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Abstract— A new method for self-supervised sensorimotor
learning of sound source localization is presented, that allows
a simulated listener to learn an auditorimotor map from
the sensorimotor experience provided by an auditory evoked
behavior. The map represents the auditory space and is used
to estimate the azimuthal direction of sound sources. The
learning mainly consists in non-linear dimensionality reduction
of sensorimotor data. Our results show that an auditorimotor
map can be learned, both from real and simulated data,
and that the online learning leads to accurate estimations of
azimuthal sources direction.

I. INTRODUCTION

Sound source localization in animal and human is well
known to be a complex task, involving the processing of
multiple acoustics cues by an important dedicated neural
pathway. Most studies in spatial hearing have considered a
static environment, where both the listener and the source are
immobile, but active skills involving the listener’s own move-
ments are known to contribute reliable cues for sound source
localization, for example in distance perception or front-back
disambiguation [1], [2]. Among the active processes involved
in hearing, the auditory evoked orienting behavior (OB) is a
reflex present in human newborns that consists of head and
eyes movement toward a sound source [3]. The neural basis
of this behavior seems to be hard-wired and to play a role
in the subsequent learning of sound localization skills [4].
Auditory evoked behaviors, such as the OB of the barn owl
[5] and the phonotaxis behavior of the cricket [6], have been
modeled to provide suitable solutions for active audition in
autonomous robots [7], [8], [9].

Considering that the brain is initially a naive agent that
communicates with the world via an unknown set of afferent
and efferent connexions, with no a priori knowledge about
the space it is immersed in, the sensorimotor approach [10],
[11] suggests that the brain analyzes the consequences of
its own movements on its sensory perceptions and extracts
sensorimotor laws that give it access to the properties of
the surrounding space, in addition to its own body. Thus,
it has been showed that such a naive agent can recover
the dimensionality of physical space without any a priori
knowledge [12], [13], [14]. Once the space dimensionality
is known, the sensorimotor approach can also be applied
to the learning of sensory space parametrization from a set
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of sensorimotor experiences [12], [15], [16], giving rise to
spatial perception. The basic assumption is that the sensory
space of the agent lies on a low-dimensional manifold whose
topology is homeomorphic to the topology of the embodying
space. Following this hypothesis, the learning of spatial
perception becomes the learning of such a manifold. Methods
based on manifold learning have been proposed for auditory
localization using supervised linear regression [17], self-
organized maps [18] and within the sensorimotor approach
using local tangent space alignment [15], [16].

Applying the sensorimotor approach to audition in au-
tonomous systems, we propose in this paper a new method
for self-supervised online learning of sound source local-
ization in the azimuthal plan. Contrary to classical methods
in sound source localization, where the source position is
expressed in term of angle or distance within a Euclidean
physical space, the sensorimotor approach links perception
and action in an internal representation of space. In this
model, introduced in section II, the source azimuth can
be estimated actively through the OB or passively, after
learning, through an auditorimotor map. Using an online
learning system allows the self-supervision and is well
designed for autonomous systems, where the variability of
the environment is difficultly addressed using supervised
learning. In section III, manifolds are computed from both
simulated and real sound sources and auditorimotor map
localization etimations are evluated during online learning.
Finally, section IV discuss limitations and perspectives.

II. MATERIAL AND METHODS

After a definition of the problem of sound localization, the
binaural auditory system and the prewired exploratory OB
are presented. This OB is based on intensenty cues and is
robust enough for robotics usage [7]. Then are presented the
learning of the auditorimotor map, the estimation of sound
source azimuth and the self-supervision process.

A. Problem Statement

We consider a mobile binaural listener perceiving a sound
source localized in space. We define the state e of an
environment and E the manifold of all possible environment
states so that e ∈ E describe the acoustic properties of the
environment and the spatial and spectral properties of the
source. The listener is described by its motor state m in a
motor space manifold M. Finally, the sensory state s of the
listener is included in the manifold S of the sensory states.
The sensory state s of an agent is determined by both its



environment and motor states e and m through a functional
relationship Φ called a sensorimotor law [12]:

s = Φ(m, e). (1)

In this paper, we consider a listener placed at a fixed
position (mx,my), with mx = my = 0, that have a rotation
degree of freedom (DOF) in azimuth. We denote mθ ∈
[−180, 180] the orientation of the head, which is modeled
as a binaural axis of inter-ear distance md = 0.145 m,
estimation of the mean human value [19]. It should be
noted that the knowledge of the inter-ear distance is not
required by the proposed method. Moreover the only DOF
available is mθ, therefore giving us the motor manifold
M = {mθ|mθ ∈ [−180, 180]}. The environment is modeled
as a 2-dimensional space where a single omnidirectional
sound source is emitting a sound signal. In the listener
polar coordinate system, the source position is defined by
its distance er ∈ R and azimuth eθ ∈ [−180, 180].

Given a motor manifold M and an environment state e ∈
E , we call sound source localization the estimation of the
motor state m̃ such as:

m̃ = argmin
m∈M

|Φ(m, e)− Φ(m0, e0)|, (2)

where |.| denotes a distance metric, m0 = m|mθ=0 and
e0 = e|eθ=0. The configuration (m0, e0) represents a source
localized in front of the listener with the head in the rest
position and corresponds to the most obvious case of lo-
calization. The sensory state Φ(m0, e0) is initially unknown
and is approximated through OB experiences, allowing an
estimation of m̃ through the auditorimotor map.

B. Auditory Model

The auditory vectors computed herein contain cues related
to the interaural level difference (ILD), a cue well known
to be involved in sound localization in the high-frequencies
range, where the head shadowing becomes significant and
the temporal cues confusing, at least for pure tones [20].

A pair of gammatone filterbanks [21] is used as a
cochlear model, decomposing the binaural signal over nc

frequency channels. The filters are designed to approximate
the human cochlear basilar membrane linear response at a
given frequency [22]. From the binaural filterbank G =
{GL

i , G
R
i }i=1..nc , and supposing a binaural acoustic signal

x(t) = (xL(t), xR(t)), we obtain the binaural cochlear
output signal xG(t) = {gLi (t), gRi (t)}i=1..nc , where:

gLi (t) = GL
i (x

L(t)) and gRi (t) = GR
i (x

R(t)). (3)

We use nc = 30 channels filterbanks from fmin = 2 kHz to
fmax = 6 kHz, for which ILD is relevant in humans [20].

Once the binaural cochlear output xG(t) is computed,
it is converted in an action potential train xP (t) =
{pLi , pRi }i=1..nc by extracting the positive local maxima of

the signal, where we have for each channel i:

pLi (t) =

{
gLi (t) if dgL

i (t)
dt = 0 and gLi (t) > τ

0 else

pRi (t) =

{
gRi (t) if dgR

i (t)
dt = 0 and gRi (t) > τ

0 else

(4)

where τ is the threshold of minimal activity required for
an action potential emission. Thresholding deemphasizes the
low intensity parts of the cochlear output.

From the computed action potential train, the left and right
intensity vectors sL and sR are computed as an integration
of the squared values of pLi and pRi :

sLi (t) =

t∑
t′=t−T

pLi (t
′)
2

and sRi (t) =

t∑
t′=t−T

pRi (t
′)
2
, (5)

where T is the integration duration. Once integrated, the
signal is undersampled at the frequency fs = 2/T and the
ILD vectors sILD are finally computed as follow for each
channel i ∈ [1, nc]:

sILD
i (t) =

2sLi (t)

sLi (t) + sRi (t)
− 1. (6)

If the cochlear filterbank activity stays below the threshold τ
during the whole time window, that is when we have sLi (t) =
sRi (t) = 0, the ILD vector is not defined and we assign the
value sILD

i (t) = 0. Moreover we have from (6) sILD
i (t) ∈

[−1, 1] and sILD
i (t) = 0 if sLi (t) = sRi (t) so that sILD(t)

provide a normalized estimation of the ILD.

C. Auditory Evoked Orientation Behavior (OB)

The OB is a hard-wired auditory evoked behavior allowing
the listener to orient its head toward the azimuthal direction
of a sound source corresponding to an environment state e.
From given initial motor state minit ∈ M and sensory state
sinit = Φ(minit, e) the OB minimizes the ILD sum signal
sILD
sum (t) through azimuthal rotation, where we have:

sILD
sum (t) =

nc∑
i=1

sILD
i (t). (7)

In order to lateralize the sound source and to initialize the
reflex motion toward it, the rotation direction k is given as
k = 1 (to the left) if sILD

sum (t0) > 0 and k = −1 (to the right)
if sILD

sum (t0) < 0, where t0 is the initial time value. The motor
command is then initialized at a constant angular speed of 60
deg.s−1 and terminates when a change in the sign of sILD

sum (t)
is detected, that is when the mean ILD cross a zero value
and the head have been aligned to the sound source.

After completion of the OB, the final motor and sensory
states mend and send are obtained and the source azimuth
relatively to the initial listener position is given as the total
angle of rotation done during the OB. Furthermore we have:

send = Φ(mend, e)

= Φ(m0 + δm, e0 + δe), (8)



where e0 and m0 as in (2). In this simulation the motor state
error δm is due to the sampling error of a constant rotation
controlled by the sign of sILD

sum (t). The environment state
error δe can be due in a complex environment to the effects
of environment reverberation or source non-stationarity.

D. Self-Supervised Auditorimotor Map Learning

The proposed method for the self-supervised auditorimotor
map learning, based on the OB, is composed of three func-
tional elements that are the construction of the auditorimotor
map, the estimation of a sound source azimuth location
from the map and a self-supervision process allowing the
validation of the estimation, and its correction if required.

1) Auditorimotor map learning: Suppose that the OB has
been executed on n auditory experiences corresponding to n
different environment states and let Sinit = {sinit,i}i∈[1,n],
Send = {send,i}i∈[1,n] and Mend = {mend,i}i∈[1,n] be
respectively the set of the initial sensory states, final sensory
states and final motor states. The auditorimotor map A links
a low-dimensional representation Rinit of Sinit to the set
Mend, so that A = {ai}i∈[1,n], with ai = (rinit,i,mend,i).

Here we compute the low-dimensional representation
Rinit using the Laplacian eigenmaps non linear dimensional-
ity reduction technique [23], [24]. In what follows we call P
this manifold learning procedure such as Rinit = P (Sinit).
The Laplacian eigenmaps compute a low-dimensional repre-
sentation of the data in which the distances between a data
point and its k-nearest neighbors in Sinit are minimized, thus
preserving local properties of the data in Rinit. Based on a
k-neighborhood graph and using the spectral graph theory,
the distance minimization is defined as an eigenproblem. We
use the implementation proposed in [24] and a neighborhood
order k = 12. Moreover we suppose that the space dimen-
sionality has previously been estimated [13][14], and we
therefore fix it to dim(R) = 2, corresponding to movement
and sound localization in the horizontal plane (see III-A).

2) Source localization: Suppose that the OB have been
executed on n auditory experiences corresponding to n
different environment states and that the manifold Rinit and
the auditorimotor map A has been computed as above. The
finding of m̃ as formulated in (2) from a new experiment
s ∈ S is done through neighborhood relationship in A.
Firstly the new sensory state s is projected on the manifold
Rinit, giving us an estimation of its low-dimensional value
r̃ = Pe(s), where Pe is an out-of-sample extension allowing
the projection of new points on the existing manifold [24],
[25]. Let Kr̃ = {ri|ri ∈ R}i=[1,k] be the set of the k-nearest
neighbors of the point r̃ in the manifold Rinit and Km̃ =
{mi|mi ∈ Mend}i=[1,k] be the set of their corresponding
motor states in A such as ai = (ri,mi). Estimation of m̃
from Kr̃ and Km̃ is computed by inverse distance weighing
interpolation [26] such as:

m̃ =
k∑

i=1

wimi∑k
j=1 wj

, with wi =
1

|r̃ − ri|
. (9)

Considering a manifold Rinit composed of very few points
or an auditory perception s quite different from previously

new auditory experience s ∈ S
is r̃ = Pe(s) an outlier in R ?

orienting behavior from s
final states: mend, send

end

yes

sound localization
estimation of m̃

learning the experience
compute R, R0 and A

no

self-supervision from s̃0 = Φ(m̃, e)
is r̃0 = Pe(s̃0) an outlier in R0 ?

orienting behavior from s̃0
final states: mend, send

yes no

Fig. 1. The successive steps composing the self-supervised auditorimotor
map learning algorithm. See text for details.

learned experiences, the projection r̃ = Pe(s) can fall as
an outlier whithin an area of Rinit with no near neighbors,
inducing an irrelevant estimation of m̃. Denoting dk(r) the
mean distance of a point r to its k-nearest neighbors in
Rinit, the projection r̃ is detected as an outlier in Rinit

using the maximum normed residual test [27] on the mean
neighborhood distance dk. r̃ is considered as an outlier if:

|dk(r̃)− µ(dk)|
σ(dk)

> vcrit(n, α), (10)

where µ(dk) and σ(dk) are respectively the mean and
the standard deviation of dk for all the points in Rinit.
vcrit(n, α) is a critical value that depends of the number
n of points in Rinit and the significance level α allowing
the tuning of the sharpness of the outlier detection [27] (see
III-B). If the projection r̃ = Pe(s) is detected as outlier,
the a priori estimation m̃ is rejected and the OB is initiated
for an a posteriori localization. The final states send and
mend given by the OB, along with the initial sensory state
s, are added to their respective sets Send, Mend and Sinit.
The manifold is then updated with the new set Sinit, i.e. the
Laplacian is recomputed and the auditorimotor map updated,
adding a new experience in the manifold.

3) Self-supervision: Following (8), the final sensory state
send = Φ(mend, e) given by the OB is an estimation of
the reference sensory vector Φ(m0, e0). We denote R0 =
{r0,i}i∈[1,n] the set of the projected final sensory states such
as r0,i = Pe(send,i) and we note r0 the mean value of the
points in R0. As expressed in (2) the point r0 therefore
represent the low-dimensional estimation of the reference
point Φ(m0, e0) (see III-B).

Once m̃ have been estimated, the self-supervision allows
the system to check for localization errors after a movement
of the listener to the motor state m̃, and to correct the
localizaton estimate if required. After movement to the motor
state m̃ the resulting sensory vector is projected on Rinit

and we call r̃0 this projection so that r̃0 = Pe(Φ(m̃, e)). The
validation consists of an outlier detection of r̃0 in the dataset
R0. As in (10), the detection is done using the maximum



normed residual test but, instead of the distance dk, we use
the mean distance of the points in R0 to their mean r0. Error
correction is applied to outliers, as defined above.

4) Integrative algorithm: The algorithm integrating the
different elements presented above is showed in Fig. 1 and is
executed for each new auditory experience. To be noted that
the learning of a new point is done only if the estimation of
m̃ has failed, that is if the point is not represented in the map.
Moreover we have previously supposed an existing manifold
Rinit containing n points. Precisely the minimal number of
points required for the computation of the manifold is equal
to the neighborhood order k. A condition is thus added before
the estimation of r̃ so that if n ≤ 2k the OB is systematically
launched and the system accumulates a minimal amount of
data before the first auditorimotor map learning.

III. RESULTS

This experimental section is composed of two parts. Man-
ifold learning on both real and simulated data is presented
first, followed by a detailed description of the auditorimotor
map learning algorithm during successive iterations. Tab. I
summerizes the parameters common to all the experiments.

A. Manifold Learning on Real and Simulated Data

Auditory vectors used for manifold learning are generated
from stationary broadband random spectrum sound sources
as in the CAMIL dataset [16], with a modified normalization.
An emitted sound xe sampled at the frequency fe = 20 kHz
is given in function of time as:

xe(t) =

∑ne

i=1 ωisin(2πfit+ φi)∑ne

i=1 ωi

, (11)

where F = {fi}i=1..ne is a set of ne fixed frequencies,
{ωi}i=1..ne ∈ [0, 1]n

e

and {φi}i=1..ne ∈ [0, 2π]n
e

are
uniform random weights and phases associated with each
frequency. We use a set of ne = 600 uniformly distributed
frequencies from fe

min = 50 Hz to fe
max = 6 kHz.

Sound sources are placed here at fixed distance er =
2.7 m and random azimuth eθ ∈ [−180, 180], for which
localization is confronted with front-back ambiguity [20].

TABLE I
PARAMETERS REFERENCE TABLE.

Source
fe sample frequency (kHz) 20
ne number of sinusoids 600

fe
min min frequency (kHz) 5.10−2

fe
max max frequency (kHz) 6

Listener
nc number of cochlear frequency channels 30

fmin min center frequency (kHz) 2
fmax max center frequency (kHz) 6
τ cochlear output threshold 10−7

T integration duration (s) 10−2

Auditorimotor map
dr low-dimension for manifold learning 2
k neighborhood order 12

0◦

90◦

180◦

−90◦
-20 dB

-10 dB

0 dB

hL
dir

hR
dir

hL
hrtf

hR
hrtf

Fig. 2. Outer ears azimuthal directivity. Normalized root mean square re-
sponse of the two binaural outer ear filters (hL

dir, h
R
dir) and (hL

hrtf , h
R
hrtf )

in function of the listener-to-emitter direction θ (in deg) for a reference
sound signal xe(t) as in (11). Listener front direction correspond to θ = 0◦.

In order to stress the relevance of spectral cues for front-
back disambiguation, manifolds are learned from real and
simulated data, all consisting of random spectrum sources
but differing in the transmission channel and the contained
cues. Therefore real data comes from the CAMIL dataset
[16], a collection of binaural dummy head recordings that
include room reverberation, head shadowing and outer ear
filtering. Contrary to these recordings, the simulated data
are emitted in a simulated anechoic environment and filtered
by one of the two outer ears model used here. Firstly, hL

dir

and hR
dir are purely directive filters and their responses are

independent of the source spectrum and therefore does not
provide any spectral cues. Secondly, hL

hrtf and hR
hrtf consist

of head-related transfer function (HRTF) measurements of a
dummy head endowed with human-like pinna [28] including
auditory spectral cues. Although they differ in their spectral
cues, the two outer ear filters have comparable properties in
azimuthal directivity, as shown in Fig. 2. In more details,
and considering the emitter position relatively to the left
and right ears, we note the listener-to-emitter left and right
distance and azimuth dL, dR and θL, θR respectively. The
left and right perceived sounds xL and xR are function of
the listener-to-emitter angle and distance and correspond to:

xL(t) =
hL(θL) ∗ xe(t)

dL
and xR(t) =

hR(θR) ∗ xe(t)

dR
,

(12)
where hL(θ) and hR(θ) represent the left and right outer ear
filters and xe(t) the input signal as defined in (11).

Manifolds learned from ILD vectors in the three different
configurations are shown Fig. 3. The results show that
the manifolds are able to retrieve the left-right direction
of a sound source for the three proposed configurations.
Moreover this experiment show that intensity cues alone
are not sufficient for front-back disambiguation and that
spectral cues from the HRTF are needed for a complete
disambiguation. Note that the dimensionality of the input
space for manifold learning is equal to the 30 frequency
channels of the gammatone filterbank output. A comparable



(a) Simulation. Filters (hL
dir, h

R
dir). (b) Simulation. Filters (hL

hrtf , h
R
hrtf ).

-180

-90

0

90

180

(c) Dummy head CAMIL recordings.

Fig. 3. Manifold learning and front-back disambiguation. Three manifolds learned with Laplacian eigenmaps from a set of 2000 sound sources in the
azimuthal range [−180, 180] (color bar). (a) From simulated data and directive ear filters, the left-right direction of the source is well represented but the
front-back position is ambiguous. (b) Adding spectral cues to the simulated auditory vectors leads to a complete front-back disambiguation. (c) The same
is true for real data from the CAMIL dataset. For simulated data the integration duration is equal to 10−2 s whereas it is equal to 10−1 s for real data.

study [16] based on short-term Fourier analysis and ILD
vectors show that a minimum of 40 frequency channels is
sufficient for manifold learning in azimuth and elevation,
with a mean angular error about 2 degrees.

B. Orienting Behavior and Auditorimotor Map Learning

Considering the configuration of simulated sound sources
and directive outer ear filters hL

dir and hR
dir described above,

this set of experiments evaluates the learning and the evo-
lution of localization error in the azimuth range [−90, 90].
Firstly, given an environment state e ∈ E and a motor state
m ∈ M, we define the absolute localization error δm as the
absolute difference between the real azimuth of the source
and the head angle corresponding to the OB final motor
state so that δm = |eθ −mθ|. The mean error δm obtained
from a set of 1000 OB final motor states is equal to 0.46
deg (standard deviation of 0.31) and the 2D representation
of the initial and final sensory states of these different OB
experiments are showed Fig. 4. The manifold is learned
from the initial states through Laplacian eigenmaps. The
final states, projected on the manifold with the out-of-sample
extension, are all projected on a region indicating a centered
sound source, thus providing an experimental evidence of
the existence of a reference state as introduced in (2).

Focusing now on the auditorimotor map learning algo-
rithm, we executed it on 400 iterations corresponding to

-90

-45

0

45

90

Fig. 4. Manifold learning and orienting behavior. A manifold learned
with Laplacian eigenmaps computed from a set of 1000 auditory vectors of
azimuth in [−90, 90] corresponding to OB initial sensory states (color bar)
and projection of OB final sensory states on the manifold (blue cluster).

400 different auditory experiences in the azimuthal range
[−90, 90] with the outer ears filters (hL

dir, h
R
dir). Fig. 5

presents the detailed evolution of the learning process for two
outlier significance levels α = 0.01 and α = 0.05. The value
of α fix a compromise between the learning speed and the
learning precision and it is show that the auditorimotor map
is learned with success, with a mean localization error about
1 degree for α = 0.05 after about 200 iterations. Related
approachs that learn an auditory or auditory-visual reflex on
a robotic model require from 2000 to 10000 iterations to
converge [5], [9], [18].

IV. DISCUSSION

The algorithm introduced in this paper is presented in a
simple form. Some further improvements should significantly
increase its performances. Firstly, the manifold is learned
on the initial sensory states only, so that including the
intermediate states in the learning process should reduce the
amount of auditory experiences required to build the auditori-
motor map. Secondly, the reduction dimension was done with
Laplacian eigenmaps, a method requiring the memorization
of the high-dimensional set of points Sinit for the update of
the auditorimotor map. This is costly in terms of memory
storage and seriously reduces the plausibility of such a
learning process in a biological system. This problem can
be addressed using a different manifold learning algorithm,
such as self-organized maps [17]. Finally the estimation of
the motor state m̃ is given here as a simple inverse distance
interpolation whereas, at each point, the manifold is shaped
along privileged directions, so that adding a directional factor
in the interpolation function might improve the estimation
[26]. The approach is used here in a simple context and could
be extended to more complex motor and sensory spaces,
for exemple to phonotaxis behavior [7], temporal auditory
cues (well known as ITD), visuo-auditory environments [9]
and adaptation to sensory alterations [5]. The ILD based
auditory model and orienting behavior presented here have
been implemented on a robotic platform [7], and manifolds
have successfully been learned from real data, so the method
presented here should address promising applications in
active perception for autonomous systems.
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Fig. 5. Self-supervised auditorimotor map learning. Over 400 auditory experiences, evolution of the learning process and prediction error for different
outlier significance levels α. (a) Proportion of non-validated m̃ estimations (i.e. % of ’yes’ in the second outlier detection). (b) Proportion of validated m̃
estimations (% of ’no’). (c - d) Localization error for non-validated and validated m̃ estimations. The proportion of direct OB (i.e. % of ’yes’ in the first
outlier detection), not plotted here, is about 6 % and almost occurs during the firsts iterations.

V. CONCLUSION

This paper applied the sensorimotor approach to sound
source localization and proposed a new method for auditori-
motor map learning based on an auditory evoked behavior.
Based on intensity cues computed by a binaural auditory
system, this behavior allows a naive agent to learn a low-
dimensional auditorimotor map and to estimate the azimuthal
position of new auditory experiences. Our results shows that
the auditorimotor map is learned with success and provide
accurate estimation of azimuthal sources direction.
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