷm

k ; y
l
k

� �
.

� Evolution of proximity term E3

The evolution of proximity term, E3 ŷm
k ; y

l
k

� �
, is the inverse of the

surface S defined by the common area between triangles
ŷm

k�2; ŷ
m
k�1; y

l
k

� �
and ŷm

k�2; ŷ
m
k�1; ŷ

m
k

� �
(see Fig. 2(c), dashed area). This

term evaluates the absolute accuracy between prediction ŷm
k and

measure yl
k at instant k, and is given by:

E3 ŷm
k ; y

l
k

� �
¼ 1

S
ð11Þ

Increasing S means that ŷm
k and yl

k are close at instant k (see
Fig. 2(c)). In the right part of this figure, we now have two predic-
tions at instant k, ŷm

kþ1

� �#1 and ŷm
kþ1

� �#2, both equidistant from the
rences between surfaces S1 and S2 extracted from the two dynamic models. (c) Left:
ŷm

kþ1

� �#2 equidistant from yl
k .
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observation yl
k. If we only use the distance to compute the proximity

term, we get that both models have the same degree of similarity
with the one defined by the dynamic model of points
ŷm

k�2; ŷ
m
k�1; y

l
k

� �
. This leads to a contradiction with the reality, that

can be explained by the fact that if they have both the same degree
of similarity with the second dynamic model, their corresponding
targets have then the same dynamics. For this reason, we have cho-
sen to evaluate the similarity by measuring the intersection surface
between triangles extracted from previous prediction, to add an
information about the previous similarity of the models.

3.3. Measure-target posterior association probability

The posterior association probability between the available
measure yl

k and the predicted measure ŷm
k for target state xm

k is gi-
ven by:

bml ¼ 1� E ŷm
k ; y

l
k

� �
ð12Þ

The posterior association probability that target state xm
k is unde-

tected is given by:

bm0 ¼ 1� 1
L

XL

l¼1

bml ð13Þ

EAF algorithm is given in Algorithm 1.

We have described a novel approach for data association based� �

on a geometric criteria to define the global score E ŷm

k ; y
l
k between

an available measure yl
k and the predicted measure ŷm

k of target
state xm

k . The three components of E are extracted from geometrical
representations (areas and distances) constructed with measures,
previous states and prediction positions. Once this score is com-
puted, we deduce the posterior association probability for all pos-
sible targets to measure associations. Finally, EAF associates
measure l to target m if the posterior association probability bml

is maximal. The purpose of choosing a geometrical definition for
these terms refers to:

� Show the geometrical continuity of the system between predic-
tions and previous states using two different dynamic models;
� Measure the similarity between predictions, at a particular time

for the same target, using two different dynamic models, that
logically must be quite similar because they represent the same
system.

4. Problem modeling for applications

For position prediction, we usually use a dynamic model
describing the state process over time. For regular motions, the
parameters of this model are often learned (North et al., 2000).
For complex motions or online applications, the choice of parame-
ters is difficult, especially in a missing data context. For this reason,
an adaptive parametrization of the dynamic model is important
when a new observation is available.

We consider a rectangular and planar observation region
R � R2. The state vector of target state xm

k contains coordinates
in the image domain: xm

k ¼ rm
k cm

k

� �T . Dynamical models fk and
f #2
k (see respectively Eq. (4) and (6)) are cubic B-splines that

extrapolate new predictions, fitted using previous predictions as
control points (see Fig. 1(b)), allowing for example to deal with
direction changes or non constant accelerations. x̂m

k is the predicted
state of target m at instant k

Measures are also positions, available regularly or not, noisy
and detected according to a probability p < 1: they can then also
be false alarms, uniformly distributed in R. The observation model
is given by:

ŷl
k ¼

h x̂m
k

� �
þWk if measure l comes from targetm

uk otherwise

(
ð14Þ

with Wk a Gaussian noise and uk the random process of the false
alarms. Because both predicted state and measure are positions,
we have h x̂m

k

� �
¼ x̂m

k . We fixed c = 5.99 as the threshold for the
Mahalanobis distance (see Eq. 1) (Cox, 1993). We call dk the time
between two successive observations.

5. Experimental results

Algorithms have been implemented in Matlab on a PC with a
2.2 GHz Intel processor. We first validate our approach on a syn-
thetic example in Section 5.1. Tests presented in Sections 5.2 and
5.3 concern the comparison of our filter (EAF, see Section 3) with
PDAF and JPDAF (see Section 1) on real video sequences. For these
tests, performance tools must be defined. The complexity of the
data association problem depends on two parameters: (i) the false
alarm probability pf, and (ii) the detection probability p. Increasing
the probability of false alarm pf, increasing the number of targets to
track, or decreasing the probability of detection makes the associ-
ation problem more complex, especially if targets move close from
each other and if their trajectories cross. Performances are evalu-
ated using the following terms:

1. The correct association probability (CAP):
CAP ¼ #correct associations
#possible associations



Fig. 3. Tested sequences. (a) Synthetic test: crossed lines represent the trajectories of targets T1 ¼ x1
k and T2 ¼ x2

k . The full square is the measure yk. Dotted squares and blue
stars are the predictions (see Eq. (14)) of T2 and T1 at instants k and k + 1 without taking into account the measure. Dotted and full circles are the prediction of T1 and T2 if we
consider that the measure is associated with both targets.‘‘Tennis’’ sequence. (b) Some frames; (c) Whole set of measures coming from the targets (crosses) or false alarms
(triangles) during a test. Real trajectories of the ball and the racquet are respectively in blue and green lines. ‘‘Ant’’ sequence. (d) Frames at 10, 25, 35, 45; (e) Real trajectories
of the six ants Fi. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2. The ratio of incorrect association probability to correct associa-
tion probability (IAP/CAP):
IAP=CAP ¼ #incorrect associations
#correct associations

:

An association filter should be more accurate if IAP/CAP ? 0.
3. The run time.

For each test, we propose to make three experiments:

� Experiment I. Variation of the false alarm probability pf from 0.1
to 0.9.
� Experiment II. Variation of the detection probability p from 0.1

(target missed) to 0.9 (detected target). In these experiments,
all targets are supposed to have the same detection probability.
� Experiment III. Variation of dk between two observations.
Increasing dk makes the data association more difficult, espe-
cially in case of erratic motions.

5.1. Synthetic test

We first consider the 1D synthetic example of Fig. 3(a), that ex-
plores the case of oscillatory motion with a constant phase. We
have two targets T1 ¼ x1

k and T2 ¼ x2
k whose real dynamic models

are known and defined by x1
k ¼ sinðkÞ and x2

k ¼ sinð2kÞ þ 1
2. We con-

sider a specific instant k, when the measure yk (full square in
Fig. 3(a)), is equidistant from both predictions ŷ1

k and ŷ2
k of respec-

tively targets T1 and T2 and falls into their validation regions. In
such case, both targets are candidates to be associated with this
measure. We compute the three terms for each target (see Table 1)



Table 1
Terms computed for the two targets T1 and T2. The measure yk is associated with T1

because E ŷ1
k ; yk

� �
is minimal.

m a1E1 ŷm
k ; yk

� �
a2E2 ŷm

k ; yk

� �
a3E3 ŷm

k ; yk

� �
E ŷm

k ; yk

� �
ŷ1

k
0.5 0.0001 0.4821 0.3274

ŷ2
k

0.5 0.9999 0.5179 0.6724

Fig. 4. ‘‘Tennis’’ sequence: comparative tests between EAF, PDAF et JPDAF. Left column, Ex
and p, IAP/CAP ratio and run time in seconds, depending on pf and p.

Table 2
Comparative results of online performances for the three tested filters, depending on dk (in
written in bold font.

dk = 0.1 dk = 0.2

EAF JPDAF PDAF EAF

CAP 0.92 0.8 0.7 0.91
IAP/CAP 0.09 0.25 0.429 0.1
Times (s.) 26 25.2 9 17
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and obtain E ŷ1
k ; yk

� �
< E ŷ2

k ; yk

� �
: the observation is correctly associ-

ated with T1.
5.2. Aperiodic oscillatory motion: ‘‘Tennis’’ sequence

In this test, we have M = 2 targets (the ball and the racquet),
whose initial positions are known. Their real trajectories are given
periment I; Right column, Experiment II; From top to bottom: CAP depending on pf

terval between two observation acquisitions), with p = 0.8 and pf = 0.3. Best values are

dk = 0.5

JPDAF PDAF EAF JPDAF PDAF

0.75 0.63 0.91 0.73 0.59
0.33 0.59 0.1 0.37 0.69
13 7 14 9 6
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on Fig. 3(c). Their motion is complex, non linear and undergoes
vertical and horizontal oscillations with several periods coupled
with translation in two directions: it is difficult to learn the motion
from a training set. Moreover, centers of the targets are very close
in the region [150,160] � [50,70]. For the experiments,
R ¼ ½132;175� � ½20;180� is the observation region. The state noise

is Gaussian, and its covariance matrix is 0:52 0
0 0:12

� �
. Measures

are available at regular times, and dk = 0.1. The covariance matrix

of the measure noise is 0:52 0
0 0:52

� �
. We suppose each observa-

tion is made of four measures, from which at least two are false
alarms. Fig. 3(c) shows the measures coming from the targets
(crosses) and the false alarms (triangles) during all the test.

w Experiment I. For this test, p = 0.9 for the ball, and p = 0.7 for the
racquet: targets are not systematically detected. Left column of
Fig. 4 shows performances of the three tested filters.
1. For pf = 0.1. CAP > 0.8 for all approaches. JPDAF value is

greater than PDAF value, because this filter uses all mea-
sures to update the state of targets. EAF value is the greatest
one, almost equal to 1. This is due to the use of an adaptive
dynamic model, that permits to deal with the aperiodic
oscillatory movements of the targets to give a better data
association probability.

2. For pf ? 0.9. If the ambiguity about measure associations
increases, performances of PDAF and JPDAF decrease faster
than EAF’s one, that keeps good results even for high values
of pf (CAP2[0.75,1] for EAF, and <0.4 for the two other
filters).

3. About ratio IAP/CAP. For small pf values, IAP/CAP < 0.3. On
the other hand, for greater values, IAP/CAP curves of PDAF
and JPDAF increase very quickly: for example IAP/CAP > 1
Table 3
‘‘Ant’’ sequence. Normalized evolution energies a1E1 ŷm

k ; y
l
k

� �
;a2E2 ŷm

k ; y
l
k

� �
;a3E3 ŷm

k ; y
l
k

� �
and

y1
k y2

k

ŷ1
k a1E1 ŷm

k ; y
l
k

� � 0.07 0.47

a2E2 ŷm
k ; y

l
k

� � 0.01 0.02

a3E3 ŷm
k ; y

l
k

� � 0.01 0.45

E ŷm
k ; y

l
k

� �
0.03 0.31

ŷ2
k a1E1 ŷm

k ; y
l
k

� � 0.23 0.06

a2E2 ŷm
k ; y

l
k

� � 0.03 0.01

a3E3 ŷm
k ; y

l
k

� � 0.07 0.01

E ŷm
k ; y

l
k

� �
0.12 0.03

ŷ3
k a1E1 ŷm

k ; y
l
k

� � 0.15 0.25

a2E2 ŷm
k ; y

l
k

� � 0.14 0.01

a3E3 ŷm
k ; y

l
k

� � 0.22 0.08

E ŷm
k ; y

l
k

� �
0.17 0.11

ŷ4
k a1E1 ŷm

k ; y
l
k

� � 0.21 0.02

a2E2 ŷm
k ; y

l
k

� � 0.07 0.02

a3E3 ŷm
k ; y

l
k

� � 0.39 0.15

E ŷm
k ; y

l
k

� �
0.22 0.06

ŷ5
k a1E1 ŷm

k ; y
l
k

� � 0.18 0.06

a2E2 ŷm
k ; y

l
k

� � 0.74 0.93

a3E3 ŷm
k ; y

l
k

� � 0.33 0.4

E ŷm
k ; y

l
k

� �
0.33 0.4

ŷ6
k a1E1 ŷm

k ; y
l
k

� � 0.16 0.14

a2E2 ŷm
k ; y

l
k

� � 0.01 0.01

a3E3 ŷm
k ; y

l
k

� � 0.23 0.2

E ŷm
k ; y

l
k

� �
0.13 0.12
for pf = 0.75. However, EAF better detects false alarms:
IAP/CAP increases slowly, and stays above 0.4 even for high
values of pf.

4. About run time. Due to its simplicity, PDAF is the less time
consuming. EAF requires more computation time because
it updates the parameters of the dynamic model for each
available measure. This time is however acceptable, varying
between 10 and 22 s for this experiment.

w Experiment II. We suppose the probability for a target to be
detected is the same for both targets (pf = 0.3). The other param-
eters keep the same values than for Experiment I. Right column
of Fig. 4 shows the performances of the three filters as a func-
tion of p.
1. For p = 0.1. CAP < 0.2 for PDAF and JPDAF, because these fil-

ters associate false alarms to targets. For EAF, we have CAP
�0.8, showing our filter better deals with false alarms.

2. For p ? 0.9. The ambiguity decreases with the number of
false alarms. When the maximal value is reached (p = 0.9),
CAP value for JPDAF is greater than the one of PDAF. But EAF
value it the greatest one, with CAP �0.92: the performance
of our filter is better even when targets are well detected.

3. About ratio IAP/CAP. For p = 0.9, IAP/CAP > 0.5: the minimal
value for this ratio is obtained with our filter. When p
decreases, IAP/CAP increases quickly for PDAF and JPDAF,
contrary to EAF. For a small value of p, IAP/CAP is always
lower than 0.5. We obtain a better performance with our fil-
ter because it better takes into account the movement of
targets, providing a better association probability.

4. About run time. PDAF is the fastest filter, because it requires
less computations to associate measures to targets. EAF and
JPDAF give similar computation times.

w Experiment III. We test three values for dk (0.1, 0.2 and 0.5). For
both targets, p = 0.8 and pf = 0.3. Table 2 shows comparative
global energy E ŷm
k ; y

l
k

� �
computation. Best values are written in bold font.

y3
k y4

k y5
k y6

k

0.26 0.44 0.49 0.46

0.01 0.01 0.11 0.02

0.01 0.14 0.47 0.42

0.09 0.2 0.36 0.3

0.21 0.06 0.03 0.12

0.04 0.01 0.54 0.02

0.24 0.02 0.15 0.14

0.16 0.04 0.24 0.09

0.04 0.18 0.24 0.2

0.01 0.03 0.01 0.01

0.02 0.06 0.05 0.25

0.02 0.09 0.1 0.15

0.22 0.09 0.05 0.10

0.03 0.01 0.24 0.02

0.28 0.01 0.18 0.12

0.18 0.03 0.16 0.08

0.18 0.12 0.09 0.06

0.9 0.93 0.07 0.92

0.4 0.36 0.06 0.35

0.4 0.36 0.07 0.35

0.09 0.11 0.10 0.06

0.01 0.01 0.02 0.01

0.32 0.75 0.11 0.01

0.14 0.29 0.08 0.03



Fig. 5. ‘‘Ant’’ sequence. Comparative tests between EAF, PDAF and JPDAF. Left column, Experiment I; Right column, Experiment II; From top to bottom: CAP depending on pf

and p, IAP/CAP ratio and run time in seconds, depending on pf and p.
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results of CAP, IAP/CAP and run times. EAF performs better: the
increase of dk does not affect CAP, IAP/CAP and run time. The
other filters quickly fail, mainly because of the aperiodic oscilla-
tory motion of the two targets and their proximity into the
region [150,160] � [60,80] (see Fig. 3(c)).

5.3. Interaction between targets and crossed trajectories, ‘‘Ant’’
sequence

This sequence shows six ants moving on a flat surface. Each ant
has a non linear and erratic movement: translation while walking
and deformations while moving its head, abdomen, or antennas
(see trajectories in Fig. 3(e)). Ants frequently interact, sometimes
four of them are close from each others and are quite similar even
non-distinguishable, characterized by the same gray level distribu-
tion and shape: only their motion can be useful for the data
association.

We first test the robustness of EAF. Images of Fig. 3(d) are
observations at instants ] k � 2, k � 1, k and k + 1, and respectively
represent frames 10, 25, 35 and 45 (ants are labeled to show their
real positions from a frame to another). There is a considerable
interval of time between frames k � 1 and k + 1 (dk = 0.1).

Table 3 gives the values of components a1E1 ŷm
k ; y

l
k

� �
;a2E2 ŷm

k ; y
l
k

� �
and a3E3 ŷm

k ; y
l
k

� �
computed between measures yl

k and the predicted
measure ŷm

k of six predicted target state x̂m
k : the first row represents

the measure number and the first column the target number (ŷl
k

really coming from measure yl
k). If we associate measures to targets

only using the Mahalanobis distance minimization, we associate y1
k

to ŷ1
k ; y

2
k to ŷ4

k ; y
3
k to ŷ3

k ; y
4
k to ŷ2

k ; y
5
k to y2

k and y6
k to y5

k . This leads to
two problems: only two measures are well associated, and two
measures are associated to the same target, that is not possible un-
der our assumptions. Global energies are also given in Table 3: we
observe each measure is well associated with its corresponding
target, that show the interest of our approach.

In this second part of our tests, the sensor, at instant k, provides
an observation containing five measures (from targets or false
alarm, see Eq. (14)): at least one ant is not detected (missing
data).
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w Experiment I For this experiment, we have p = 0.8, dk = 0.1. Left
column of Fig. 5, shows, from top to bottom, the CAP, IAP/CAP
ratio and run time curves obtained for the three filters.
1. For pf = 0.1. CAP values for filters PDAF (=0.7) and JPDAF

(=0.72) are smaller than the one of EAF (=0.98): PDAF et
JPDAF give similar results but EAF is 26% better. Because
of the crossed trajectories and the proximity of the ants
(particularly in region [80,300] � [80,200], see Fig. 3(d)),
the other filters do not provide good associations while
our filter is not affected.

2. For pf ? 0.9. EAF is the less affected with the increasing of pf,
comparing to PDAF and JPDAF: its CAP is always >0.8.

3. About ratio IAP/CAP. For pf = 0.1, IAP/CAP � 0 for EAF, and
�0.4 for the other filters: EAF is then 40% better. When pf

increases IAP/CAP ratio also increases for the three filters,
but always stays <0.2 with our filter.

4. About run time. As previously, PDAF requires less computa-
tion time than the other filters. Computation time of EAF is
smaller than the one of JPDA for a small value of pf(60.22),
and becomes greater after.

w Experiment II In this experiment, we suppose all ants have the
same detection probability pf = 0.3. The other parameters keep
same values than in the previous experiment. Right column of
Fig. 5, shows, from top to bottom, the CAP, IAP/CAP ratio and
run time curves obtained for the three filters along the
sequence.
1. For p = 0.1. In this case, targets are not systematically

detected. CAP value for PDAF and JPDAF < 0.4: they cor-
rectly associate only 60% of the measures, when EAF cor-
rectly associates 80% of them.

2. For p ? 0.9. The correct association probability of the filters
increases with p: the maximum for PDAF and JPDAF is 0.7,
while the one of EAF is 0.95. Note that for PDAF and JPDAF,
CAP does not increase for p > 0.35, worst, it decreases for
PDAF.

3. About ratio IAP/CAP. This ratio increases for the three filters
with the decreasing of p. Ir is < 1 for JPDAF and PDAF with
p < 0.2, and �0.3 for EAF.

4. About run time. PDAF remains the fastest filter. Mean values
of the computation time for JPDAF and EAF are equivalent,
but EAF necessitates less computation time for 0.35 6
p 6 0.75.

6. Conclusion

This work proposes a new method for data association based on
a geometric criteria. The developed approach can handle complex
motions and highly non-linear systems, and deals with the lack
of prior knowledge, by only using few parameters. The geometric
illustration of energy components allows to measure the accuracy
between two dynamic models and to define their degree of similar-
ity. The three components are extracted from geometrical repre-
sentations (areas and distances) constructed with measures,
previous states and prediction positions. The purpose of choosing
a geometrical definition for these terms refers measure the similar-
ity between predictions, at a particular time for the same target,
using two different dynamic models, that logically must be quite
similar because they represent the same system.

As a perspective for this work, we suggest to integrate the ener-
getic association filter within the classical particle filter to build a
new framework for multiple target tracking. Moreover, since we
consider erratic motions that cannot be learned from training se-
quences, we suggest to use an adaptive and automated way to
set parameters of the dynamic model of the filter. Then, we could
track targets under the restriction of the missing of prior informa-
tion and especially if similar targets are evolving in the scene.
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