
1

Learning Velocity Kinematics: Experimental
Comparison of On-line Regression Algorithms

Alain Droniou, Serena Ivaldi, Patrick Stalph, Martin Butz and Olivier Sigaud

Abstract—The increasing complexity of tasks addressed by
humanoid robotics requires accurate mechanical models which
are difficult to obtain in practice. One approach is to let the robot
learn its own models. In [16], two algorithms were compared
on learning the velocity kinematics model of iCub: XCSF and
LWPR. This comparison was based on simulated data. In this
paper, we propose to extend this study to data recorded from
the iCub robot. We analyze the behavior of these algorithms in
presence of large noise in real conditions of use. We also add
the study of a third algorithm, iRFRLS. After a detailed study
on the tuning of the three algorithms, we show that the results
obtained in [16] are still valid on real data: XCSF converges more
slowly, but to a lower error than LWPR. However, we show that
iRFRLS outperforms these two algorithms.

I. INTRODUCTION

For the few last decades, robot control was based on hard-
coded mechanical models. Even if it can still be suitable
for complex robots with many degrees of freedom [10],
such methods usually do not take into account perturbations,
like viscous and solid friction (which vary with mechanical
wear), contacts with unknown objects, ... For instance, when
interacting with new objects, autonomous robots require new
mechanical models to adapt their behavior: playing with a
bottle is different depending on its size, its material, whether
it is filled or empty... Learning techniques are expected to
provide efficient and fast generalization to transfer knowledge
between related situations.

In [16], two algorithms, LWPR and XCSF, were compared
on learning velocity kinematics of the humanoid robot iCub
from visual inputs. In order to introduce uncertainties and
address a situation where the model is unknown, the end-
effector was modeled by a green ball at the top of a stick
held by the robot. The study was carried on simulated data. In
this paper, we refine the study with data recorded from the real
robot. In fact, as soon as we work in real conditions, we must
face multiple sources of noise. In these conditions, a good
algorithm must be robust and its generalization capability is
crucial.

Alain Droniou (PhD candidate in Robotics), Serena Ivaldi (postdoctoral
researcher in Robotics), and Olivier Sigaud (Professor in Computer Science)
are with: Université Pierre et Marie Curie, Institut des Systèmes Intelli-
gents et de Robotique - CNRS UMR 7222, Pyramide Tour 55 - Boı̂te
Courrier 173, 4 Place Jussieu, 75252 Paris CEDEX 5, France, Contact:
firstname.name@isir.upmc.fr
Patrick Stalph (PhD candidate in Computer Science) and Martin Butz (Pro-
fessor in Computer Science) are with: Universität Tübingen, Sand 14, 72076
Tbingen, Germany
Contact: name@informatik.uni-tuebingen.de

We first describe the learning task and algorithms in sec-
tion II. In addition to XCSF and LWPR, we also study a
third algorithm, iRFRLS, and we highlight its differences with
respect to XCSF and LWPR. Then, we present the experi-
mental set-up in section III. In section IV, we compare the
performances of the three algorithms and show that iRFRLS
converges faster and to a lower error than the other algorithms.
We discuss this result in section V, as well as the influence
of the parameters of the algorithms.

II. METHODS

In this section, we first describe the learning task. Then, we
present the three studied algorithms.

A. Learning velocity kinematics

Our approach to learning robot control is to learn the
forward velocity kinematics model and then invert it for
control. This provides more flexibility than directly learning
an inverse model [13].

1) Forward kinematics: The simplest model of a robot
is given by its kinematics, i.e. the correspondence between
joint space coordinates (articular position of each joint) q and
task space coordinates ξ, usually 3-D coordinates of the end-
effector: ξ = f(q).

When the joint space has more dimensions than the task
space, the system is redundant and there is no simple method
to span the set of solutions at the kinematics level. Therefore,
the model is usually derived to obtain the velocity kinematics
model through the expression of a Jacobian matrix J(q) = ∂f

∂q :

ξ̇ = J(q)q̇ (1)

2) Inverse velocity kinematics: In order to be able to control
the robot, we need to inverse (1) using

q̇ = J](q)ξ̇ (2)

where J] is a pseudo-inverse of J . With (2), we can com-
pute joint velocities corresponding to the desired end-effector
velocity.

However, in the redundant and non singular case, there is an
infinite number of solutions q̇ providing the desired velocity
ξ̇?. Among all these possibilities, the Moore-Penrose pseudo-
inverse J+ provides the minimum norm solution [4]. To avoid
critical effects at singular configurations, regularization terms
can be added, like in Damped Least Square Pseudo-inverse
(DLS - PINV) [3]. Further information on control in our
experiments can be found in [16].

2

B. Regression algorithms
We focus our study on three regression algorithms:

LWPR [19], XCSF [21] and iRFRLS [6]. A survey of these
three algorithms can be found in [17].

1) LWPR: The Locally Weighted Projection Regression
(LWPR1) algorithm [19] is a recursive function approximator,
which provides accurate approximation in very large spaces at
low computational cost.

It uses a sum of linear models weighted by normalized
Gaussians. These Gaussians, also called receptive fields (RFs),
define the domain of influence of each corresponding linear
model. The RFs and their linear models are both updated
incrementally to match the training data. LWPR reduces the
input dimensionality using the Partial Least Squares (PLS)
algorithm [22]. The global algorithm provides as output ŷ the
weighted sum of all outputs ŷk of each RF

ŷ (x) =

∑K
k=1 wkŷk (x)∑K

k=1 wk

(3)

where K is the number of receptive fields.
We refer the reader to [15] or [19] for a further presentation

of the incremental version of the algorithm.
2) XCSF: XCSF2 [21] is another function approximator

that shares some similarities with LWPR but comes from
Learning Classifier Systems (LCSs) [7]. As any LCS, XCSF
manages a population of rules, called classifiers. These classi-
fiers contain a condition part and a prediction part. In XCSF,
the condition part defines the domain φi(z) of a local model
whereas the prediction part contains the local linear model βi
itself. From classifiers, XCSF predicts a local output vector yi
relative to an input vector xi. The βi are updated using the
Recursive Least Squares (RLS) algorithm [8], the incremental
version of the Least Squares method. The classifiers in XCSF
form a population P that clusters the condition space into
a set of overlapping prediction models. XCSF uses only a
subset of the classifiers to generate an approximation. Indeed,
at each learning iteration, XCSF generates a match set M that
contains all classifiers in the population P whose condition
part Z matches the input data z i.e., for which φi(z) is above
a threshold φ0.

In XCSF, the output ŷ is given for a (x, z) pair as the sum
of the linear models ŷi of each matching classifier i weighted
by its fitness Fi

ŷ (x, z) =

∑nM

k=1 Fk (z) ŷk (x)∑nM

k=1 Fk (z)
(4)

where nM is the number of classifiers in the match set M . In
all other respects, the genetic algorithm (GA) that drives the
evolution of the population of classifiers is directly inherited
from XCS [20].

An important process in the context of this study is com-
paction. At the end of a learning process, the final population is
composed of highly overlapping classifiers. To reduce the size
of the population, XCSF uses a Closest Classifier Matching
(CCM) rule [2] to get a fixed size match set M .

1We use the liblwpr C/C++ library available on http://www.ipab.inf.ed.ac.
uk/slmc/software/lwpr/index.html.

2We use the Java XCSFServer developed by M. Butz and P. Stalph [18].

3) iRFRLS: iRFRLS3 is based on a regularized least square
method with random features [6]. In this paper, we present this
algorithm from a different point of view, based on Fourier
transform.

Almost any usual function can be calculated by inversion
of its Fourier transform. Approximating the Fourier transform
of a function instead of the function itself allows to exploit
some regularity properties to make the learning process more
robust and simpler.

Since we work on real, continuous functions defined on
finite intervals (and so virtually periodic), the partial sums of
the Fourier series of f ,

Sn(f(x)) =
a0(f)

2
+

n∑
k=1

ak(f) cos

(
kx

2π

T

)
+

n∑
k=1

bk(f) sin

(
kx

2π

T

) (5)

converge towards f when n→∞, with

an(f) =
2

T

∫ T/2

−T/2

f(t) cos

(
nt

2π

T

)
dt

bn(f) =
2

T

∫ T/2

−T/2

f(t) sin

(
nt

2π

T

)
dt ∀n ≥ 0

(6)

To approximate the function, we can set some (actually
most of) coefficients to 0, and learn the others. The quality of
predictions depends in that case on the number D of learned
coefficients (features). Writting x1, ..., xk the points from the
training set and

f = [f(x1), ..., f(xk)] , w = [ai0 , bi0 , ..., aiD , biD]
T

z(x) = [cos(ωi0x), sin(ωi0x), ..., cos(ωiDx), sin(ωiDx)]
T

Z = [z(x1), ..., z(xk)]
T

the prediction can be written f̂(x) = wT z(x) and a classical
single vector regression method [5] can be used to learn the
coefficients. The solution is then given by

w = (λI + ZTZ)−1ZT f (7)

where λ is a regularization factor. This solution w can be
computed incrementally and easily inverted with a Cholesky
decomposition of (λI + ZTZ) [1], [14], [6].

Finally, iRFRLS requires to tune only three parameters: the
regularization factor λ, the number of features D and the
distribution of pulsations ω. Because of a strong relationship
with Gaussian kernel methods, one usually chooses normal
distributions whose only parameter γ is the variance. In these
conditions, iRFRLS behaves as a Gaussian kernel regression
algorithm. Features z(x) then approximate Gaussian kernel
values [11].

3We use the C++ library developed by A. Gijsberts, which can be found
in the official iCub repository https://robotcub.svn.sourceforge.net/svnroot/
robotcub/trunk/iCub.

http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/index.html
http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/index.html
https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub
https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub

3

III. EXPERIMENTS

We use the 104cm high and 53 degrees of freedom hu-
manoid robot iCub [9]. In [16], algorithms were tested on
an iCub simulator. For this study, we use the real robot and
hence face real conditions of use. As a consequence, we must
address multiple sources of noise: imprecision of sensors,
power supply noise, mechanical vibrations and backlashes,
inaccurate vision algorithms, imperfect calibration or non-
simultaneous measures.

A. Data

We tune and evaluate the algorithms on data recorded
according to the setup of [16]. For those experiments, iCub
is performing an asterisk reaching task. As we do not want
to address vision process difficulties, the end-effector is rep-
resented by a green ball at the top of a stick held by the
robot (see [16] for further details). As a results, the kinematics
model is unknown. The task involves 6 degrees of freedom:
2 for the head and 4 for the arm. During these experiments,
the explored region consists of a cube of about 10 cm side
length. Compared with the 40 cm of the iCub arm, it represents
roughly 20% of the useful reachable space4. This can bias
some results because this emphasizes some linearities.

We recorded 4 million points (q, q̇, ξ, ξ̇) corresponding to
30 experiments, sampled at approximately 20Hz.

B. Tuning the algorithms

One of the main points when working with learning methods
is the tuning of each algorithm. In order to perform a fair
comparison, we use a grid-search method: for each parameter,
a set of values is chosen (Tables I, II, III), and we test all
possible combinations of values.

To get statistically significant results using paired Student’s
t-tests [12], each experiment is repeated on the 30 recorded
datasets. These datasets are the same for the three algorithms.

We measure the performance as the mean squared error
in the prediction ˆ̇ξ of ξ̇ : MSE = 1

3E
[
||̂ξ̇ − ξ̇||2

]
where

coefficient 1
3 comes from the dimension of ξ̇. Test sets consist

of 1000 points, different from learning sets.
Thanks to the distinction between condition and predic-

tion spaces, XCSF can directly learn the velocity kinematics
Jacobian matrix. On the other hand, LWPR and iRFRLS
cannot provide directly this matrix. We use them to learn the
kinematics model, from which we can compute the velocity
kinematics Jacobian matrix by derivation.

IV. RESULTS

In this section, we carry out experiments to study both
the influence of each parameter and the influence of the data
order on the algorithms. We focus on the convergence of the
algorithms and their computation time.

4One might approximate the reachable space as a half sphere of radius
40 cm. This would lead to a ratio explored/reachable of 0.7%. Actually, due to
mechanical constraints and joints limits, the reachable space is much smaller.

A. Influence of the parameters
In order to study the influence of parameters of each

algorithm, we compute the average error obtained on all
simulations by setting the value of one parameter at a time. The
28 XCSF parameters cannot be exhaustively tested. We select
six of them, identical to those tested in [16]. The results are
presented in Table I. We do the same for LWPR, in Table II.
Since iRFRLS has only three parameters, it is possible to
perform an exhaustive search (Table III).

TABLE I
INFLUENCE OF EACH PARAMETER FOR XCSF. THE NOTATION v1

c
> v2

MEANS THAT THE VALUE v1 OF THE PARAMETER LEADS TO BETTER
PERFORMANCE THAN THE VALUE v2 , WITH A CONFIDENCE OF c%.

VALUES IN BOLD (ITALIC) CORRESPOND TO THE BEST (WORST) SET OF
PARAMETERS. GRID-SEARCH TIME CORRESPONDS TO THE TIME NEEDED

TO TEST EVERY SET OF PARAMETERS ON 30 DATASETS, WITHOUT
PARALLELIZATION.

XCSF
Parameter Ranking Time

∆ 0.01
76
> 0.05

99.2
> 0.1

84
> 0.5 constant

converConditionRange 0.995
99.9
> 0.7 constant

minConditionStretch 0.001
98
≈ 0.005

81
≈ 0.1 constant

ε0 0.01
98
> 0.005

99.4
> 0.001 constant

maxPopulationSize 1500
90
> 500

100
> 100 increasing

startCondensation 500
67
≈ 1000

99.9
> 2000

99.9
> 5000 increasing

Grid-search time 9 days

TABLE II
INFLUENCE OF EACH PARAMETER FOR LWPR.

LWPR
Parameter Ranking Time

useMeta true
89
≈ false constant

updateD false
99.7
> true true longer

penalty 0.001
67
> 0.01

93
≈ 0.1 constant

wGen 0.9
92
≈ 0.2

64
> 0.1

93
> 0.01 increasing

setInitAlpha 0.01
58
> 0.1

67
> 200

98
≈ 500 constant

setInitD 50
75
> 40

66
> 30

84
> 20 increasing

Grid-search time 11 hours

TABLE III
INFLUENCE OF EACH PARAMETER FOR IRFRLS.

iRFRLS
Parameter Ranking Time

γ 10−6
99.9
> 10−12 96

≈ 10−3
100
> 1

100
> 10 constant

λ 10
99.9
> 1

99.9
> 10−3 97

≈ 10−6 96
≈ 10−12 constant

D 50
100
> 500

99.9
> 1000

99.9
> 2000 O(D2)

Grid-search time 12 days

Plots in Fig. 1(a) show the worst and best performances
obtained by each of the three algorithms.

B. Comparison of learning algorithms
In [16], parameters were optimized for learning a velocity

kinematics model for which data were generated randomly

4

0 2000 4000 6000 8000 10000
Iteration

10−3

10−2

10−1

100

101

102

M
SE

Best and worst performances for the three algorithms

LWPR
XCSF
iRFRLS

97% confidence interval
Best performance
Worst performance

(a) Error plots obtained with the best and the
worst set of parameters for LWPR, XCSF and
iRFRLS. Note logarithmic scale.

0 2000 4000 6000 8000 10000
Iteration

0.0014

0.0015

0.0016

0.0017

0.0018

0.0019

0.0020

M
SE

Comparison of LWPR, XCSF and iRFRLS

LWPR
XCSF - kinematic model
XCSF - velocity kinematics model
iRFRLS

(b) Comparison of the best sets of parameters
for each algorithm. XCSF was tested on both
kinematics and velocity kinematics models.

0 2000 4000 6000 8000 10000
Iteration

−0.00004

−0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

∆
M
S
E

=
M
S
E
on
li
n
e
−
M
S
E
of
f
li
n
e

Comparison of on-line and off-line learning

LWPR
XCSF
iRFRLS

(c) Comparison between on-line and off-line
learning. We represent the difference
∆MSE = MSEonline −MSEoffline.

Fig. 1. Empirical study of the behavior of LWPR, XCSF and iRFRLS

(no temporal relationship between them, excluding any notion
of trajectory). Therefore, we start with a similar approach,
before testing the algorithms when the data is ordered along
the trajectories of the robot.

1) Offline Learning: Initially, training and testing sets
are generated by drawing random points from the database.
Fig. 1(b) compares the performance of the three algorithms
with the best sets of parameters.

First, we note that the final performance of XCSF is better
when learning the velocity kinematics Jacobian matrix than
when learning the kinematics model (with a confidence higher
than 99.9%). In order to compare the best performance of
the algorithms, we evaluate XCSF on learning the velocity
kinematics model.

The convergence is almost instantaneous for LWPR and
iRFRLS (models are correctly learned in less than 500 itera-
tions). However, the convergence of XCSF is much longer.
That confirms a result on simulated data in [16]: XCSF
converges slower than LWPR, but the final performance is
better (confidence of 98.8%). Similarly, iRFRLS converges
as fast as LWPR with a better final performance (confidence
higher than 99.9%). But if it converges faster than XCSF, the
difference in final performance is significant up to only 84%.

2) Online Learning: We now use sets of consecutive points
instead of randomly selected ones. We thus confront the
algorithms in real conditions, where learning is constrained
by the movements of the robot. Fig. 1(c) represents the
difference between the error obtained with off-line and on-
line training ∆MSE = MSEonline −MSEoffline. Though
the convergence is slower, the final performance is similar for
iRFRLS and XCSF, while it is better for LWPR. However,
the final ranking is identical to the one for off-line training:
iRFRLS is always the fastest to converge and the best in terms
of final performance.

V. DISCUSSION

From the results presented in the previous section, iRFRLS
appears superior in all respects. However, some points require
further analysis.

A. Performance
The results in section IV-B induce two discussions: one on

the interest of optimization, the other on the influence of the
data order. Table IV provides a synthesis of these discussions.

1) Advantages of optimization: If the impact of parameter
optimization is tangible with the three algorithms (Fig. 1(a)),
its interest is limited for LWPR: neither the final performance
(gain less than 2 %) nor the speed of convergence are impacted
significantly. However, this optimization is the fastest of the
three algorithms. In contrast, optimization is essential for
iRFRLS (gain by a factor of 1000) as well as XCSF for
which final performance, speed of convergence and stability
are impacted.

2) Data order: Obviously, the convergence speed of the
algorithms depends on the time needed to cover the space
with enough training data. Hence, the convergence is slower
when data order follows the trajectory, compared to a random
order. Studying the impact on the final performance is more
relevant.

Theory ensures that the final performance of iRFRLS does
not depend on the data order, except for rounding errors that
may accumulate around the calculation of the incremental
Cholesky factorization. Similarly, the GA in XCSF reduces
the dependence of the algorithm on the data order. Fig. 1(c)
indeed shows a fast convergence of iRFRLS to the same level
of error when learning off-line. XCSF is slower to converge,
but also reaches the same level of error.

Unlike XCSF, LWPR does not have any mechanism to
optimize the position of the RFs centers. Since the data order
determines the RFs creation order and hence their positions,
it changes the final performance, as shown in Fig. 1(c).
However, contrary to expectations, it must be emphasized
that the final performance of LWPR is better when data are
presented along trajectories. This can be because it is easier
to identify and properly filter noise when data correspond to
consecutive points of the trajectory, building RF overlapping
along these trajectories and whose combination gives a more
reliable prediction. However, if the signal to learn is not as
noisy, this mechanism may work against LWPR by smoothing
inner variations of the estimated function. This remains to be
studied.

5

TABLE IV
SYNTHESIS OF THE PERFORMANCE COMPARISON OF LWPR, XCSF AND

IRFRLS.

Algorithm LWPR XCSF iRFRLS

Convergence Fast Slow Fast and
unstable

Final
performance - + ++

Sensitivity to
tuning Low High Extreme

Computation
time Fast

Variable,
sometimes

slow

Accuracy /
time

compromise

Main
advantages Fast and stable

Distinction
condition /
prediction

Constant cost,
few parameters

and good
performances

Main
drawbacks

Many
parameters to

optimize

Sometimes
unstable and

slow
convergence,

many
parameters

Slow for large
values of D,
sensitive to

tuning

B. Comparative study

In this section, we analyse the influence of the parameters
with respect to the specificities of our experimental set-up, in
order to highlight some rules which simplify tuning.

1) Noise and regularity of estimated functions: In our study,
the function to learn is very regular, with strong linearities.
Therefore this impacts the tuning of parameters and explains
the fast convergence of the algorithms when learning the kine-
matics model. Because of its higher dimensionality, learning
the Jacobian matrix with XCSF is slower (Fig. 1(b)).

However, learning the kinematics model to compute the
velocity kinematics model increases the error variance (since it
uses twice the model to calculate the velocity), which can jus-
tify the lower final performance of XCSF with the kinematics
model compared to the velocity kinematics Jacobian.

Besides the regularity of the function to learn, data are
very noisy. Hence, learning regular models is even more
important to counter over-fitting. This favor larger areas of
validity for XCSF classifiers, which is reflected in the value of
coverConditionrange which hides minConditionStretch values.
Similarly, a higher value for ε0 smooths predictions, taking
into account more classifiers for each prediction. To avoid
over-fitting, the tuning of the GA is crucial: one must avoid to
specialize the population on noise, and favor a high turnover.
This is achieved through startCondensation and ∆ parameters.
Working in Fourier space, iRFRLS filters noise more effi-
ciently, which may explain its superiority. Note that a choice
of a too high γ for iRFRLS, i.e. an over-representation of high
frequencies, degrades the performance.

On the contrary, LWPR seems to favor smaller RFs, through
the high value of setInitD. This seems contradictory to the
previous analysis, but unlike XCSF, LWPR does not optimize
the center of its RFs, and smaller RFs then allow to achieve
better accuracy and adaptivity thanks to a finer partitioning of
the space.

2) Models complexity: LWPR and XCSF experiments high-
light the existence of a minimum population size for both
algorithms. For XCSF, it is between 100 and 500 classifiers,
as shown by the large difference in performance for these two
values of maxPopulationSize, while the gain is much more
limited from 500 to 1500 classifiers. For LWPR, the effect is
noticeable on wGen, the threshold that determines the creation
of a new RF. The gain is much more important between 0.01
and 0.1, than with further increases.

The study of the features number D of iRFRLS is much
more surprising at first sight. Indeed, this number is directly
related to the quality of the Fourier transform approximation
and a high value should always be preferred. But the study
shows an average performance decreasing with the number
of features. Because of the strong linearities of the kinemat-
ics model, a small number of frequencies is sufficient (and
preferable, if one wants to avoid learning the discontinuities
due to noise). In addition, the number of coefficients to be
learned corresponds to the number of features and a small
number of features thus facilitates learning. This explains why
on average, with random values for the other parameters, it
is easier to have better performances with only 50 features.
Nevertheless, though the better performance on average is
obtained with 50 features, the best performing model was
obtained with 1000 features.

3) Computation Time:

C. Computation Time

In the robotics context, computation time is an important
feature for learning algorithms, allowing or not real-time
applications. Table V compares training and prediction time
for each of the three algorithms5.

TABLE V
MEAN (MAX) COMPUTATION TIME PER SAMPLE IN TRAINING AND

PREDICTION.

Algorithm \ Time Training Prediction

LWPR 50µs (1ms) 50µs (1ms)

XCSF 300 µs (20ms) 300µs (20ms)

iRFRLS, D=50 20µs (25µs) 20µs (25µs)

iRFRLS, D=2000 50ms (50ms) 450µs (500µs)

LWPR is the fastest of the three algorithms, making it
easily usable in real-time applications. The influence of the
parameters (Table II) is thus not crucial.

For XCSF, the computation time depends mainly on the
population size and on the starting time of condensation (ta-
ble I). However, the latter effect is noticeable only in the learn-
ing phase: once the population is stable after condensation, the
prediction time becomes constant. On average, training and
prediction time are around 300µs, with a maximum of 20ms
typically achieved just before condensation.

The computation time of iRFRLS depends on only the
number D of features (Table III). This allows to easily search

5Experiments were carried out on an Intel Core i7 960 processor (4 cores,
hyper-threading, 3.2GHz) with 6Gb RAM.

6

for a compromise between computation time and accuracy.
One reaches 50 ms in learning process with D = 2000. Such
computation time may require off-line training or significant
computing resources for real-time applications.

D. Tuning cookbook

Through this discussion, we identified some rules thanks
to which it is easier to tune the algorithms depending on
the learning problem. They are presented on Table VI. The
table must be read as follows: to deal with differences in the
function regularity, for LWPR the best parameters to tune are
those controlling RFs size and overlapping. To prevent over-
fitting with LWPR, one should tune parameters controlling
RFs optimization and meta-learning, etc.

TABLE VI
AN EASIER TUNING OF THE ALGORITHMS CAN BE ACHIEVED BY

IDENTIFYING SOME RECURRENT ISSUES IN LEARNING PROBLEMS AND
THEIR RELATED PARAMETERS.

Algorithm Function
regularity Over-fitting Time complexity

LWPR RFs size and
overlapping

RFs optimization
and

meta-learning
Always fast

XCSF Classifiers size
and number

Condensation
and GA Population size

iRFRLS Sampling distribution Number of
features

VI. CONCLUSION AND PERSPECTIVES

In this work, we have learned models from iCub and shown
that LWPR, XCSF and iRFRLS perform well in the presence
of large noise sources. iRFRLS outperforms XCSF and LWPR,
in terms of speed of convergence and performance. However,
computation time can become prohibitive for iRFRLS for real-
time applications. Nevertheless, it remains possible to ensure
real-time computation at design level, thanks to a computation
time / accuracy trade-off, by a relevant tuning of the number
of features. We also highlighted that the optimization of the
parameters is crucial for iRFRLS and XCSF, while the gain
in performance is much lower for LWPR.

In addition, if on-line learning is slower, which is mainly
due to the time required to cover the whole space, the impact
on the final performance is minor for the three algorithms.

In the future, we want to validate our results on-line on
iCub. This will provide two improvements to this study: it
will be possible to test the algorithms on larger spaces and
performances will be evaluated not only on the mean squared
error of predictions, but also on the quality of the obtained
trajectories. On a longer term, we also want to study the effects
of the introduction of artificial curiosity mechanisms on the
algorithms and learn the dynamics of the robot.

ACKNOWLEDGMENTS

This work is supported by the French ANR program (ANR
2010 BLAN 0216 01), more at http://macsi.isir.upmc.fr

REFERENCES

[1] Å. Björck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, 1996.

[2] Martin V. Butz and Oliver Herbort. Context-dependent predictions
and cognitive arm control with XCSF. In Proceedings of the 10th
annual conference on Genetic and evolutionary computation, GECCO
’08, pages 1357–1364, New York, NY, USA, 2008. ACM.

[3] Arati Deo and Ian Walker. Overview of damped least-squares methods
for inverse kinematics of robot manipulators. Journal of Intelligent and
Robotic Systems, 14:43–68, 1995. 10.1007/BF01254007.

[4] K. L. Doty, C. Melchiorri, and C. Bonivento. A theory of generalized
inverses applied to robotics. Int. J. Robotics Research, 12(1), 1993.

[5] Harris Drucker, Chris Kaufman, Burges L., Alex Smola, and Vladimir
Vapnik. Support vector regression machines. In Advances in Neural
Information Processing Systems 9, volume 9, pages 155–161, 1997.

[6] Arjan Gijsberts and Giorgio Metta. Incremental learning of robot
dynamics using random features. In ICRA, pages 951–956, 2011.

[7] John H. Holland. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. The MIT Press, April 1992.

[8] T. Kailath, A.H. Sayed, and B. Hassibi. Linear estimation. Prentice-Hall
information and system sciences series. Prentice Hall, 2000.

[9] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and
Francesco Nori. The iCub humanoid robot: an open platform for
research in embodied cognition. In Proceedings of the 8th Workshop on
Performance Metrics for Intelligent Systems, PerMIS ’08, pages 50–56,
New York, NY, USA, 2008. ACM.

[10] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and
Giulio Sandini. An experimental evaluation of a novel minimum-jerk
cartesian controller for humanoid robots. In IROS, pages 1668–1674.
IEEE, 2010.

[11] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 1177–
1184. MIT Press, Cambridge, MA, 2008.

[12] Graeme D. Ruxton. The unequal variance T-test is an underused
alternative to Student’s T-test and the Mann-Whitney U test. Behavioral
Ecology, 17(4):688–690, 2006.

[13] C. Salaun, V. Padois, and O. Sigaud. Control of redundant robots
using learned models: an operational space control approach. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 878–885, Saint-Louis, USA, oct 2009.
doi:10.1109/IROS.2009.5354438.

[14] Ali H. Sayed. Adaptive Filters. Wiley-IEEE Press, 2008.
[15] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar. Scalable

techniques from nonparametric statistics for real time robot learning.
Applied Intelligence, 17:49–60, June 2002.

[16] G. Sicard, C. Salaun, S. Ivaldi, V. Padois, and O. Sigaud. Learning
the velocity kinematics of iCub for model-based control: XCSF versus
LWPR. In Proceedings of the 11th IEEE-RAS International Conference
on Humanoid Robots - Humanoids 2011, Bled, Slovenia, 2011.

[17] Olivier Sigaud, Camille Salaün, and Vincent Padois. On-line regression
algorithms for learning mechanical models of robots: a survey. Robotics
and Autonomous Systems, 59:1115–1129, July 2011.

[18] Patrick O. Stalph and Martin V. Butz. Current XCSF capabilities and
challenges. In IWLCS 2008/2009, LNCS (LNAI), vol. 6471, pages 57–
69. Springer, 2010.

[19] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection
regression: An o(n) algorithm for incremental real time learning in high
dimensional space. In in Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000, pages 1079–1086, 2000.

[20] S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary
Computation, 3(2):149–175, 1995.

[21] Stewart W. Wilson. Function approximation with a classifier system.
Genetic and Evolutionary Computation Conference, GECCO 2001,
pages 974–981, 2001.

[22] H. Wold. Soft Modeling by Latent Variables; the Nonlinear Iterative Par-
tial Least Squares Approach. Perspectives in Probability and Statistics.
Papers in Honour of M. S. Bartlett, 1975.

	Introduction
	Methods
	Learning velocity kinematics
	Forward kinematics
	Inverse velocity kinematics

	Regression algorithms
	LWPR
	XCSF
	iRFRLS

	Experiments
	Data
	Tuning the algorithms

	Results
	Influence of the parameters
	Comparison of learning algorithms
	Offline Learning
	Online Learning

	Discussion
	Performance
	Advantages of optimization
	Data order

	Comparative study
	Noise and regularity of estimated functions
	Models complexity
	Computation Time

	Computation Time
	Tuning cookbook

	Conclusion and perspectives
	References

