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Abstract— This article presents a versatile controller that
enables various contact tooling tasks with minimal prior knowl-
edge of the tooled surface. The controller is derived from results
of neuroscience studies that investigated the neural mechanisms
utilized by humans to control and learn complex interactions
with the environment. We demonstrate here the versatility of
this controller in simulations of cutting, drilling and surface
exploration tasks, which would normally require different
control paradigms. We also present results on the exploration
of an unknown surface with a 7-DOF manipulator, where the
robot builds a 3D surface map of the surface profile and texture
while applying constant force during motion. Our controller
provides a unified control framework encompassing behaviors
expected from the different specialized control paradigms like
position control, force control and impedance control.

I. INTRODUCTION

While recent studies have shown that tool usage is not
restricted to human activities [1], [2], the exceptional ability
of man to use a wide array of tools still distinguishes him
from other animals. It would thus be a major achievement
if similar abilities could be obtained in robots. Based on
investigation [3] and modelling of how humans interact with
their environment [4], [5], this paper develops and tests a
controller that enables robots to control different tooling
tasks by adapting the impedance, force and trajectory plan
of the robot as humans do.

Though current industrial robots already use tools, they
work in well-controlled environments and are mostly in-
volved in non-contact tooling tasks such as welding and
gas cutting, where the robot does not physically come in
contact with the tooled object. Surface exploration is prob-
ably the only application where current robot manipulators
make purposeful contact with the external objects. Surface
exploration is performed either by pure haptics [6]–[10] or
aided by vision [11], [12] but utilizes minimal contact forces.
It aims to either form a 3D model of the object [13]–[15] or
determine the texture of the object [16], for which dedicated
sensors and controls have been proposed [17], [18]. The
control of the robot during non-contact tool tasks and surface
exploration is thus relatively easy because of the specialized
sensors and due to the fact that the controller has to deal only
with the robot kinematics and dynamics, which are (assumed
to be) known.
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In contrast, the challenge in controlling contact tool tasks
like polishing, carving, cutting, drilling or writing, is to
follow a given surface profile (similar to surface exploration
tasks) while maintaining a significant force on the surface.
A contact-tool task is influenced by the dynamics of the
robot, and also by that of the tooled surface, which is
normally unknown. Furthermore, the presence of a large
contact force makes the task highly unstable to disturbances
caused by friction, irregularities in the surface or noise in
the robot motor output. The robot requires to maintain the
right impedance to counter these instabilities. Contact tooling
usually involves penetration of the external surface of an
object. Therefore vision and surface exploration do not help
in determining the irregularities and variations within the
external surface.

When the tool task and environment are well known, spe-
cific controllers can be implemented to perform the task. For
example, a drilling task may be achieved with stiff position
control or modifications of impedance control [19] (though
the task instability will require careful tuning of impedance),
and exploration of simple surfaces may be achieved using
hybrid control [19], [20] by controlling position tangential
to the surface and force normal to it. However, the challenge
is to develop a versatile controller able to handle all these
tasks with minimal prior knowledge about the tooled surface.

Compared to current robots, humans are very versatile and
interact with all kinds of objects apparently without requiring
specialized controllers. Based on the model of human motor
adaptation we have recently discovered [4], [5], this paper
introduces a versatile controller for the interaction of a robot
with the environment. The bio-mimetic algorithm, which
is an extension of [21], [22], enables robots to perform
(unstable) contact tooling on unknown surfaces similar to
humans. We simulate the performance of the algorithm in
three typical contact tasks: surface exploration, drilling and
cutting. Finally, we show results of a pilot surface exploration
experiment utilizing a 7-DOF robot manipulator to explore
a test surface.

II. HUMAN-LIKE MOTOR ADAPTATION

Humans excel in the ability to adapt rapidly to the
variable dynamics of their arm as the hand interacts with
the environment. Mussa-Ivaldi and his collaborators have
studied this adaptation by letting subjects perform planar
arm reaching movements while interacting with a velocity
dependent force field [23]. They could show that the human
central nervous system adapts feedforward control during
repeated trials by compensating for the environment forces,



which can be modelled by nonlinear adaptive control [24],
[25].

However, this does not explain how humans can learn
unstable tasks common in daily life [26], e.g. many tasks
involving tools such as using a screwdriver or drilling, where
interaction and motor noise are amplified by the applied
force. In the last ten years, we have addressed learning of
unstable tasks in humans in a series of experimental studies
[3], [27]–[29]. We could show that humans are also able
to adapt impedance independently from force by selective
activation of suitable muscles groups.

Humans adapt both force and impedance to perform stable
and unstable tasks skilfully [26]. This can be modelled by a
control law with feedforward and feedback:

w = u+ v , (1)

where the variables are functions of time. In this equation, w
is the motor command, which is composed of a feedforward
term u and a feedback term v, that typically results from
muscle intrinsic properties and neural feedback, i.e. reflexes.
The simple principles of motor learning based on our ex-
perimental results [4] yield that humans adapt feedforward
and feedback during movement by concurrent minimization
of instability, error and effort in motor command.

Our previous work [21] exhibited how a bio-mimetic
algorithm based on these principles (and expressed in joint
space) can give human like dexterity to robots while ensuring
stability [22]. The algorithm used in this article is a derivative
of that proposed in [21] implemented in task space.

The robot control torque is given by Equ.(1) with

v = K e+Dė, e = xr− x , (2)

where x represents the task space coordinates of the end
effector and error signal e is calculated with respect to the
reference trajectory xr(t). K and D are diagonal positive
matrices (so with positive components in the diagonal and
other components 0). The feedforward force and mechanical
impedance are adapted as:

∆uk ≡ uk+1−uk ≡ αvk− (1−µ)uk, 0 < α,µ < 1 (3)
∆Kk

ii ≡ Kk+1
ii −Kk

ii ≡ β | vk
i | −γ , β ,γ > 0 (4)

where k is the trial or time index and α,β ,γ and µ represent
learning parameters. The damping D is set as

Dk
ii ≡ 2

√
Kk

ii (5)

corresponding to critical damping.
In Equ.(4) stiffness increases with the rectified feedback,

such that the control gains K and D increase with any error,
contributing to reducing error, and superfluous stiffness is
eliminated by the decay γ . Feedforward force adaptation,
which is similar to iterative learning, compensates for re-
producible forces in the task dynamics through reducing
feedback forces [30], which in turn helps keeping stiffness at
a low value. In fact, stiffness increases only in the presence of
random perturbations which cannot be learnt by feedforward
adaptation and just after novel dynamics are introduced. The

convergence properties of this learning controller have been
examined in [22].

The forgetting factor of µ in the feedforward learning
is necessary to relax force when no negative feedback is
available for this purpose, for example during a surface
exploration task (explained later) where the reference always
stays inside the explored surface.

The reference trajectory is adapted (slightly differently
from the previous work [21]) as:

∆xk
r ≡ xk+1

r − xk
r ≡ δ (x f − xk

r) , 0 < δ < 1 . (6)

The term
x f ≡ xk− nρ

Kmin
, (7)

where ρ represents the desired contact force, Kmin is the
specified minimum of K and n is the unit vector normal to
the surface, which can be detected by internal sensing at
the robot’s endpoint, or extrapolated from the surface’s part
previously explored. The reference adaptation thus aims at
moving the reference towards and near the actual position of
the end effector but inside the object with which the robot
interacts, such that constant contact force is equal to the
specified value would be applied when stiffness is minimum.

III. TOOL TASK SIMULATIONS

We simulated three typical contact tooling tasks to exhibit
the abilities of the controller. In all these tasks the default
learning parameters were α ≡ 0.05, µ ≡ 0, β ≡ 7, γ ≡ 0.005,
δ ≡ 0.01. Particular learning parameters which were set to
zero in each task are mentioned during each task description.

A. Tool and Surface model

The tool was modelled as a point mass in two degrees-
of-freedom (with x1 in the forward direction and x2 normal
to the surface as is shown in Fig.1) which was controlled
by the algorithm. This corresponds to using the algorithm in
the task space of a robot manipulator. In all the simulations,
the tool was assumed to be of significantly higher stiffness
and hardness than the material being tooled, such that there
is no deformation of the tool during interaction.

Fig. 1. Coordinate system definition

The model of the surface was defined in such a way that:
• for the drilling and cutting tasks, an unknown threshold

force is required for the tool to penetrate the surface
and once it is inside a large damping force is applied
opposed to the normal (penetration) x2 direction.



• In addition, for the drilling task, the tool encounters
sinusoidal horizontal force perturbations (along x1).
This simulates the vibrations generated by the drilling
process.

• For the cutting task, when the tool reached the desired
cutting depth, a high frequency, low amplitude sinu-
soidal vertical (along x2) force simulates the perturbing
force noise generated by a material and its internal
texture. Also along the forward direction, some dry
friction (proportional to the force applied normally by
the tool) requires the forward force to reach a certain
level for the tool to start moving. In this case, a large
damping force has been added to resist the forward
horizontal movement once the tool is inside the surface.

• For the surface exploration task, a surface was used
which is composed of a rising and then falling ramp,
an area similar to a “macro velcro” (geometrically
modelled as a high frequency low amplitude sinusoidal
position perturbations) and finally a large sinusoidal
profile. Some dry friction (proportional to the normal
force applied on the surface) was added once again
along the forward horizontal direction, along with some
damping resistive force when the tool is in contact with
the surface. In this specific scenario the tool also experi-
ences an additional spring force (with fixed small gains)
towards a (straight line) reference trajectory placed
below the surface. This force leads to the appearance
of some force perturbations according to the changes in
the shape of the impenetrable surface.

B. Task simulations

1) Cutting: In this task the robot is required to make a
cut of d = 3cm depth on a surface. This is equivalent to a
milling or carving operation and requires:
• a constant feedforward force to cut against the material,
• minimal contact force (normal to direction of cut) to

avoid excessive penetration of the surface,
• adjustment of stiffness so as to maintain stability against

the irregularities in tooled material.
This operation is difficult to perform with a force-based
controller because thorough knowledge of the object would
be required to know which force level is required for the cut,
complicated by the irregularities. On the other hand, the task
may be achieved with position or an impedance controller
[19], but the gains of the controller had to be specifically
tuned to the surface of interest. This is because during
cutting, while some amount of tool stiffness is required to
counter the friction, excessive stiffness can get the tool stuck
in the material, such as while sawing wood. In contrast, our
controller can adjust the stiffness automatically as required
by each surface.

Figure 2 shows the normal force, position and stiffness
of the robot during the cutting task simulated with our
controller. At the beginning of the task, the reference (red
trace in Fig.2.B) is set at the required depth below the surface
corresponding to the depth of cut required. The reference
adaptation Equ.(6) is switched off for this operation. The

Fig. 2. Cutting task simulation: Task robot variables along x2 direction:
(A) contact force, (B) task reference (red) and position of tool(blue), (C)
stiffness of the tool along x2. Irregularities in the surface were simulated
(orange region) by a sinusoidal external force.

robot first automatically increases the contact force (Fig.2.A)
and penetrates to the required depth, then proceeding with
a horizontal cut during which the contact force (normal to
the cut) is reduced to zero. In the presence of irregularities
(marked in Fig.2.A) the robot automatically increases its
stiffness (Fig.2.C) with little increase in contact force (note
the small perturbations in the orange region in Fig.2B). In
the absence of irregularities, and after the end of the cutting
operation, the robot automatically reduces its stiffness.

2) Drilling: While drilling is similar to cutting, it usually
involves a larger contact force on the surface. This task
is inherently unstable, as the heavy drill (and the robot)
supported at the end of a narrow tool tip will amplify any
noise. A drilling task thus requires:

• constant force and minimal stiffness in the drilling
direction,

• stability against the large, random perturbations perpen-
dicular to the drilling direction.

While a force controller can be used to maintain the
drilling force, it would require additional control to maintain
stability in the lateral direction. Hybrid position-force control
[31] or hybrid impedance control [32] are thus probably
suited for this operation. However, the controller would still
require some additional control along the force controlled
(drilling) direction, so as to monitor the movement and
increase the controlling force in the presence of obstacles
(for instance, a knot in wood would temporarily require more
force in the drilling direction).

Our controller provides all these requirements automati-
cally. The trajectory learning Equ.(6) is again switched off
in this operation. The feedforward learning in the algorithm
(Fig.3.E) adapts the movement force as required and reduces
the feedback and hence the feedback gain (Equ.4), making
the drill compliant along x2 (Fig.3.F). At the same time,
along x1, the algorithm automatically increases stiffness



(Fig.3.C) to stabilize control against perturbations and keep
the lateral perturbations low (Fig.3.A). In the presence of
some surface obstacles like a knot in the wood (orange
region in Fig. 3), the feedback automatically increases force
feedforward in the x2 direction (Fig.3.E) temporarily, before
bringing it back to the prescribed value. The force dies down
when the drilling stops.

Fig. 3. Drilling task simulation. Along x1: In the presence of perturbations
(A) along the x1 direction, lateral to the drilling direction, the robot increases
stiffness only along this direction (C) to keep the tool vibrations low (blue
trace in B) and close to the reference (red trace in B). Once the vibrations
decrease, stiffness is reduced to a low value again. Along x2: position (D),
feedforward force (E) and tool stiffness (F). Note that a low stiffness is
maintained while feedforward force is learnt to achieve the task. In the
presence of an internal obstacle (like a wood knot, during the orange period),
the feedforward is automatically increased to counter this, before returning
to a lower value.

3) Surface exploration/Polishing: These tasks require:
• robot to glide along unknown surfaces;
• the contact force to be minimum or constant;
• if possible, the robot should be able to acquire some

information about the object’s “texture”.
This operation requires force control normal to the

unknown surface and position control tangential to it.

Therefore, some form of a hybrid force-position or force-
impedance control seems to be suitable. However, the con-
troller would require a surface estimation algorithm in order
to modulate the control dimensions dependent on the object
surface as it explores it. Due to the ability to adapt the
reference trajectory (Equ.6), our algorithm inherently pos-
sesses surface exploration capabilities. Furthermore, we show
that stiffness learning during this task estimates the surface
texture.

Fig. 4. Surface exploration task simulation: In this task the robot explored
an unknown surface and built its map (red trace in B) while moving
(blue trace in B). The contact force (along x2) during the movement was
maintained (A) at a minimal value while stiffness along x2 increased (C)
only in the presence of a rough texture (orange region) on the surface. The
stiffness changes could be thus used to identify the texture of the explored
surface.

To implement the exploration task with our algorithm, a
rough reference trajectory is initially set below the unknown
surface (see start of simulation in Fig.4B, where the red
trace starts below green) similar to a cutting task. However
the difference with respect to the cutting task is that the
feedforward force along the normal of the surface is either
switched off or limited to a small value in order to avoid
cutting of the surface. This allows for the proxy reference
trajectory xr in Equ.(6) to conform to the unknown surface.
A simple PD task feedback was added instead of using
µ > 0, otherwise with no negative feedback feedforward is
increased and the robot raises of the surface. The adapted
reference follows the surface (Fig.4B) and in turn may be
used to estimate the surface normal and tangent at any time
instance. Note that the normal force (Fig.4A) is kept at a low
value throughout the movement while the stiffness (Fig.4C)
increases only when there are surface irregularities.

IV. EXPERIMENTS

A pilot surface exploration experiment with the DLR
light-weight 7-DOF robot manipulator was conducted to
test the performance of the algorithm and demonstrate its
capabilities. The setup, shown in Fig.5B, required the robot
to traverse various surface profiles on a test surface while



maintaining a constant and significant contact force, similar
to the polishing of an unknown surface.

Fig. 5. The testing experiment involved the DLR 7 DOF lightweight arm
(LWR) and the test surface shown in (B). The surface identified by the robot
by exploration is plotted along the explored trajectory mesh in (A) with the
actual surface in the background. (C) and (D) plot the endpoint stiffness and
contact force (estimated from the torque sensors on the robot joints) during
the exploration. The contact force is roughly maintained at the very low
prescribed value of 0.05N while stiffness varies with the surface texture.

A test surface was developed on a wooden plank of
size 85x95cm as shown in Fig.5. Various profiles, including
convex bumps, concave troughs and cylindrical obstacles
were created on this surface by fixing metallic and plastic
objects. A 3cm thick layer of packing foam was then overlaid
on the surface. The test surface also included a high friction
pad created using twisted nylon ropes and a hole in the
surface.

The test surface was placed on a table under the 7-DOF
manipulandum (as shown in Fig.5.B) which was equipped
with a 12cm long aluminium finger at the end-effector (i.e.,
the seventh joint). The robot reference was set for repetitive
to and from movements in the plane of the table over a
range of 120cm and with a constant speed of 10cm/s (except
for the acceleration and de-accelerations near the workspace
boundaries). The reference was set in the task space and
the trajectory was developed using the interpolator of the
manipulator. The required contact force was set to 0.05N.
The test surface was placed in the middle of this range and
moved manually such that the robot could “scan” the entire
surface.

The learning parameters in the algorithm were set to
α ≡ 0.4, µ ≡ 0.95, β ≡ 75, γ ≡ 0.3, δ ≡ 1.2. The proposed
adaptation algorithm runs on top of a low-level controller
with 1 kHz rate [33]–[35] and directly commands the desired
feedforward torque and impedance to it. The setup is con-

Fig. 6. Concrete implementation of the controller. Such implementation is
possible with the Fast Research Interface (FRI) of KUKAr for the LWR
robot.

trolled by a QNX real-time PC for low-level control that is
connected to a Windows XP PC controlling the non real-time
task. A view of the concrete implementation of the controller
is shown in Fig.6.

Fig.5A shows the surface traced by the robot. The plot
shows the tool-tip coordinates of the robot in the xy plane
(plane of the table) with the color gradient representing the z-
coordinate (height above the table). Fig.5C plots the endpoint
stiffness of the robot as it performed the surface exploration
while Fig.5D shows the contact force along the vertical z-axis
as estimated from the torque sensors at the robot joints. Note
that stiffness is maintained at a similar low value throughout
the exploration and increases only in the edges of the surface
and in the region with irregularities. The stiffness increase
may thus be used to estimate the texture properties of the
surface. The contact force is maintained around the specified
value of 0.05N.

V. DISCUSSION

This paper introduced a versatile bio-mimetic controller
which is able to handle different tooling tasks like humans
do. The underlining feature of the controller enabling this
is its ability to automatically and simultaneously adjust
impedance, feedforward force and trajectory as per the
requirement of the environment, through direct mechanical
interaction.

Maintaining contact stability is probably the biggest chal-
lenge while using tools. Most end-effector held tools require
applying a large contact force and are subject to large
disturbances due to the irregularities on the tooled surface
and hence are inherently unstable. Humans have been shown
to be able to modulate their hand impedance skilfully [3] as
required by a task to maintain stability. With this algorithm
we give similar properties to the robot and ensure main-
tenance of stability of the robot [22], [36] in these tasks.
Feedforward adaptation is essential for tasks like cutting,
where the material irregularities continuously change the
required cutting force. Feedforward adaptation helps counter
these variations while maintaining minimum stiffness of the
cutting tool. Trajectory adaptation enables maintenance of
contact force during tasks like polishing and prevents the
robot from applying very high forces in the presence of
unforeseen obstacles.

As in any concrete task, our algorithm does require
some basic parameter definition for each tooling operation
such as cutting speed and depth of cut prescribed by tool
manufacturer for a given tool-surface combination. However,
it does not require the definition of any acute details about
possible irregularities, surface texture and even shape of the
tooled surface. The simulations demonstrated that the same



algorithm can handle different operations without chang-
ing its structure, though different applications did require
specialization through setting of a parameter to zero. For
example, trajectory learning was switched off during the
drilling and cutting operation while feedforward learning was
switched off during surface exploration. However, note that
these definitions are not material or environment specific,
but operation specification. In this respect, we provide here
a general framework, which encompasses the properties and
behavior of many of the previous controllers, including
position control, force control, impedance control and hybrid
version of these controls.
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