
1

Towards fast and adaptive optimal control policies
for robots: A direct policy search approach

Didier Marin and Olivier Sigaud

Abstract—Optimal control methods are generally too expensive
to be applied on-line and in real-time to the control of robots.
An alternative method consists in tuning a parametrized reactive
controller so that it converges to optimal behavior. In this paper
we present such a method based on the “direct Policy Search”
paradigm to get a cost-efficient control policy for a simulated
two degrees-of-freedom planar arm actuated by six muscles. We
learn a parametric controller from demonstration using a few
near-optimal trajectories. Then we tune the parameters of this
controller using two versions of a Cross-Entropy Policy Search
method that we compare. Finally, we show that the resulting
controller is 20000 times faster than an optimal control method
producing the same trajectories.

I. INTRODUCTION

The mission of robots is changing deeply. In contrast with
factory robots always repeating the same task in a perfectly
known environment, service robots will have to deal with
complex tasks in the presence of humans, while being subject
to many unforeseen perturbations. As a result of this evolution,
a whole set of new control principles is needed. Among
such principles, the study of Human Motor Control (HMC)
suggests to call upon optimality and adaptation. However,
Optimal Control (OC) methods are generally too expensive
to be applied on-line and in real-time to the control of robots.

A straightforward solution to this cost problem that also
comes with the benefits of continuous adaptation consists
in calling upon incremental, stochastic optimization methods
to improve the behavior of the system all along its lifetime
through its interactions with its environment. This generates
intensive research and, in particular, the direct Policy Search
methods are providing more and more interesting results (e.g.
[7], [8], [6], [1]). Since such methods are generally sensitive to
local minima problems, the optimization process is generally
preceded by a Learning from Demonstration (LfD) stage that
drives the process to the preferred local optimum.

In [9], the potential of such an approach was demonstrated
through a simple reaching experiment with a 2D arm con-
trolled by 6 muscles. An OC method based on a computation-
ally expensive variational calculus process was replaced by the
combination of two adaptive components. First, a parametric

Didier Marin (PhD candidate in Robotics) and Olivier Sigaud (Professor in
Computer Science) are with:
Université Pierre et Marie Curie
Institut des Systèmes Intelligents et de Robotique - CNRS UMR 7222
Pyramide Tour 55 - Boı̂te Courrier 173
4 Place Jussieu, 75252 Paris CEDEX 5, France
Contact: firstname.name@isir.upmc.fr

controller was learned from demonstration using a few near-
optimal trajectories, but the resulting policy was suboptimal.
Thus, in a second step, the parametric controller was improved
by a stochastic optimization process acting on the parameters
of the controller.

However, the empirical study presented in [9] showed that,
despite a good generalization capability and global improve-
ment in performance, the stochastic optimization process was
detrimental to performance in the area where the initial con-
troller learned from demonstration was already nearly optimal.
In this paper, we focus on this specific issue. We show that the
global optimization can be replaced by a more local approach
that only acts where the performance must be improved.

The paper is organized as follows. In Section II, we present
our LfD and stochastic optimization methods, together with
some related work. In Section III, we present the design of
the experiments. Results of the comparison between the global
method and its local counterpart are given in Section IV.
Finally, Section V summarizes the results and presents the
perspectives of this work.

II. METHODS

In this section, we describe the methods used in our work,
summarized in Fig. 1.

Fig. 1. General architecture of the experiments. The nature and role of each
box is detailed in the text.

A. Generating near optimal control with the NOPS

In [12], the authors proposed a model of human reaching
movements based on the OC paradigm. The model is based on

2

the assumption that HMC is governed by an optimal feedback
policy computed at each visited state given a cost function that
involves a trade-off between muscular effort and goal-related
reward

r(st,at) = α‖at‖2 − βg(st) (1)

where α is a weight on the effort term, g is a function that
equals 1 at a target state s∗ and is null everywhere else, and
β is a weight on the reward term.

The corresponding near optimal deterministic policy is ob-
tained through a computationally expensive variation calculus
method. The feedback controller, resulting from the coupling
of this policy with an optimal state estimator, drives the plant
towards the rewarded state. Given that the policy does not
take the presence of noise in the model into account, the
actions must be computed again at each time step depending
on the new state reached by the plant. Overall, generating
a trajectory with this method is extremely costly. Hereafter,
this controller is called Near-Optimal Planning System (NOPS).
Indeed, the trajectories are not optimal in the strict sense, given
the presence of non-modeled noise. A crucial feature of this
model is that the generated movements do not depend on time.
This results in the possibility to learn stationary policies from
the model. In our framework, such policies are learned from
demonstration with XCSF.

B. Learning from demonstration with XCSF

Learning Classifier Systems (LCSs) is a Machine Learning
family of rule-based systems [16]. The XCS [2], [20] is an
efficient accuracy-based LCS designed to solve classification
problems and sequential decision problems. XCSF [21], [22]
is an evolution of XCS towards function approximation.

As any LCS, XCSF manages a population of rules, called
classifiers. These classifiers contain a condition part and a pre-
diction part. In XCSF, the condition part defines the region of
validity of a local model whereas the prediction part contains
the local model itself. XCSF is a generic framework that can
use different kinds of prediction models (linear, quadratic, etc.)
and can pave the input space with different families of regions
(Gaussian, hyper-rectangular, etc.). In the context of this paper,
we only consider the case of linear prediction models and
Gaussian regions.

A classifier defines a domain φi(z) and uses a correspond-
ing linear model βi to predict a local output vector yi relative
to an input vector xi. The linear model is updated using
the Recursive Least Squares (RLS) algorithm, the incremental
version of the Least Squares method.

The classifiers in XCSF form a population P that clusters the
condition space into a set of overlapping prediction models.
XCSF uses only a subset of the classifiers to generate an ap-
proximation. Indeed, at each iteration, XCSF generates a match
set M that contains all reliable classifiers in the population P
whose condition space Z matches the input data z i.e., for
which φi(z) is above a threshold φ01.

In XCSF, the output ŷ is given for a (x, z) pair as the sum
of the linear models of each matching classifier i weighted by

1This threshold is named θm in [3]

its fitness Fi

ŷ (x, z) =
1

F (z)

nM∑
i=1

Fi (z) ŷi (x) (2)

where F (z) =

nM∑
i=1

Fi (z) and nM is the number of classifiers

in the match set M . In all other respects, the mechanisms
that drive the evolution of P are directly inherited from
XCS. In sum, XCSF is designed to evolve maximally accurate
approximations of the learned function. A more complete
description of XCSF can be found in [3], [4].

In our architecture, XCSF is used to learn a policy from
demonstration. More precisely, a set of near-optimal state-
action trajectories generated by the NOPS provides supervised
learning samples, using the state of the plant as the condition
and prediction space input and the action as the output on
which regression is performed. By feeding XCSF with such
samples (Fig. 1 (b)), we generate an action for any state within
the range of the population of classifiers. Using a default action
adefault for states that are not covered by the population
(that is for which XCSF does not predict anything), we get
a mapping from states to actions i.e., a deterministic policy.
We call it the “XCSF policy” and note it πθ0 . In a second
step, it is improved by a direct policy search method called
Cross-Entropy Policy Search (CEPS).

C. Improving the XCSF policy with CEPS

The XCSF policy πθ0
is parametric since each classifier has

parameters in its condition and prediction parts. A standard
way to optimize a parametric policy πθ given an objective
function J(θ) consists in performing a gradient descent over
θ giving rise to Gradient Policy Search methods. This class
of methods has attracted a lot of attention in Reinforcement
Learning (see [11] for an overview). However, despite con-
vincing results in robotics [7], [8], such methods are complex
and sensitive to many hyper-parameters. An alternative fam-
ily that gives better results comes from probability-weighted
averaging methods such as CMA-ES, Cross-Entropy and PI2

[1].

2. Evaluate some parameters

from this distribution and

select the best (in grey)

3. Compute the mean and

std.dev. of the best, add

some noise and goto to 1

1. Start with the normal

distribution N(μ,σ²).

Fig. 2. Schematic view of the Cross-Entropy method.

By contrast with Gradient Policy Search methods, Cross-
Entropy Methods (CEMs) [13], [14] do not assume that the
objective function is differentiable or even continuous. CMA-
ES is a more general evolutionary framework that contains
CEMs as a special case [5]. More recently, PI2 has been

3

proposed as another probability-weighted averaging method
that is very similar to CEMs though it derives from very
different first principles [19]. The general CEM is given in
Alg. 1 and illustrated in Fig. 2. For more details, see [9].

A CEM can be applied straightforwardly to Policy Search,
using the policy parameters θ as solutions and a performance
criterion J over targets as objective function. This results in the
CEPS method [9]. πθ0

is adapted using CEPS (Fig. 1 (c)) where
J is a discounted sum of costs r(st,at) over trajectories (see
1). Each resulting policy πθ corresponds to a dot (i.e. a CEPS
sample) in Fig. 2. In practice, θ only contains the weights of
each local model βi.

Algorithm 1 CEM iter
Require: {(θ(i), J(i))}i=0···N : set of N solution-value pairs
ρ: proportion of the best solutions to use for the update
σ2
noise: additional noise term

Sort the θ(i) according to J(i)
Compute the set Sρ of the max(1, N × ρ) best solutions
µ← mean(Sρ)
σ2 ← std.dev(Sρ) + σ2

noise

return mean µ and std.dev. σ2

Algorithm 2 “Global“ Cross-Entropy Policy Search (GCEPS)
Require: {s∗(j)}j=1···M : set of target states

(µ0,σ
2
0): initial mean and std.dev of the θ distribution

ρ: proportion of the best samples to use for the update
σ2
noise: additional noise term
N : number of sample policies to draw
K: number of iterations

for k = 1 · · ·K do
for i = 1 · · ·N do

Draw a sample θ(i) ∼ N (µk,σ
2
k)

for j = 1 · · ·M do
Perform an episode τj for target s∗(j) following πθ(i)

end for
Compute the global performance of πθ(i)

:
J(i) = 1

M

∑M
j=1

∑|τj |−1
t=0 γtrj,t where rj,t is the reward

at time t for the episode τj
end for
Perform a CEM iteration (Alg.1):
µk+1,σ

2
k+1 = CEM iter({(θ(i), J(i))}i=0···N , ρ, σ

2
noise)

end for
return optimized θ = µK+1

D. From global CEPS to local CEPS

In [9], CEPS was optimizing a global criterion: the mean
performance over all targets. This “global” CEPS (Alg. 2),
called GCEPS hereafter, induced a local loss of performance
in the demonstration region where πθ0 was already good.
We concluded that, to circumvent this effect, we should train
πθ0

on one target at a time using a more local criterion

Learning set

s*(1)

s*(2)

s*(3)

s*(1)
s*(2)

s*(3)

cl1
cl2

cl3

cl4

wcl1 = 0
wcl2 = 0.1
wcl3 = 0.3
wcl4 = 1

y

x

Fig. 4. Schema of the local policy parameters weighting process. The selected
target is s∗ = s∗

(k)
with k = 2 here. The central figure represents a two-

dimensional state-space with some XCSF classifiers cli, i ∈ {1, · · · , 4}. The
weights w are computed as follows: first, for each target s∗

(j)
in the learning

set (left part), we perform an episode and get a state-space trajectory τj . Then,
for each trajectory, LCEPS computes ni,j the number of times the classifier cli
matches a state from the trajectory τj . Finally, the weight for all parameters
associated which a classifier cl, noted wcl (right part), is computed such that
wcli = 1 if ni,k > 0, 0 else.

that would improve the performance only with respect to the
current target. This local method should act preferentially on
the classifiers that most need it, without disrupting P .

Thus, we propose here a “local” variant of CEPS (Alg. 3),
called LCEPS hereafter, which is implemented as follows: each
iteration begins by choosing a target state s∗ for which a local
update is performed using the CEM.

Algorithm 3 “Local“ Cross-Entropy Policy Search (LCEPS)
Require: as in the global case

for k = 1 · · ·K do
Choose a target s∗ from the set {s∗(j)}j=1···M
Perform an episode τ for target s∗ following πµk

Compute weights w[j] ∈ [0, 1] for each parameter j
based on their relevance during episode τ
Compute the std.dev. σ̄2 such that σ̄2[j] = σk if w[j] > 0
and 0 otherwise
for i = 1 · · ·N do

Draw a sample θ(i) ∼ N (µk, σ̄
2)

Perform an episode τ(i) for target s∗ following πθ(i)

Compute the local performance of πθ(i)
:

J(i) =
∑|τ(i)|−1
t=0 γtrt where rt is the reward at time t

for episode τ(i)
end for
Perform a CEM iteration (Alg.1):
µ′, σ̄′2 = CEM iter({(θ(i), J(i))}i=0···N , ρ, σ

2
noise)

Update the θ distribution using the local CEM result
µk+1 = w × µ′ + (1−w)× µk
σ2
k+1 = w × σ̄′2 + (1−w)× σ2

k

end for
return optimized θ = µK+1

In order to determine which parameters should be updated to
improve the performance for s∗, without a loss of performance
elsewhere, LCEPS computes a weight vector w such that
wj ∈ [0, 1] reflects the importance of the jth policy parameter
for the task associated to s∗. The specific implementation of
this weighting process for πθ can be found in Fig. 4. Then, θ
samples are drawn using the current normal distribution except

4

Fig. 3. Absolute performance of (a) the NOPS and (b) πθ0
, and relative performance of πθ optimized by either (c) GCEPS and (d) CEPS with respect to

(b) πθ0
. The performance is represented given the target position, obtained by interpolating the performances for a large grid of targets. The learning target

positions are indicated by white circles, and the starting position by a star. The performance is computed according to (1) and represented as a color according
to the right-hand side scale.

Fig. 5. The arm workspace. The reachable space is delimited by a spiral-
shaped envelope. The two segments of the arm are represented by two bold
lines. The initial configuration is the one represented. Learning targets are
indicated by dots and testing targets by crosses.

for the parameters of null weight, for which the variance is
set to 0. The corresponding πθ are evaluated by performing
an episode and fed to the CEM. Finally, the result of this
“local” CEM iteration is used to update the θ distribution
proportionally to the weight vector: the more relevant the
parameter, the more it is taken into account in the new
distribution.

III. EXPERIMENTAL DESIGN

We now illustrate the use of XCSF and CEPS for learning
to control an arm to reach a given point with its end-effector.
The plant is a simulated two degrees-of-freedom planar arm
controlled by 6 muscles. The equations of the model and the
specification of the control problem are given in [9].

A. Experiments

We perform three experiments.
1) Generalization with XCSF: First, we create two sets of

target positions, L for learning versus T for testing. The L set
contains 50 targets drawn according to a normal distribution
centered on x = −0.059 and y = 0.44 and with standard
deviation 0.12. The T set contains 94 targets in a 10×10 grid

over the articular space (NOPS diverged for 6 of them, which
were excluded). All trajectories start from the same point in
the upper-right part of the reachable space (see Fig. 5). The
NOPS is used to generate one trajectory for each target in L.
Then, XCSF learns from the actions of the NOPS for targets in
L, using the generated trajectories, and is tested as a policy on
both sets. The condition and prediction spaces contain states
s. The performance and the trajectories obtained with πθ0 are
compared to those generated by the NOPS, to see how good
πθ0

generalizes to other targets.
2) Adaptation to a new target: Second, starting back from

πθ0
, we compare CEPS variants for improving the policy on

a single target. This experience is performed for two targets:
target A is located at the top-right of the workspace (x =
0.2, y = 0.5) and target B in the bottom-left corner (x =
−0.3, y = −0.5).

3) Adaptation over the workspace: Third, we apply both
CEPS variants for improving πθ0 over T . For LCEPS, we select
a different target from T after each iteration.

B. Experimental set-up and Parameters
We use the JavaXCSF [18] implementation of XCSF, and

all algorithms are implemented in Java. Computation times
are measured on an Intel Core 2 Duo E8400 @ 3 GHz with 4
GB RAM. XCSF is tuned as follows. The number of iterations
is set to 1, 000, 000 and the maximum size of the population to
500. The input are normalized: the target and current positions
are bounded by the reachable space and the speed is bounded
by [−100,+100] rad.s−1. The default action adefault is set
to a vector of zeros i.e., no muscular activation. After tuning
empirically the parameters, the learning rate α (named beta
in JavaXCSF) is set to 1.0, and compaction is disabled. For
both CEPS variants, the number of iterations K is such that
the method runs up to a time limit of 230 minutes. Each
CEM iteration contains N = 100 policies. The proportion of
selected episodes ρ is set to 0.8, i.e., the N × ρ = 80 best
policies are used for the update. The initial variance σ2 is set
to 0.1 and the additional noise σ2

noise = 10−3.

IV. RESULTS

In this section, we first study whether the policy learned
with XCSF is similar to the one obtained with the NOPS for

5

Fig. 6. Relative performance after applying GCEPS and LCEPS for adaptation of the XCSF policy to either target A or B.

TABLE I
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE OVER

TARGETS, BOTH FOR L AND L

L T
NOPS 28.22± 2.06 27.46± 3.73
XCSF 27.45± 2.35 2.44± 46.03

GCEPS 22.96± 11.50 12.76± 22.28
LCEPS 25.19± 7.97 7.52± 38.76

the same targets, how well XCSF generalizes over different
targets, and whether GCEPS is able to improve the performance
of the learned policy. Then we compare the performance of
LCEPS versus GCEPS, focusing on the improvement where
generalization resulted in a poor performance and on the
impact on the performance where it was already good.

A. Performance of XCSF policy and generalization

Results presented in this section are similar to those pre-
sented in [9], though we used only 500 classifiers instead of
6400 in [9]. The average running time to get one trajectory
from the NOPS is ∼ 10 minutes. From πθ0

, it is ∼ 30
milliseconds. Fig. 3(a) shows the performance of the NOPS
as a function of the target position, obtained by interpolating
the performance of the NOPS trajectories for all targets in
T . Fig. 3(b) shows the performance of one representative
πθ0

, which is very close to the NOPS performance for targets
located near L. One can see that the relative performance
decreases with the distance to L.

Fig. 3(c) shows the performance of πθ after applying GCEPS
to optimize its parameters. One can see that the performance
is globally improved over the whole workspace. In particular,
the region around (x = −0.3, y = 0) where the performance
of πθ0 was very poor is improved a lot. Results in Table I
confirm quantitatively this visual feeling.

B. Performance of the GCEPS versus LGCEPS

The rationale behind proposing LCEPS was to provide a
way to improve the performance locally, where it is needed,
without disrupting the performance over targets for which
the controller is already good. In order to evaluate this
specific property, we performed the experiments described
in Section III-A2. The results of these experiments can be
visualized in Fig. 6, that gives the relative performance of

TABLE II
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE OVER TARGETS

A AND B AND OVER L
Algo. target A L target B L
NOPS 28.01 28.22± 2.06 21.17 28.22± 2.06
XCSF −30.59 27.45± 2.35 −204.3 27.45± 2.35

GCEPS 27.98 −14.32± 12.49 22.88 −293.2± 169.7
LCEPS 26.14 27.40± 2.39 16.68 27.63± 2.01

the controller resulting from LCEPS with respect to πθ0 . In
Fig. 6(a), one can see that the performance on target A is
increased without major changes elsewhere, despite some local
decrease of performance in areas that are not close in the
Cartesian workspace but in fact correspond to related articular
configurations. Fig. 6(c) show the same for target B, with
a much larger increase in performance around the target.
This can be explained by the fact that πθ0

was particularly
far from optimality around target B. The numerical results
corresponding to this adaptation are shown in Table IV-B.

Interestingly, with GCEPS, one cannot train the controller
over a specific target while measuring the performance over
the whole workspace. If we evaluate the controller just on one
target, then GCEPS optimizes the whole classifier population
so as to maximize the performance on that specific target,
which results in a very large disruption of performance over
the workspace, as shown in Fig. 6(b) and (d).

Thus LCEPS is capable of improving the performance where
needed, with only minor effects on the performance elsewhere.
Furthermore, performing iterations of LCEPS over a set of
targets is much faster than an iteration of GCEPS over the same
set because LCEPS optimizes for a restricted set of parameters.

Given these positive results, we now compare the perfor-
mance of GCEPS and LCEPS over T . In order to do so, we
apply LCEPS by choosing each target in T in sequence, as
we do when performing a GCEPS iteration. Results can be
visualized in Fig. 7 and extracted from a comparison between
Fig. 3(c) and Fig. 3(d), as well as from Table I.

As one can see, LCEPS is not significantly better than GCEPS
over the whole workspace, even if the good performance in
the training region is more preserved. This is mainly because
iterating over all targets as in GCEPS does not make full profit
of the capabilities of LCEPS. In the future, instead of iterating
over all targets with LCEPS, we plan to combine it with an
active learning strategy that will spend more computational

6

0 50 100 150 200 250
Computation time (min)

5

0

5

10

15

20

25

30

P
e
rf

o
rm

a
n
ce

 a
cr

o
ss

 t
h

e
 w

o
rk

sp
a
ce NOPS

global CEPS
local CEPS

Fig. 7. Performance of the NOPS and πθ adapted by either GCEPS or
LCEPS, as a function of time.

resources on targets where the performance can be more
improved, and less resources where the performance is already
good. Defining this active learning strategy is the matter of
immediate future work.

V. CONCLUSION

In this paper, we have shown that learning and optimizing a
parametric controller is a convincing alternative to using opti-
mal control methods that are generally too expensive for real-
time application in robotics. Here, using πθ0

was about 20000
times faster than using the NOPS. The resulting controller is
fast and the generalization capability of LfD methods makes
the learning process reasonably easy in practice. Furthermore,
we have shown that using a stochastic optimization algorithm
could further improve the policy, particularly in the areas
where the performance is far from optimal.

However, from our empirical results, one can see that the
obtained performance after a limited stochastic optimization
period is still not close enough to the performance one gets
with an OC method. There are two possible answers to this
limitation. One consists in considering a life-long learning
approach, where the system is optimizing its controller param-
eters throughout his life-time, yielding the slow convergence
to a better optimum. Another option consists in learning a
model of the plant, as presented in [15], [17] for instance,
and use this model to improve the policy offline with virtual
experiments based on the learned model. This will also help
scaling the method to systems with more dimensions.

Our most immediate future work will consist in applying
our approach to an assistance robot. We are designing a robot
that will help motor-impaired patients to transfer from a seated
position to a standing position with as few effort as possible.
With the methods presented here, we will adapt in real-time
the controller of the robot on-line to specific patients [10]. On
a longer term, we would like to apply these techniques to the
whole body control of humanoid robots like iCub, so that they
perform more human-like movements.

ACKNOWLEDGMENTS

This work was supported by the Ambient Assisted Living
Joint Programme of the European Union and the National
Innovation Office (DOMEO-AAL-2008-1-159), more at
http://www.aal-domeo.eu.

REFERENCES

[1] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable
impedance control. The International Journal of Robotics Research,
30(7):820, 2011.

[2] M. V. Butz, D. E. Goldberg, and P.-L. Lanzi. Computational Complexity
of the XCS Classifier System. Foundations of Learning Classifier
Systems, 51:91–125, 2005.

[3] M. V. Butz and O. Herbort. Context-dependent predictions and cognitive
arm control with XCSF. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 1357–1364. ACM New
York, NY, USA, 2008.

[4] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. Toward a theory of
generalization and learning in XCS. IEEE Transactions on Evolutionary
Computation, 8(1):28–46, 2004.

[5] V. Heidrich-Meisner and C. Igel. Similarities and differences between
policy gradient methods and evolution strategies. In Proceedings of
the 16th European Symposium on Artificial Neural Networks (ESANN).
Citeseer, 2008.

[6] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and G. Sandini.
Approximate optimal control for reaching and trajectory planning in
a humanoid robot. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 1290–1296. IEEE, 2010.

[7] J. Kober and J. Peters. Policy search for motor primitives in robotics.
Advances in Neural Information Processing Systems (NIPS), pages 1–8,
2008.

[8] P. Kormushev, S. Calinon, and D. G. Caldwell. Robot Motor Skill
Coordination with EM-based Reinforcement Learning. In Proc. of
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS-2010),
2010.

[9] D. Marin, J. Decock, L. Rigoux, and O. Sigaud. Learning cost-
efficient control policies with xcsf: generalization capabilities and further
improvement. In Proceedings of the 13th annual Conference on Genetic
and Evolutionary Computation, pages 1235–1242. ACM, 2011.

[10] V. Pasqui, L. Saint-Bauzel, and O. Sigaud. Characterization of a least
effort user-centered trajectory for sit-to-stand assistance user-centered
trajectory for sit-to-stand assistance. In Proceedings IUTAM. IUTAM,
june 2010.

[11] J. Peters and S. Schaal. Reinforcement learning of motor skills
with policy gradients. Neural networks : the official journal of the
International Neural Network Society, 21(4):682–97, 2008.

[12] L. Rigoux, O. Sigaud, A. Terekhov, and E. Guigon. Movement
duration as an emergent property of reward directed motor control.
In Proceedings of the Annual Symposium Advances in Computational
Motor Control, 2010.

[13] R. Y. Rubinstein. Optimization of computer simulation models with rare
events. European Journal of Operational Research, 99(1):89–112, 1997.

[14] R. Y. Rubinstein. The cross-entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied
Probability, 1(2):127–190, 1999.

[15] C. Salaün, V. Padois, and O. Sigaud. Control of redundant robots using
learned models: an operational space control approach. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 878–885, 2009.

[16] O. Sigaud and S. Wilson. Learning classifier systems: a survey. Soft
Computing-A Fusion of Foundations, Methodologies and Applications,
11(11):1065–1078, 2007.

[17] P. Stalph, J. Rubinsztajn, O. Sigaud, and M. Butz. A Comparative Study:
Function Approximation with LWPR and XCSF. In Proceedings of
the 13th International Workshop on Advances in Learning Classifier
Systems, 2010.

[18] P. O. Stalph and M. V. Butz. Documentation of JavaXCSF. Technical
report, COBOSLAB, 2009.

[19] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement learning of motor
skills in high dimensions: a path integral approach. In International
Conference on Robotics and Automation, pages 2397–2403. IEEE, 2010.

[20] S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary
Computation, 3(2):149–175, 1995.

[21] S. W. Wilson. Function approximation with a classifier system. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 974–981, San Francisco, California, USA, 2001.
Morgan Kaufmann.

[22] S. W. Wilson. Classifiers that Approximate Functions. Natural
Computing, 1(2-3):211–234, 2002.

