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Abstract — Aircrafts are complex systems that require 

permanent and precise monitoring and troubleshooting. The 

automation of these tasks is thus of a high importance. This 

paper presents an intelligent decision system for faults diagnosis 

of aircrafts. The system relies on decision trees, being easier to 

interpret, quicker to learn than other data-driven methods, and 

able to work even with missing pieces of information. The used 

C4.5 algorithm automatically “learns” the best decision tree by 

performing a search through the set of possible trees according to 

the available training data. And Principal Component Analysis 

(PCA) is used to decrease the input data’s dimension. Compared 

to other methods, the proposed one is more advantageous and 

some presented evaluations demonstrate its abilities. High correct 

faults detection rates and low missed detection and false alarm 

rates are obtained. Such a decision system is highly useful for 

engineering consulting services, accumulating the knowledge for 

the operational rules of diagnosis, and the design of new aircrafts.  

Keywords: Faults Diagnosis, Aircrafts, Decision System, 

Decision Tree, PCA. 

I. INTRODUCTION 

Faults diagnosis is of a high importance for modern 
aircrafts, with structures and systems becoming more and more 
complex. Hundreds of sensors are being used to supervise an 
aircraft, but abnormal information and faults are still difficult 
to find. In order to deal with this problem, many faults 
diagnosis systems have been invented, with intensive studies of 
data mining. One can cite: the expert system [1] that needs to 
establish the knowledge base and the rules by experts and has 
to face an intractable problem - the conflict of rules [2]. Also, 
neural networks [3] and Support Vector Machines (SVMs) [4] 
which require much more time for the learning process.  

In this paper, a novel intelligent decision system for faults 
diagnosis of aircrafts is proposed. We decided to use a decision 
tree learning algorithm since it provides much easier data to 
interpret than other algorithms, such as neural networks and 
SVMs [5]. Decision tree learning is a method for 
approximating discrete-valued target functions [6]. A decision 
tree algorithm automatically   “learns”  a  decision   tree by 
performing a search through the space of possible trees  to  find  
the one  that  best fits  the  training  data. The particular 
algorithm used in this paper is known as C4.5 (see Section II). 
As Figure 1 shows, the decision system uses the output 

information of sensors, and its diagnosis results are delivered to 
the fault tolerance system and the decision system which will 
demonstrate the faults and suggest decisions to the pilot and the 
ACC (airport command center) (emergency landing, return to 
base or mission continuation if the fault tolerance system can 
deal with the fault, etc.). In accordance with the results of the 
decision system, the pilot or ACC can decide their next action. 

 

  

 
Figure 1. Overall Diagnosis System 

 

Aside the normal working conditions of the aircraft and 
thus of the fault diagnosis system, the real risk events in the 
system should be taken into consideration during a flight. Such 
cases can be seen for example in the loss of some sensors’ 
information in special situations, especially for the fighting 
aircrafts. And in these cases, the diagnosis system should be 
ensured of working continuously. The presented system is able 
to deal with these cases. This paper studies the case where 3 
faults of the anti-icing system of the aircraft X (Dassault 
Aviation) need to be diagnosed. Usually the hot air exhausted 
by the aircraft’s engine is used in the anti-icing system to de-
ice the aircraft wings. 33 sensors supervise the anti-icing 
system. They mainly provide values of the engine and air 
wings’ temperatures, pressures and so on. So our diagnosis 
system has input vectors of a dimension 33 used to analyze and 
build the decision tree. Note that the natures of the faults 
cannot be revealed in this paper because of confidentiality 
issues. 

 The rest of this paper is organized as follows. Section II 
demonstrates the classical decision tree fundamentals, and 
shows a study of the tree’s over fitting and the pruning of 
unnecessary branches. Section III demonstrates the usage of 
PCA in decreasing the initially high input data dimension. Both 
the procedure of that application and its effect on the system 
are included in this section. Section IV reveals the robustness 
and the fault-tolerance of the system even in the case where 
some sensors are lost. Section V shows the results of 
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evaluations studying the cases presented before; and the last 
section concludes the paper and presents a preview of future 
works. 

II. DECISION TREE 

A. Decision Tree Fundamentals 

Decision tree learning is a method commonly used in data 
mining. Its goal is to create a model that predicts a target value 
(that can be the class of an input example), based on several 
input values that describe the example. This method uses a 
hierarchical tree structure that progressively checks input 
variables and makes corresponding decisions like 
classification. Like the system of expert, learned trees can also 
be re-represented as sets of if-then rules to improve human 
readability, but they don’t need human experts to establish a 
knowledge and rules database, they build rules by themselves. 

 

 

 

 

 

 

 

 

Figure 2. A decision tree used to discriminate 2 classes with inputs 

consisting of 3 values (A, B and C). 

 

An example is shown in Figure 2. Data represented by three 
input variables can be classified into two classes. Each node 
corresponds to one of the input variables – A or B or C, and 
inside each node, the variable is compared to a corresponding 
edge. The result of this comparison is translated by a leaf that 
leads to another node, or to the final classification decision. But 
in the presented example, one can ask several questions, like: 
why is it that A is in the root, not B or C? How was the 
threshold x found for A? So, in a decision tree algorithm, and 
in a more general manner, two questions are to be answered, in 
order to find the best possible classifier: 1) How to decide the 
sequencing of variables and corresponding nodes in the tree? 2) 
How to determine the used thresholds values? 

In order to answer the first question, and thus to determine 
the best sequencing of the variables, we resort to a 
measurement that is commonly used in information theory, 
called entropy. Entropy characterizes the impurity of an 
arbitrary collection of examples [7]. For example, given a 
collection S containing positive and negative examples of a 
target concept, the entropy of S relative to this Boolean 
classification is: 



Entropy S  P log2 P P log2 P      (1) 

where P   and P  are respectively the proportions of positive 

and negative examples in S. Note that in calculations involving 
entropy we consider 0* log (0) to be equal to 0. In our case, a 

collection will be the set of values provided by a sensor, that is 
to say, a variable. Such a variable can be Boolean, like in the 
example, or can take multiple values. So at first, we calculate 
the entropies of all the variables. Then, a measurement of the 
effectiveness of an attribute or value that a variable can take is 
needed. We use a measure called information gain that is 
simply the expected reduction in entropy caused by partitioning 
the according to the attributes and values that a variable can 
take. More precisely, the information gain, Gain(S, A), of an 
attribute A, relative to a collection of examples S, is defined as: 
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where values(A) is the  set of  all possible values for  the 
variable A,  and  Sv is the subset of S for which the variable A  
has  the value v. So, as said before, at first the entropies and the 
information gains of all the variables are calculated. The 
variable with the highest information gain is the root node from 
which leaves go out, each leaf corresponds to a value that its 
variable can take. Following this, entropies and information 
gains corresponding to the other variables and to each of the 
leaves going out of the root nodes are computed, and new 
nodes are taken corresponding to the highest gains. And so on, 
until all variables are used and the final tree is formed. 
Classification is done by using the values of the variables 
constituting an example and following the resulting tree leaves 
and nodes from the root to the final leaf which gives the class.  

In this system, all the input variables are not Boolean but 
can take multiple values. Therefore, the values of each attribute 
are sequently arrayed firstly, and then all the expected pair 
values which are neighboring but sorted in different classes are 
picked out. After that, all possible threshold values are 
calculated, as the halves of the sums of the pairs mentioned 
before. Finally, the threshold value with maximum information 
gain is taken. 

B. Tree pruning to avoid over fitting  

Cross Validation (CV) is used to determine how deep the 
decision tree will grow. This is known as the post-pruning rule. 
Being used by the C4.5 algorithm [8], it involves the following 
steps:  

1.  Use the CV to infer the decision tree from the training 
set, grow the tree until the training data is as fit as possible and 
allow over fitting to occur.  

2.  Convert the learned tree into an equivalent set of rules 
by creating one rule for each path from the root node to a leaf 
node.  

3. Prune (generalize) each rule by removing any 
preconditions that result in improving its estimated accuracy.  

4.  After sorting the pruned rules based on their estimated 
accuracy, involve them into classification of subsequent 
instances. 

So in summary, CV performs a search through multiple 
pruned tree configurations, and keeps the configuration that 
gives the best validation results. In this paper, the decision 
system is built with 33 sensors’ information. As shown in 

Is A > x? 

Is B > y? Is C > z? 

Class 1 Class 2 Class 1 

Yes 

Yes 

No 

No No 



Figure 3, CV operated during a learning procedure allowed us 
to find the best size of the tree based on these 33 sensors, with 
11 terminal nodes. This is obtained while the number of nodes 
without CV can actually grow much higher than 11. Figure 4 
shows the pruned tree, originally 59 nodes are obtained without 
pruning, the dotted lines are the leaves to prune, and the 
remaining nodes contain the rules that the system finally used. 
It is clearly that there is one root with 14 branches in the 
original, and only 6 branches left after optimization, which 
highly enhances the working efficiency. 

 
Figure 3. Using Cross-Validation to find the optimal tree size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Diagnosis tree and leaves to prune 

R: Root; B: Branch (B1-B14); N: Node (N1 – N11);  
F1: Fault 1; F2: Fault 2; F3: Fault 3; REF: No-Fault. 

III. PRINCIPAL COMPONENT ANALYSIS 

For the sake of safety, plenty of the sensors installed in the 
aircraft are redundant. Multiple sensors can do the same role, in 
order not to lose the information when one of them 
malfunctions. Indeed, the sensors’ redundancy is indispensable 
for the aircraft, especially with sensitive and important parts. 
But for the diagnosis system used here, using all the sensors’ 
data directly in the input space at once is not very necessary 
and it affects the arithmetic speed of the diagnosis system. 
Principal Component Analysis (PCA) is employed, as being a 
tool that effectively reduces the input data dimension and 
improves the computational loads of the diagnosis process, and 
thus of the overall system. PCA is mathematically defined [9] 
as an orthogonal linear transformation that converts a set of 
observations of possibly correlated variables into a set of 
values of uncorrelated variables called principal components. 
The data is projected to a new coordinate system where the 
greatest variance of the data obtained by any projection comes 
to lie on the first coordinate (principal component). The second 
greatest variance lies on the second coordinate, and so on. The 
number of principal components is generally less than the 
number of original variables. So PCA reduces the dimension of 
our aircraft diagnosis system input data. For example, in our 
case, Figure 5 shows that the first principal component’s 
variance constitutes more than 50% of the total sum of all 
variances over all components. This variance decreases as the 
order of the corresponding component increases. Finally, 6 
principal components were found to add up to 95% of the total 
sum of the variances in our case. Note that these principal 
components are computed based on the 33 used anti-icing 
system sensors and thus a big dimension reduction is 
performed, while keeping most of the beneficial information.  

 

Figure 5. PCA of the anti-icing system of the aircraft X: 6 first principal 

components, their corresponding variances and the cumulative variance. 

IV. INFORMATION LOSS AND REBUILDING OF THE 

TREE 

In the real conditions of an aircraft’s flight, especially with 
the fighting aircrafts, there is a risk of losing sensors or 
sensors’ information. This loss of information is harmful for 
the diagnosis system’s operation as it can lead to inadequate 
responses. The problems of such cases especially arise with 
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diagnosis systems using neural networks or SVMs, where the 
absence of signals or the zero-valued inputs lead to inactivity 
of certain parts of the networks. However, while the diagnosis 
tree cannot resolve this problem, it can perform a quick 
relearning based on the initial learning database and using only 
the data of the currently active sensors. For example, with a 
computer – Intel Pentium Dual-Core T4400 and 2G memory, it 
only needs 46 seconds for relearning with a 33x160000 dataset 
while with an SVM or a neural network it takes more than one 
hour. 

 

Figure 6. Relearning of the diagnosis tree 

 
Figure 6 shows data provided by 33 sensors and m learning 

examples. If the aircraft loses n sensors or sensors’ 
information, the diagnosis tree will automatically detect the 
loss and get relearned using new vectors of dimension 33-n. 
This ensures an appropriate online functioning of the system 
during a flight. 

V. RESULTS 

A. Experimental procedure 

A database consisting of 160000 examples (160000 

records, one record per second) is used to build the diagnosis 

system and test it. It is constituted of data vectors obtained 

with the pre-described 33 sensors of the anti-icing system of 

the aircraft X. Data is measured during a flight and describes 

the faults and the normal aircraft state without faults. 75% of 

the data were chosen randomly for the training and the 

remaining 25% are used to test the tree.  

 

During the training, CV is used to avoid the over fitting 

problem. Subsection B shows the PCA’s utility in reducing the 

data dimension, subsection C simulates a dangerous situation 

of sensors loss and presents corresponding results. In order to 

get a valid scientific and compelling evaluation scheme, a trail 

of one hundred repetitions of all the processes is studied as 

shown in Figure 7. The evaluations study the ratios of the 

following criteria: Correct Decision, Missed Detection, and 

False Alarms as shown in the last two subsections. 

 

 
Figure 7. Experiments Drawing 

 

B. Results in the normal Condition  

The test results will be presented in two forms 
corresponding to two different conditions: the condition of 
maintenance and the condition of mission on-line. 

1) In the condition of maintenance, the system must 

distinguish clearly each fault and show the diagnosis results to 

an engineer. With the Confusion Matrices which are shown in 

the Tables I - IV, three observations can be reached: 

a) Performance of system with PCA: Although PCA 

reduces the dimension of the data, the performance of the 

decision system is not reduced. The score of the system based 

on PCA is nearly the same as that of the system without PCA, 

especially for the systems with a pruned tree. For example, the 

score of Table II is 95.16% and the score of Table IV is 

95.17%.  

b) Performance of system based on Pruned Tree : In 

comparison with Table I and Table II (or Table III and Table 

IV), as mentioned in Section II, the results confirm that a 

system with a pruned tree works better than a system with a 

tree without pruning. The pruned trees add about two to four 

percentage points to the scores of diagnosis. 

c) Research of faults with confusion matrix: Some 

words about data mining of Aircraft X’s anti-icing system: as 

shown in these tables, the fault 2 and fault 3  are close to each 

other and Ref and Fault 1 are similar. In these tables, the 

system never confused Ref or Fault 1 with Fault 2 or Fault 3, 

and vice versa. In addition, Fault 2 can be perfectly diagnosed 

by a system with a pruned tree. 

TABLE I.  CONFUSION MATRIX, TESTING WITH A WHOLE TREE   

(WITHOUT PRUNING), SCORE = 93.64% 

Target/Output REF Fault 1 Fault 2 Fault 3 

REF 93.67% 6.33% 0.00% 0.00% 

Fault 1 2.61% 97.39% 0.00% 0.00% 

Fault 2 0.00% 0.00% 94.59% 5.41% 

Fault 3 0.00% 0.00% 11.11% 88.89% 
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TABLE II.   CONFUSION MATRIX, TESTING WITH A PRUNED TREE,  
SCORE = 95.16%  

Target/Output REF Fault 1 Fault 2 Fault 3 

REF 98.73% 1.27% 0.00% 0.00% 

Fault 1 6.96% 93.04% 0.00% 0.00% 

Fault 2 0.00% 0.00% 100.00% 0.00% 

Fault 3 0.00% 0.00% 11.11% 88.89% 

 

TABLE III.  CONFUSION MATRIX, TESTING WITH A WHOLE TREE 

(WITHOUT PRUNING), AND PCA = 95% (WITH 6 VECTORS),  
SCORE = 91.65%  

Target/Output REF Fault 1 Fault 2 Fault 3 

REF 94.50% 5.50% 0.00% 0.00% 

Fault 1 8.14% 91.86% 0.00% 0.00% 

Fault 2 0.00% 0.00% 92.11% 7.89% 

Fault 3 0.00% 0.00% 11.76% 88.24% 

 

TABLE IV.  CONFUSION MATRIX, TESTING WITH A PRUNED TREE,  
AND PCA = 95% (WITH 6 VECTORS).  

SCORE = 95.17% 

Target/Output REF Fault 1 Fault 2 Fault 3 

REF 93.58% 6.42% 0.00% 0.00% 

Fault 1 1.16% 98.84% 0.00% 0.00% 

Fault 2 0.00% 0.00% 100.00% 0.00% 

Fault 3 0.00% 0.00% 11.76% 88.24% 

 

2) In the condition of mission on-line, the pilot doesn’t 

need to know exactly which type of fault of anti-icing system 

appeared, he only needs to know that the anti-icing system is 

broken or not. If it doesn’t work, he must go back to ACC or 

make a emergency landing. Therefore, all the types of faults 

are grouped as one fault in this condition, the correct detection 

ratio, missed detection ratio and false alarm ratio will be 

studied in this part. 

TABLE V.   TESTING RESULTS WITH A TREE WITHOUT PRUNING 

CASE Amount of 

vectors 

Correct 

Detection 

Missed 

Detection 

False 

Alarm 

Without PCA 33 96.49%  3.51% 4.42% 

PCA 99% 12 96.04% 3.96% 5.54% 

PCA 95% 6 95.49% 4.51% 5.52% 

PCA 90% 4 90.73% 9.27% 7.84% 

PCA 80% 2 85.06% 14.94% 8.96% 

 

TABLE VI.  TESTING RESULTS WITH A PRUNED TREE 

CASE Amount 

of vectors 

Correct 

Detection 

Missed 

Detection 

False 

Alarm 

Without PCA 33 97.43% 2.57% 4.16% 

PCA 99% 12 97.08% 2.92% 4.76% 

PCA 95% 6 95.62% 4.38% 4.76% 

PCA 90% 4 92.95% 7.55% 5.45% 

PCA 80% 2 88.83% 11.17% 5.96% 

 
As can be seen in Table V and Table VI, the system offers 

satisfying performances with high correct detection rates, and 
low missed detection and false alarm rates. The performances 

slightly decrease with decreasing input data dimensions, but 
the results remain highly accurate. This may be due to one of 
two hypotheses:  

a) The faults detection and discrimination remains easy for 
the system, even with a change of input conditions and tree 
structure.  

b) PCA finds the principal components and the system can 
get well adapted to them and classify the aircraft’s situations. 

 But, there still exists a big problem: all the data is recorded 
per second during the mission of the aircraft, if there is 5% 
missed detection ratio or false alarm ratio, the pilot will receive 
the missed detection or false alarm 3 times per minute, which is 
unacceptable in the real applications. To solve this problem, 
statistics of the results of the diagnosis system during a period 
of time, as 15 or 30 seconds, are studied. That is to say, the 
system records the diagnosis results from a time; then 
compares the fault’s ratio diagnosed in the results with pre-set 
threshold; at last the system will judge it as fault occurred if its 
value is above the threshold. For example, the pre-set threshold 
is 15%, and only two results are diagnosed as fault by the 
system during 15 seconds. Since the frequency is below the 
threshold, the diagnosis of these 15 seconds is considered as 
“no-fault”. This criterion is used to test the continuous data of 
18000 seconds: the Correct Detection ratio equals 100%, the 
Missed Detection ratio equals 0, and the False Alarm ratio 
equals 0.0013% (using 6 vectors of input data whose PCA is 
about 95%).  

C. Results in the abnormal Condition  

In this subsection, a state of emergency is described: a 

number of sensors are lost. To simulate this, at first the 

number of the sensors is randomly reduced, without PCA. And 

then PCA is used to pre-treat the data if a few sensors like 1 ~ 

5 are lost. In this case, PCA wasn’t able to reduce the 

dimension of the input data if there were already many sensors 

lost. We run the system one hundred times, and at each time 

sensors are lost by random; at last we calculate the mean of 

the correct detection, the missed detection and the false alarm 

of the tests series. 

 

TABLE VII.  RESULTS WITH A TREE WITHOUT PRUNING IN AN ABNORMAL 

CONDITION 

Lost Sensors Correct 

Detection 

Missed 

Detection 

False 

Alarm 

3 95.46% 4.54% 4.51% 

5 93.06% 6.94% 8.10% 

10 90.71% 9.29% 13.56% 

15 83.84% 16.16% 18.25% 

. 

TABLE VIII.  RESULTS WITH A PRUNED TREE IN AN ABNORMAL CONDITION 

Lost Sensors Correct 

Detection 

Missed 

Detection 

False 

Alarm 

3 97.25% 2.75% 2.77% 

5 95.85% 4.15% 5.44% 

10 93.57% 6.43% 8.67% 

15 87.94% 12.06% 11.03% 



 

Table VII and Table VIII show the stability of the system 

within several lost captors. While the missed detection and 

false alarm ratios rise with the loss of sensors information, the 

performances of the system remain sufficiently accurate. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, a faults diagnosis system of aircrafts using 
decision trees is presented. The learning speed of this 
intelligent system is much higher than the speed of other 
diagnosis systems, like neural networks or SVMs, which 
allows it to perform a quick relearning in the cases of data loss. 
PCA is used to accurately reduce the system’s input dimension. 
Tests results of normal and abnormal flight conditions 
demonstrate the high abilities of the system. For the future 
work, we will focus deeply on how to prognosis the situations 
(failure prediction) of an aircraft with a decision system. 
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