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Abstract: The Transverse Function (TF) approach is applied to the control of a nonholonomic
three-segments/snake-like wheeled mechanism, similar to the planar low-dimensional version
of Hirose’s Active Cord Mechanism (ACM) previously studied by the authors with the same
control approach, but with two additional internal degrees of freedom (d.o.f.) whose actuation
yields more flexible and efficient control solutions. From a theoretical point of view, these
complementary d.o.f. modify the Control Lie Algebra of the system so that only first-order
Lie brackets of the control vector fields are needed to satisfy the Lie Algebra Rank Condition
(LARC). The fact that four independent (angular velocity) control inputs are used also implies
for this system the existence of Transverse Functions (TF) defined on the six-dimensional special
orthogonal group SO(4). Several examples of mechanisms whose control involve TF defined on
SO(3) have been pointed out in the past. Beyond the specific control problem addressed here, a
motivation for the present study is to illustrate for the first time how functions defined on the
larger set SO(4) can be determined and used for the control of a physical system. This study
is complemented with recalls concerning the parametrization of SO(4) by pairs of isoclinic
quaternions and with the derivation of complementary differential calculus relations associated
with this parametrization.
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1. INTRODUCTION

We are pursuing the development of the Transverse Func-
tion (TF) approach, Morin and Samson (2001), Morin
and Samson (2003), for the control of highly nonlinear
systems. In relation to this endeavour, the study of snake-
like wheeled robots gives us the opportunity to i) apply
and adapt this approach to various mechanical systems
for which no feedback control solution existed so far, ii)
prolong and generalize the control design methodology
associated with it, and iii) propose new paradigms for the
control of systems whose motion capabilities are based
on the generation of oscillatory (or undulatory) shape
changes.

Of particular interest to us is the control of snake-like
wheeled mechanisms, proposed by various researchers to
better understand crawling locomotion (starting with the
pioneering works of Hirose et al., Hirose (1993), Hirose
and Mori (2004)). Indeed, most of the studies devoted to
this theme have focused on the generation of open-loop
control strategies yielding simple overall displacements
along specified (and specific) directions, as in Ostrowski
and Burdick (1998), Ishikawa (2009), whereas attempts
to synthesize feedback control laws, as in Matsuno and
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Mogi (2000), are few, incomplete and (to our point of view)
mostly inconclusive due to the non-existence of adequate
control design tools. One of our objectives is to show that
the TF approach, and its extensions, provide such tools.

The first mechanism of this kind that we have considered
is the trident snake system originally proposed in Ishikawa
(2004). This mobile robot has a “parallel” mechanical
structure and is composed of a triangular-shaped body
with wheeled legs attached at its summits via rotoid
articulations. The structure of the Control Lie Algebra
associated with the kinematic equations of this system
differs from the one of more commonly studied chained
systems and gave us the idea to look for new transverse
functions defined on the rotation group SO(3) –instead
of the three-dimensional torus T3–, Ishikawa et al. (2009).
The better performance observed in simulation when using
these new functions comes from the fact that they better
respect the system’s symmetries. We have subsequently
generalized the construction of such functions on SO(n) in
relation to the case of a Control Lie Algebra maximally
generated by Lie brackets of order less or equal to one,
Morin and Samson (2009b).

The present study focuses on Hirose’s ACM III snake
robot and, more specifically, on the simplified planar model
composed of three segments, as depicted on Figure 1. This



system can be actuated in various ways. For instance, Os-
trowski and Burdick (1998) –a study centered on modeling
and open-loop control aspects– considered the case of five
control inputs: the velocities of the two articulation angles
ϕ1,2 represented on the figure, and three complementary
“steering” wheel angular velocities which provide extra
degrees of freedom. In Morin and Samson (2010), we have
applied the transverse function control approach to the
more difficult case when only the articulation angular
velocities can be changed. This case had previously been
considered in Ishikawa (2009), in the open-loop control
context to illustrate the possibility of switching between a
set of piecewise sinusoidal inputs to produce a desired net
displacement effect. We here address the intermediary case
of two steering wheels. Beyond the practical advantage
resulting from two extra control inputs which, even though
they are not needed for the system’s controllability, allow
for smoother displacements with less maneuvers, this case
gives us the opportunity to illustrate the use of transverse
functions defined on SO(4) on a practical example.

The paper is organized as follows. Notation and a recall of
the Transverse Function Theorem are provided in Section
2. The robot’s kinematic model and control objectives are
presented in Section 3. The main results are stated in
Section 4 where a control design methodology based on the
application of the TF approach is proposed. A control error
model is first specified. Then, a controllable homogeneous
approximation of this model and an associated transverse
function defined on SO(4) are derived. Finally, a feedback
control solution using this function, with proved stabiliza-
tion properties, is presented. The validity and performance
of the proposed controller are demonstrated in Section 5
with illustrative simulation results. Section 6 points out
a few research directions which could extend the present
study.

2. NOTATION AND RECALL OF THE
TRANSVERSE FUNCTION THEOREM

In this paper, x′ denotes the transpose of a vector x ∈ R
n,

and |x| its euclidean norm. In is the identity matrix of
dimension (n×n), and Om×n is the zero-valued matrix of
dimension (m× n). The ith component of the vector x is
denoted as xi. It is assumed that the reader is familiarized
with basic properties of systems on Lie groups. We refer
him, e.g., to Morin and Samson (2009a) for more details
in the context of the control of nonholonomic systems.

Notions about Transverse Functions are now recalled –see
e.g. Morin and Samson (2003) for more details. Let X =
{X1, . . . , Xm} denote a family of smooth v.f. X1, . . . , Xm

on a n-dimensional manifold M whose tangent space at
the point x ∈ M is denoted as TxM . X satisfies the
Lie Algebra Rank Condition (LARC) at some point q0
if Lie(X)(q0) = Tq0M with

Lie(X) = span{Xi, [Xi, Xj ] , [Xi, [Xj , Xk] . . .
i, j, k, . . . = 1, . . . ,m}

and Lie(X)(q) = {X(q) : X ∈ Lie(X)}. Given a compact
manifold K, a smooth function f : K −→ M is transverse
to X if, for any α ∈ K,

span{X1(f(α)), . . . , Xm(f(α)), df(α)(TαK)} = Tf(α)M
(1)

with df the differential of f . Note that the dimension of K
must be at least equal to (n−m). Given q0 ∈ M such that
the family X satisfies the LARC at q0, the “Transverse
Function theorem” in Morin and Samson (2001) ensures
the existence of a family (fε)ε>0 of functions transverse to
X, with maxα dist(fε(α), q0) → 0 as ε → 0, where “dist”
denotes any distance locally defined in the neighborhood
of q0.

3. MODELING AND CONTROL OBJECTIVES

The wheeled snake mechanism under consideration is de-
picted on Fig. 1. It is composed of three wheeled ”seg-
ments” connected by two actuated rotoid articulations,
and it differs from the mechanism studied in Morin and
Samson (2010) by the added steering-wheel rotoid articu-
lations allowing for the modification of the angles γ1 and
γ2. From a mechanical point of view, this system is alike
a unicycle vehicle located between two trailers with off-
axle trailer hitches and complementary steering wheels.
However, alike the case where γ1 and γ2 are kept equal to
zero, and due to the existence of mechanical singularities,
actuating the joint angles ϕ1,2 is not strictly equivalent
to actuating the longitudinal and angular velocities of one
of the vehicles. This actuation particularity makes an im-
portant difference at the control level, and it underlies the
serpentine locomotion mode which allows the system to
be displaced without encountering mechanical singularities
(the characterization of which is addressed a little further).
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Fig. 1. Three-segments snake robot with two steering
wheels

Given an inertial frame R0 and a body-fixed frame Rc,
here attached for symmetry reasons to the snake’s mid-
segment, the configuration of this segment in cartesian
space is given by

g =

(

p
θ

)

∈ SE(2) , p =

(

x
y

)

∈ R
2 , θ ∈ T

with x and y the coordinates of the point Pc (the origin
of Rc located on the wheels’ axle at mid-distance of the
rotoid articulations) in R0, and θ the orientation of Rc

w.r.t.R0. The orientation angle ofRc w.r.t. this segment is
denoted as ν. As already pointed out in Morin and Samson
(2010), the choice of this angle is related to the fact that
some values are better than others in terms of control and
singularity avoidance.



The “shape” of the snake robot depends on the shape angle
vector

ϕ =

(

ϕ1

ϕ2

)

∈ T
2

and the steering-wheel angle vector

γ =

(

γ1
γ2

)

∈ T
2

The complete configuration vector of the system is thus
given by (g, ϕ, γ) ∈ SE(2)× T

2 × T
2. Define the following

change of coordinates

ϕ 7−→ ϕ̄ =







tan
ϕ1

2

tan
ϕ2

2






, γ 7−→ γ̄ =

(

tan γ1
tan γ2

)

(2)

Under the classical non-slipping assumption associated
with wheel-ground contact, and assuming for the sake of
notation simplicity that the distances between the three
wheels’axles and adjacent rotoid articulations are all equal
to one, it is not difficult to extend the kinematic model
derived in Morin and Samson (2010) to the case where γ1
and γ2 are different from zero. This yields the following
driftless control model







ġ = B(θ − ν)v
˙̄ϕ = A(ϕ̄, γ̄)v
˙̄γ = uγ

(3)

with

B(α) =

(

cosα 0
sinα 0
0 1

)

v = (vl, θ̇)
′ the vector regrouping the linear and angular ve-

locities of the mid-segment, uγ = (γ̇1/ cos(γ1)
2, γ̇2/ cos(γ2)

2)′,
and

A(ϕ̄, γ̄) =







ϕ̄1 +
1− ϕ̄2

1

2
γ̄1 −1 + ϕ̄1γ̄1

−ϕ̄2 +
1− ϕ̄2

2

2
γ̄2 1 + ϕ̄2γ̄2






(4)

One can verify that the matrix A is singular when the three
wheels’ axles intersect at the same point. The correspond-
ing shape and steering-wheel angles, complemented with
either γ1 or γ2 equal to ±

π
2 , and shape angles ϕ1 = ϕ2 = π,

form the set of the mechanical singularities of the system.
The necessity of not crossing this set justifies in part
the choice of the above change of angle coordinates. One
also verifies that, among the infinite number of configura-
tions (ϕ, γ) for which this matrix is invertible, a subset
is composed of shape angles ϕ1 6= ϕ2 ( 6= π) and zero
steering-wheel angles, i.e. γ1 = γ2 = 0; a fact already
used in Morin and Samson (2010). Therefore, provided
that the shape and steering-wheel angles remain close to
this subset, the matrix A remains invertible, and mechan-
ical singularities are avoided. This observation suggests
to choose a reference or nominal vector (ϕr, γr) for the
shape and steering-wheel angles for which the matrix A is
well-defined and invertible, and determine a control policy
which i) maintains these angles near their nominal values
and ii) stabilizes in a ”practical sense” any given reference
trajectory gr(t) = (xr(t), yr(t), θr(t))

′ for the mechanism’s
posture g. Here, the notion of ”practical” stabilization
should not be interpreted as a relaxed control objective,
but rather as a requirement resulting from the necessity to
avoid mechanical singularities. Consider, for instance, the

case where ν = 0 and the reference trajectory is a straight
line with ẋr(t) and ẏr(t) constant and not both equal to
zero. Perfect (asymptotic) tracking then implies that all
segments are aligned with zero steering-wheel angles: a
configuration which is singular for this mechanism as a
consequence of its specific means of actuation. Therefore,
it is compulsory to accept a bounded (and eventually
small) tracking error so as to render singularity avoidance
possible.

4. CONTROL DESIGN

4.1 Error system

We now determine an error system whose zero-state ”prac-
tical” stabilization achieves the control objective discussed
previously. Since g and gr(t) are elements of the Lie group
SE(2), with the group product defined by

g1g2 =

(

p1 +Q(θ1)p2
θ1 + θ2

)

with Q(θ) the rotation matrix in the plane of angle θ, it
is natural (and recommended) to characterize the ”error”
between these elements by another element of the group.
A possible candidate is

g̃ =

(

pr
θr − ν

)−1(
p

θ − ν

)

=

(

Q(ν − θr) (p− pr)
θ − θr

)

Denoting the nominal shape angle vectors as ϕr =
(ϕr,1, ϕr,2)

′ and ϕ̄r = (tan
ϕr,1

2 , tan
ϕr,2

2 )′, setting ˜̄ϕ = ϕ̄−
ϕ̄r, and taking γr = (0, 0)′ as the nominal values for
the steering-wheel angles, one obtains the following error
system







˙̃g = B(g̃3)v + bg(g̃, ġr)
˙̄̃ϕ = A(ϕ̄r + ˜̄ϕ, γ̄)v − ˙̄ϕr

˙̄γ = uγ

(5)

with

bg(g̃, ġr) = −





Q(ν − θr)

(

−g̃2
g̃1

)

01×2 1









ẋr

ẏr
θ̇r





the additive “perturbation” arising from the motion of
the reference frame. This is a perturbed driftless system
with four control inputs –the components of v and uγ .
One easily verifies that, at the origin (g̃ = 03×1, ˜̄ϕ =
02×1, γ̄ = 02×1), the distribution generated by the four
control vector fields (v.f.) and first-order Lie brackets of
these v.f. is a seven-dimensional vector space. Therefore,
the local controllability at the origin of the error-system is
obtained with Lie brackets of order up to one only.

Remark: The error system is locally controllable even at
points where both shape angles ϕ1 and ϕ2 are equal to
zero, and the steering-wheel angles γ1 and γ2 are the
opposite of each other, i.e. at points where the matrix A is
not invertible. This means that if v could be controlled
directly, then one could work out feedback (practical)
stabilizers around zero shape angles and, for instance, zero
steering-wheel angles. The necessity of keeping A invertible
all the time is a consequence of the specific actuation
considered here.

From Morin and Samson (2009b), the above-mentioned
structural properties of the system implies the existence



of transverse functions for this system that are defined
on the special orthogonal group SO(4). These functions
present the advantage over other functions defined of the 3-
dimensional torus of respecting the structural symmetries
of the system’s Control Lie Algebra. On the other hand,
the ”price” paid for this advantage is the larger dimension
–equal to six in the present case– of the manifold on which
the transverse function is defined or, in other words, the
larger dimension of the dynamic extension used to solve
the control problem at hand. There are various ways to
characterize such a function. The first possibility consists
in considering the one defined by

fε(R) = exp(ε

4
∑

i=1

αiXi +
ε2

2

∑

1≤i<j≤4

βi,j [Xi, Xj ])

with
α = Re1
β = c1(Re1) ∧ (Re2) + c2(Re2) ∧ (Re3)

(6)

where:

• X1,2,3,4 are the control v.f. of the system,
• R ∈ SO(4), ε > 0, c1 and c2 are non-zero real
numbers,

• {e1, e2, e3, e4} is the canonical basis of R4,
• ∧ denotes the wedge product associated with R

4,
• βi,j is the (i, j) component of β decomposed in the
canonical basis {ei ∧ ej} (1 ≤ i < j ≤ 4) of

the six-dimensional vector space
∧2

R
4, i.e. β =

∑

1≤i<j≤4 βi,jei ∧ ej ,

• exp(X) is the solution at time t = 1 to the equation
ẋ = X(x) with x(0) = 0.

This function is transverse at the system’s origin in the
sense of the definition recalled in Section 2 provided that
ε is small enough. A problem with the expression (6)
is that, in the present case, the exponential operation
involves an integration which does not yield an explicit
expression in terms of classical functions. A systematic
way to circumvent this problem (see Morin and Samson
(2003) for more detailed explanations) consists in first
considering a locally controllable (nilpotent) homogeneous
approximation (Stefani (1985), Hermes (1991)) of the un-
perturbed part of the error system, and calculate the above
exponential for this homogeneous system. The expression
of this function can be explicit because the integration
process involves polynomial functions exclusively. From
there, it suffices to transform this function via the inverse
of the change coordinates involved in the characterization
of the homogeneous approximation to obtain a transverse
function for the original system.

This procedure is next carried out in more details, prior
to addressing the control design itself.

4.2 Homogeneous approximation and transverse functions
on SO(4)

Consider the change of coordinates

Ψ :





g̃
˜̄ϕ
γ̄



 7−→

(

g̃
η
γ̄

)

, with

η = ˜̄ϕ+

(

−ϕ̄r,1

ϕ̄r,2

)

g̃1 +

(

1
−1

)

g̃3 +

(

1
1

)

g̃2 − 0.5ϕ̄r g̃
2
1

(7)

One verifies that an homogeneous approximation of degree
zero, with weight vector r = (1, 2, 1, 2, 2, 1, 1), of the
unperturbed part of system (5) –i.e. when bg and ˙̄ϕr are
equal to zero– transformed by this change of coordinates
is











































ẋ1,2,3 =

(

1 0
x3 0
0 1

)

v

ẋ4,5 =







1− ϕ̄2
r,1

2
x6 ϕ̄r,1x6

1− ϕ̄2
r,2

2
x7 ϕ̄r,2x7






v

ẋ6,7 = uγ

(8)

This system may also be written as

ẋ = X1(x)v1 +X2(x)v2 +X3uγ,1 +X4uγ,2

with

X1(x) = (1, x3, 0,
1− ϕ̄2

r,1

2
x6,

1− ϕ̄2
r,2

2
x7, 0, 0)

′

X2(x) = (0, 0, 1, ϕ̄r,1x6, ϕ̄r,2x7, 0, 0)
′

X3 = (0, 0, 0, 0, 0, 1, 0)′

X4 = (0, 0, 0, 0, 0, 0, 1)′

(9)

One also verifies that the Control Lie Algebra of this
system is generated by the four control v.f. X1,2,3,4, the
Lie braket X5 = [X1, X2], and two other first-order
Lie brackets among X6 = [X1, X3], X7 = [X1, X4],
X8 = [X2, X3], X9 = [X2, X4]. It is thus a seven-
dimensional vector space on R. This in turn implies
that the homogeneous system is left-invariant on R

7 with
respect to some group operation. In fact, it is not difficult
to verify that this group operation is given by

x ⋆ y =

























x1 + y1
x2 + y2 + x3y1

x3 + y3

x4 + y4 + (
1− ϕ̄2

r,1

2
y1 + ϕ̄r,1y3)x6

x5 + y5 + (
1− ϕ̄2

r,2

2
y1 + ϕ̄r,2y3)x7

x6 + y6
x7 + y7

























(10)

The conditions specified in Morin and Samson (2009b),
according to which it is possible to derive for this system
a transverse function on SO(4) –the number four corre-
sponding to the number of independent control inputs– are
thus met. Moreover, such a function is given by (6) with
Xi (i = 1, 2, 3, 4) denoting now the v.f. of the homogeneous
approximation. One can further verify from the proof of
transversality given in Morin and Samson (2009b) that, in
the particular case where the Lie bracket [X3, X4] is null
–as in the present case–, the number c2 involved in (6) can
be taken equal to zero. By using the expressions (9) of the
system’s v.f., the explicit calculation of this function yields



hε(R) =





hε
g(R)

hε
η(R)

hε
γ(R)



 , with

hε
g =







εα1

ε2

2
(α1α2 − β1,2)

εα2







hε
η =







ε2

2
(
1− ϕ̄2

r,1

2
(α1α3 − β1,3) + ϕ̄r,1(α2α3 − β2,3))

ε2

2
(
1− ϕ̄2

r,2

2
(α1α4 − β1,4) + ϕ̄r,2(α2α4 − β2,4))







hε
γ =

(

εα3

εα4

)

(11)
A transverse function for the error-system (5) is then

fε(R) =





fε
g (R)

fε
ϕ(R)
fε
γ(R)



 = Ψ−1(hε(R)) , with

fε
g = hε

g

fε
ϕ = hε

η −

(

−ϕ̄r,1

ϕ̄r,2

)

hε
g,1 −

(

1
−1

)

hε
g,3 −

(

1
1

)

hε
g,2

+0.5ϕ̄rh
ε
g,1

2

fε
γ = hε

γ

(12)

and ε chosen ”small enough” (but different from zero).
To simplify, we assume from now on that the nominal
shape angle vector ϕr is constant, so that ϕ̇r = ˙̄ϕr =
0. The extension of the results to the case when this
assumption is not made poses no theoretical difficulty. Let
ω ∈ R

6 denote the instantaneous angular velocity vector
associated with the time-derivative of R, i.e. the vector
such that

d

dt
R = R

6
∑

i=1

Siωi

with {Si}i=1,...,6 denoting a set of independent (4 × 4)
elementary skew-symmetric matrices which constitutes a
basis of the tangent space of SO(4) at the identity. Let us
denote as dRf

ε the differential of fε such that

d

dt
fε(R) = dRf

ε(R)ω

The calculation of this differential from (11), (12), and the
definitions of α and β, poses no difficulty. The property of
transversality means that the (7× 10) matrix





B(fε
g,3) O3×2 dRf

ε
g

A(ϕ̄r + fε
ϕ, f

ε
γ) O2×2 dRf

ε
ϕ

O2×2 I2 dRf
ε
γ



 (R)

is of full rank (equal to seven) ∀R ∈ SO(4). Since, by
choice of ϕ̄r, the matrix A(ϕ̄r, 0) is invertible, and since
fε=0 = 0 by construction of the transverse function, there
exists ε0 > 0 such that A(ϕ̄r + fε

ϕ, f
ε
γ )(R) is invertible

∀R ∈ SO(4), when 0 ≤ ε < ε0. The transversality property
then implies that the (3× 6) matrix

C(R) = (B(fε
g,3)A(ϕ̄r + fε

ϕ, f
ε
γ )

−1dRf
ε
ϕ − dRf

ε
g

)

(R) (13)

is of full rank (equal to three) ∀R ∈ SO(4), when 0 < ε <
ε0. This latter property and the fact that A(ϕ̄r + fε

ϕ, f
ε
γ )

is invertible when ε is small enough are central to the
feedback control design proposed next.

4.3 Transverse function control design

Define

z =

(

zg
zϕ
zγ

)

=





g̃(fε
g )

−1

˜̄ϕ− fε
ϕ

γ̄ − fε
γ



 (14)

The objective is now to determine a feedback control
which asymptotically stabilizes z = 0, knowing that the
satisfaction of this objective implies that the tracking error
g̃ will ultimately remain small (practical stabilization),
whereas ϕ and γ will stay close to their respective nominal
values ϕr and (0, 0)′, provided that ε is chosen small.
This will in turn ensure the avoidance of mechanical
singularities.
In view of (5)

żγ = uγ − dRf
ε
γω

This relation suggests to set, for instance

uγ = dRf
ε
γω − kγzγ (15)

with kγ > 0 the control gain which determines the
closed-loop exponential rate of convergence of zγ to zero.
Moreover, if the initial values of |γ1| and |γ2| are small,
then this control ensures that these angles remain small
thereafter, when ε is itself chosen small.
Let us now consider the stabilization of zϕ. In view of (5),
and since ˙̄ϕr = 0 by assumption

żϕ = A(ϕ̄, γ̄)v − dRf
ε
ϕω

This relation suggests to set, for instance

v = A(ϕ̄, γ̄)−1(dRf
ε
ϕω − kϕzϕ) (16)

with kϕ > 0 the control gain which determines the closed-
loop exponential rate of convergence of zϕ to zero. Let us
finally consider the evolution of zg. Denoting by lg and rg
the left and right translations by g on the Lie group SE(2),
i.e. the operations defined by lg1(g2) = rg2(g1) = g1g2, and
by dlg and drg the corresponding differential given by (see
Morin and Samson (2009a), for instance)

dlg1(g2) =

(

Q(θ1) 02×1

01×2 1

)

(= Q̄(θ1))

and

drg2(g1) =





I2 Q(θ1)

(

−y2
x2

)

01×2 1





one has, using the left-invariance of B(.) with respect to
the group operation on SE(2)

żg = drfε
g

−1(g̃)( ˙̃g − dlzg (f
ε
g )ḟ

ε
g )

= drfε
g

−1(g̃)dlzg (f
ε
g )(B(fε

g,3)v − dRf
ε
gω) + drfε

g

−1(g̃)bg

Therefore, on the zero dynamics (zγ = 0, zϕ = 0) (to
which the system’s solutions converge when applying the
feedback controls uγ and v defined by (15) and (16))
respectively)

v = A(ϕ̄r + fε
ϕ, f

ε
γ )

−1dRf
ε
ϕω

and
żg = C̄ω + drfε

g

−1(g̃)bg

with
C̄ = drfε

g

−1(g̃)dlzg (f
ε
g )C

and C the matrix defined in (13). Since the differentials
dr and dl are invertible by definition, and since the matrix
C is of full rank (equal to three) as a consequence of the
transversality property of the function fε when ε is small



enough, the matrix C̄ is itself of full-rank when ε is small
enough. The last but one previous relation then suggests
to set, for instance

ω = −C̄†(drfε
g

−1(g̃)bg + kgzg) (17)

with C̄† a right pseudo-inverse of C̄ and kg > 0 the control
gain which determines the closed-loop exponential rate of
convergence of zg to zero.
The following proposition summarizes the control design
and its stabilizing properties

Proposition 1. Assume that the reference velocity ġr is
bounded and that the nominal shape angle vector ϕr

does not correspond to a mechanical singularity when
the steering-wheel angles γ1,2 are equal to zero, i.e. is
such that A(ϕr, 0) is invertible. Then there exist two
positive numbers ε1 and ε2 such that i) the function fε on
SO(4) given by (12) is transverse to the v.f. of the error
system (5) and ii) the feedback control given by (15)-(17)
exponentially stabilizes z = 0 when |ϕ(0) − ϕr| < ε1 and
0 < ε < ε2.

Remarks:

• the asymptotic stability of z = 0 is global with
respect to position/orientation error between the cho-
sen frame attached to the mechanism’s central link
and the reference frame.

• The proposition applies with no condition upon the
choice of the ”stance” angle ν which influences the
way the mechanism moves when tracking the refer-
ence frame. In Morin and Samson (2010), the choice
of this angle could be related to the curvature of
the reference trajectory in order to limit motion dis-
placements along directions specified by second-order
Lie brackets and, in doing so, to avoid complicated
maneuvers when possible. In the present case, second-
order Lie brackets are not needed to the system’s
controllability so that the guidance rule proposed in
the case where the steering-wheel angles are fixed
does not apply. It thus remains to find out a criterion
which could be used to calculate an ”optimal” value
for this angle. In particular, the possibility of relating
this issue to control energy aspects has not yet been
explored.

5. SIMULATION RESULTS

For these simulations we have set ν = π
3 , ϕr = ( 2π3 ,− 2π

3 )′,
γr = (0, 0)′, and used the feedback control (15)-(17) with
gains kϕ = kγ = 3 and kg = 1. The transverse function
used in the control law was calculated according to (11)
and (12) with ε = 0.6. The coefficients involved in the
expression of β given in (6) are c1 = 1 and c2 = 0. A
more precise tracking could be achieved by choosing a
smaller value for ε, but this would yield higher-frequency
maneuvers (body deformations) and involve larger velocity
inputs. For the reported simulation, the time history of the
reference frame velocity vr = Q̄(−θr)ġr is summarized in
the following table.

t ∈ (s) vr = (m/s, m/s, rad/s)′

[0, 5) (0, 0, 0)′

[5, 13) (0.6, 0, 0.05(t− 5))′

[13, 21) (0.6, 0, 4− 0.05(t− 13))′

[21, 28) (0.8, 0, 0)′

[28, 37) (0, 0, 0.4)′

[37, 45) (0,−0.5, 0)′

[45, 51) (−1.5, 0, 0.6)′

[51, 55) (−1.5, 0,−0.6)′

[55, 60) (0, 0, 0)′

For comparison purposes, it is the same as the one used
in Morin and Samson (2010) in the case where the wheel
angles γ1,2 are constant equal to zero. The exponential
convergence to zero of the (euclidean) norm of z can be
observed on Fig. 2. The (x, y) trajectories of the origin
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Fig. 2. ‖z‖ vs. time

of the reference frame (dotted line) and of the origin Pc

of the robot’s frame (dashed line) are shown on Fig. 3,
with superposed snapshots taken every ten seconds of the
wheeled mechanism and of the reference frame that it
is tracking. The principle of practical stabilization and

Fig. 3. Reference trajectory (xr(t), yr(t)) and snake’s tra-
jectory (x(t), y(t))

tracking is well illustrated by this figure. However, only
a video of the simulation can qualitatively report of the
“natural” character of the mechanism’s deformations in
all motion phases.

The time-evolution of the shape angles ϕ1,2 about their
nominal values is shown on Fig. 4 and the time-evolution
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Fig. 4. Shape angles ϕ1,2 vs. time

of the steering-wheel angles about their zero nominal value
is shown on Fig. 5 The quasi-periodicity and continuous
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Fig. 5. Steering-wheel angles γ1,2 vs. time

adaptation of the variations of the shape and steering-
wheel angles are noticeable. One also verifies that no
mechanical singularity is crossed by observing that the de-
terminant of the matrix A(ϕ̄, γ̄) is always strictly positive,
as shown on Fig. 6.
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Fig. 6. det(A(ϕ̄, γ̄)) vs. time

6. CONCLUDING REMARKS

The control of a nonholonomic snake-like wheeled mech-
anism has been addressed with the objective of achiev-
ing the practical stabilization of any reference trajectory
in cartesian space, while maintaining the mechanism’s
internal variables –which characterize the shape of the

mechanism– away from mechanical singularities. The con-
trol design relies on the Transverse Function approach
and exploits actuation redundancy to reduce control input
intensities. To this purpose transverse functions defined on
the special orthogonal group SO(4) have been used and
applied for the first time –to our knowledge– to the control
of a physical system. Future work includes, e.g., the study
of snake-like mechanisms with more links, alike Hirose’s
ACM III snake robot, and the control of mechanisms with
both kinematic (nonholonomic) and dynamic constraints.
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APPENDIX: REPRESENTATION OF ELEMENTS OF
SO(4) BY PAIRS OF QUATERNIONS AND
ASSOCIATED DIFFERENTIAL RELATIONS

A classical theorem, Ball (1889), Bouman (1932), Mebius
(1994), states that every rotation matrix in SO(4) is the
product of two isoclinic rotations, i.e

R ∈ SO(4) ⇒ R = RlRr, (Rl, Rr) ∈ SO(4)× SO(4)

with

Rl =







a −b −c −d
b a −d c
c d a −b
d −c b a






, a2 + b2 + c2 + d2 = 1

a left-isoclinic rotation, and

Rr =







p −q −r −s
q p s −r
r −s p q
s r −q p






, p2 + q2 + r2 + s2 = 1

a right-isoclinic rotation. Moreover this decomposition is
unique up to the sign multiplying the isoclinic rotation
matrices. Therefore every rotation in SO(4) can be rep-
resented by the pair of unitary quaternions (ql, qr) given
by

ql =







a
b
c
d






=

(

ql,0
q̄l

)

with ql,0 ∈ R, q̄l ∈ R
3

and

qr =







p
q
r
s






=

(

qr,0
q̄r

)

with qr,0 ∈ R, q̄r ∈ R
3

One verifies by a direct calculation that ∀x ∈ R
4

Rx = ql.x.qr (18)

where (.) denotes the product of quaternions, i.e. the
operation defined by

(

x0

x̄

)

.

(

y0
ȳ

)

=

(

x0y0 − x̄′ȳ
x̄× ȳ + x0ȳ + y0x̄

)

with (×) denoting the cross-product in R
3. Recall that

i) the instantaneous velocity vector ω̄ associated with a

rotation Q ∈ SO(3) is such that Q̇ = QS(ω̄) with S(.) the
matrix-valued function associated with the cross-product,
i.e. such that x × y = S(x)y, and ii) by denoting the
quaternion associated with Q as q one has q̇ = 1

2q.ω with
ω = (0, ω̄′)′ a pure imaginary quaternion.

Lemma 2. Let ω denote a 6-dimensional instantaneous
velocity vector associated with the variations of a rotation
R ∈ SO(4), i.e. Ṙ = R

∑6
i=1 Siωi with {Si} denoting

a basis of (4 × 4) unitary skew-symmetric matrices. Let
(ql, qr) denote the pair of unitary quaternions used to
represent R, and ωl and ωr the pure imaginary quaternions
associated with the variations of ql and qr respectively,
i.e. q̇l = 1

2ql.ωl and q̇r = 1
2qr.ωr with ωl = (0, ω̄′

l)
′ and

ωr = (0, ω̄′
r)

′. Then

∀x ∈ R
4 : (

6
∑

i=1

Siωi)x =
1

2
(ωl.x+ x.qr.ωr.q

−1
r ) (19)

By defining ω̄ and ¯̄ω as the vectors in R
3 such that

6
∑

i=1

Siωi =

(

0 −ω̄′

ω̄ S(¯̄ω)

)

and by denoting as Q(qr) the rotation matrix in SO(3)
whose associated quaternion is qr, the above relation in
turn implies that

ω̄l = ω̄ + ¯̄ω
ω̄r = Q(qr)

′(ω̄ − ¯̄ω)
(20)

Proof:
Part i): Relation (19) is obtained by differentiating both
members of (18) with respect to time

d

dt
(Rx) = R(

6
∑

i=1

Siωi)x

= ql.(
6
∑

i=1

Siωi)x.qr

d

dt
(ql.x.qr) = q̇l.x.qr + ql.x.q̇r

=
1

2
(ql.ωl.x.qr + ql.x.qr.ωr)

= ql
(1

2
(ωl.x+ x.qr.ωr.q

−1
r )
)

qr

Part ii): By using the known relation

q.ω.q−1 =

(

0
Q(q)ω̄

)

with ω = (0, ω̄′)′, one gets

x.qr.ωr.q
−1
r =

(

x0

x̄

)

.

(

0
Q(qr)ω̄r

)

=

(

−ω̄′
rQ(qr)

′x̄
S(−Q(qr)ω̄r)x̄+ x0Q(qr)ω̄r

)

On the other hand

ωl.x =

(

0
ω̄l

)

.

(

x0

x̄

)

=

(

−ω̄′
lx̄

S(ω̄l)x̄+ x0ω̄l

)

Therefore
1

2
(ωl.x+ x.qr.ωr.q

−1
r ) =

(

0 −ω̄′

ω̄ S(¯̄ω)

)(

x0

x̄

)

with

ω̄ =
1

2
(ω̄l +Q(qr)ω̄r)

¯̄ω =
1

2
(ω̄l −Q(qr)ω̄r)

These relations specify the one-to-one correspondence be-
tween (ω̄, ¯̄ω) and (ω̄l, ω̄r) from which (20) follows directly.
End of proof.
The practical usefulness of (20) is to allow for the on-line
calculation of a time-varying rotation matrix R(t) ∈ SO(4)
via the calculation of the corresponding pair of unitary
quaternions (ql, qr)(t), with the advantage of involving
eight variables (i.e. four variables for each quaternion)
instead of the sixteen components of the rotation matrix
itself.


