
Minimum-Energy Filtering on the Unit Circle Using Velocity
Measurements with Bias and Vectorial state Measurements

Mohammad Zamani, Minh-Duc Hua, Jochen Trumpf, and Robert Mahony

Abstract— We consider minimum-energy filtering of a system
defined on the unit circle when the angular velocity measure-
ments are contaminated with deterministic measurement error
and bias. We propose a second order approximate minimum-
energy filter for this system using vectorial measurements. This
work extends prior work in two aspects; Firstly, by including
a model for slowly time varying angular velocity measurement
bias, we estimate and reject the bias in order to estimate the
state of the system more accurately. Secondly, rather than using
full state measurements we use vector measurements to derive
the filter. Both of these two innovations make the filter more
practical in real world applications. In simulations we show
that the proposed filter is globally convergent and robust to
different levels of measurement error and bias.

I. INTRODUCTION

Optimal filtering in the context of linear state space models
was introduced in the early 1960s by Kalman [1]. The frame-
work for this work is stochastic where the observations of the
input and the output signals of the system are assumed to be
contaminated with zero mean Gaussian noise signals. Based
on the observations, the Kalman filter estimates the state of
that system by minimizing the covariance of the estimation
error. Optimal filtering theory has also been developed in a
deterministic system modeling framework where, unlike in
the stochastic framework, the observations are contaminated
with disturbance signals modeled as unknown determinis-
tic functions of time. The deterministic optimal filtering
problem, called the minimum-energy filtering problem, is to
find an estimate for the state that is compatible with the
observations and that minimizes an energy cost functional
in the associated disturbance signals. For linear systems,
the minimum-energy filtering framework yields the same
Kalman filtering formulas when using a least squares cost
(cf. [2]–[5]).

In the late 1960’s Mortensen [6] proposed a systematic
approach to computing minimum-energy filters for general
nonlinear systems modeled on vector spaces. The method
was further explored by Hijab [7]. In this approach the
optimal filtering problem is broken down into two steps.
The first step involves applying the maximum principle of
optimal control and dynamic programming to optimize an
energy functional in the system disturbances. In the second
step a further optimization takes place over the initial state
of the system. Krener [8] proved that under some conditions
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including the uniform observability of the system and the
presence of a time-dependent “forgetting factor” in the cost,
a minimum-energy estimate converges exponentially fast to
the true state.

Recently, minimum-energy filtering has been employed in
robotic applications where the system nonlinearity is partly
due to the geometric structure of the underlying state space.
For instance, Aguilar et al. [9] proposed a minimum-energy
nonlinear filter for systems with state space embedded in
Rn with perspective outputs. They account for the geom-
etry of the system using algebraic state constraints. Coote
et al. [10] designed a near-optimal minimum-energy filter
directly considering the geometric structure of the unit circle
S1. In follow up work [11], the authors extended this work
by designing a near-optimal minimum-energy filter posed
directly on the Special Orthogonal Group SO(3). These
two filters are derived through identification of a suitable
“Lyapunov” function for the optimality analysis and include
explicit bounds on their distance to optimality. In [12]
the authors extended Mortensen’s minimum-energy filtering
approach to a system defined directly on S1 proving that
Coote’s filter on S1 [10] is a second-order approximation
of a minimum-energy filter. Due to the systematic nature of
the method used in that work [12], it was straightforward to
derive higher order approximations of the minimum-energy
filter on S1. The authors subsequently also extended this
work providing second order approximate minimum-energy
filters on SO(3) [13] and also on the special Euclidean group
SE(3) [14].

In this paper we consider geometric minimum-energy
filtering on SO(2), S1 when bias is present in the angular
velocity measurements. Filtering on S1 has many applications
in communications, coding theory and power networks. The
S1 system is also interesting from the theoretical point of
view as it is a training ground for the attitude system SO(3)
and more complicated systems defined on other Lie groups.
In this work we propose the exact form of a minimum-energy
observer on SO(2)×R for estimating the rotation and the
angular velocity bias. We show that the observer gains are
related to the second order derivatives of a value function
of the associated optimization problem. We provide Riccati
equations that dynamically update these gains based on a
second-order approximation of the minimum-energy filter.
In this paper we formulate the state kinematics on SO(2)
to facilitate using vector measurements and we show that
this formulation is equivalent to the state kinematics on S1

considered in [12]. Furthermore, in this work we use a vector
measurement model with vector measurement error along



with a vector norm cost function rather than measuring the
state directly with measurement error modeled on S1 and
a nonlinear cost. These measurements make the filter more
practical for applications such as vehicle navigation where
the angular velocity is measured by a noisy biased gyro-
scope and the state measurement is a vector measurement
such as the horizontal components of the magnetic field,
measured by a magnetometer [15], [16]. While the current
measurement model is preferable in some applications we
show that the resulting filter is the same as the one in our
previous work [12] in the absence of bias. A simulation
study is provided showing that the proposed filter converges
quickly in the presence of large measurement errors and bias
variation and initialization errors.

The rest of the paper is organized as follows. Section II
formally introduces the system on SO(2) and the problem of
minimum-energy filtering on this system. The derivations and
the formulas of the proposed filter are given in Section III.
Section IV is a simulation study of the performance of the
proposed filter. Finally Section V concludes the paper.

II. PROBLEM FORMULATION

Fig. 1. An object moving around the unit circle

Consider an object moving on the unit circle as shown in
Figure 1. Let ω ∈R be the instantaneous angular velocity of
the object. The rotation X satisfies the following kinematics
equation

Ẋ = Xω×, X(0) = X0, (1)

where

X =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
∈ SO(2) (2)

is the state of the system and represents the rotation with
respect to the angle θ . The initial rotation X0 is unknown.
The cross notation (·)× : R−→ so(2) is defined as

ω× :=
[

0 −ω

ω 0

]
. (3)

Conversely the notation vex(·) : so(2) −→ R extracts the
scalar part, vex(ω×) = ω .

Lemma 1: The system (1) can be equivalently written in
terms of the angle θ with kinematics

θ̇ = ω, θ(0) = θ0. (4)
Proof: Note that from (1)

X−1Ẋ =

[
0 −1
1 0

]
ω, (5)

Also from (1) and (2)

X−1Ẋ =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
−sin(θ) −cos(θ)

cos(θ) −sin(θ)

]
θ̇

=

[
0 −1
1 0

]
θ̇ ,

(6)

and the result (4) follows.
Although system (4) was used in previous works on S1 [10],
[12], we continue our derivation using system (1) to facilitate
using vector measurements introduced later in Equation (9).
The angular velocity ω is measured as

u = ω +Bω vω +b, (7)

where vω ∈ R is the measurement error signal and Bω ∈ R
is a scaling known from the model. The signal b ∈ R is
a constant or slowly time varying bias in the measurement
u ∈ R that we model as

ḃ = Bbvb, b(0) = b0, (8)

where b0 is unknown, vb ∈ R is an unknown rate of change
of the bias b and Bb ∈R is a scaling known from the model.
Note that in our measurement model (7) the measurement
error vω and the bias b are modeled separately although we
consider a general deterministic measurement model. This is
due to the fact that we are going to minimize a cost (12) in
the size of the measurement error vω to derive our filter. The
assumption behind this is that the measurement error should
not, in general, be large. However, bias, in general, needs
not to be small but rather slowly time-varying. Therefore,
we use an independent bias model (8) with vb modeling a
small unknown rate of change for b.

Assume a vector measurement of the current position of
the object is given by

y = X>ẙ+Dw, (9)

where ẙ=(1 , 0)>, w∈R2 is an unknown measurement error
signal and D∈R2×2 is a full rank scaling matrix known from
the model.

Remark 1: Depending on the application one might have
a different state measurement model such as

y′ = (WX)>ẙ, (10)

where y′ ∈ S1 is a vector measurement of the state X and
W ∈ SO(2) represents the measurement error. In case the full
angle measurement is available the following output map is
suitable.

y′′ = θ +w′, (11)



where y′′ ∈R is the measured state angle θ ∈R and w′ ∈R
is the measurement error. The output measurement (11) was
previously considered in [10], [12].
Consider the cost functional

J(t;X0,b0,vω |[0 , t],vb|[0 , t],w|[0 , t]) =

trace(I−X0)

K1
+

b2
0

2K2
+

1
2

∫ t

0

(
v2

ω + v2
b +‖w‖2)dτ,

(12)

where K1,K2 ∈ R+ are given. Later on, these parameters
will appear in the initial conditions of the proposed filter.
If available, a priori information on the expected size of the
initial state and the initial bias can be used to tune K1 and
K2 relative to each other and the other unknowns in the cost
function. The trace function is used to measure the size of
the initial state X0 relative to the identity matrix I ∈ R2×2

(that is the identity element for the group SO(2)).
Remark 2: In case the measurement model (11) is used,

the cost function (12) is modified to allow for measuring the
measurement error w′ as an angle.

J′(t;X0,b0,vω |[0 , t],vb|[0 , t],w
′|[0 , t]) =

trace(I−X0)

K1
+

b2
0

2K2
+
∫ t

0

(
1
2
(v2

ω + v2
b)+1− cos(w′)

)
dτ.

(13)
The following is the formal statement of the minimum-

energy filtering problem for the system (1).
Problem 1: Given the system (1), the measurement mod-

els (7), (9), the bias model (8) and the past measurements
u|[0 , t] and y|[0 , t] find the state estimate X̂(t) for the current
state X(t) and the bias estimate b̂(t) for the current bias b(t)
such that the cost (12) is minimized over the unknowns X0,
b0, vω |[0 , t], vb|[0 , t] and w|[0 , t].

Note that the cost (12) encodes the total energy associated
with the unknowns X0, b0, vω |[0 , t], vb|[0 , t] and w|[0 , t]. In
a sense, by minimizing (12) the goal is to find unknowns
of minimum energy that together with the measurements
u|[0 , t] and y|[0 , t] satisfy the model equations (1), (7), (8)
and (9). Note that in general one might find infinitely many
possible combinations of these unknowns that together with
the measurements satisfy the model equations. However, by
minimizing the cost (12) a set of minimizing unknowns is
singled out that collectively has minimal energy. Substituting
the minimizing unknowns and the measurements into equa-
tions (1), (7), (8) and (9) yields the minimum-energy state
trajectory X∗[0 , t] and the minimum-energy bias b∗[0 , t]. The
subscript [0 , t] indicates that the optimization takes place on
the interval [0 , t]. The final values X∗[0 , t](t) and b∗[0 , t](t) are
then assigned as the minimum-energy estimates at time t,
X̂(t) := X∗[0 , t](t) and b̂(t) := b∗[0 , t](t). In the following, rather
than resolving this infinite dimensional optimization problem
at each time instance t, we seek recursive filters that directly
update the estimates.

We proceed to solve Problem 1 in the spirit of our pre-
vious work [12] by making the measurements constraint (9)
explicit in the cost. Hence, substituting w in (12) from (9)

yields the simplified cost

J(t;X0,b0,vω |[0 , t],vb|[0 , t]) =
trace(I−X0)

K1
+

1
2

b2
0

K2

+
1
2

∫ t

0

(
v2

ω + v2
b +‖y−X>ẙ‖2

R−1

)
dτ,

(14)

where R := DD> is positive definite and

‖y−X>ẙ‖2
R−1 := (y−X>ẙ)>R−1(y−X>ẙ). (15)

Now, similar to optimal control problems, the cost (14)
is to be minimized over vω |[0 , t],vb|[0 , t]. For now consider
X0 and b0 as fixed but later to fully solve the problem we
will need to further optimize over these two initial values. In
order to apply Hamilton Jacobi Bellman theory [17], define
the following pre-Hamiltonian function,

H −(X ,b,µω ,µb,vω ,vb, t) :=
1
2

(
v2

ω + v2
b +‖y−X>ẙ‖2

R−1

)
−µω(u−b−Bω vω)−µbBbvb,

(16)

where µω ∈R represents the costate variable Θ ∈ so∗(2) via
〈(µω)×,Γ〉=Θ(Γ) for all Γ∈ so(2). This algebraic represen-
tation will be used in the following without further reference.
The variable µb ∈R is the costate variable associated with the
bias b. The optimal Hamiltonian H is obtained by minimizing
the pre-Hamiltonian H − over the signals vω and vb that
yields v∗ω =−Bω µω and v∗b = Bbµb.

H (X ,b,µω ,µb, t) =
1
2

(
−µ

2
ω Qω −µ

2
b Qb +‖y−X>ẙ‖2

R−1

)
−µω(u−b),

(17)

where Qω := B2
ω and Qb := B2

b are positive definite. Define
the value function

V (X ,b, t) := min
vω |[0 , t],vb|[0 , t]

J(t;X0,b0,vω |[0 , t],vb|[0 , t],w|[0 , t]),

(18)
where J is the cost (14) and the minimization is subject to
the equations (1) and (8). The initial boundary condition for
the value function (18) is obtained from (14)

V (X(0),b(0),0) =
trace(I−X0)

K1
+

1
2

b2
0

K2
. (19)

In the following we write down the Hamilton-Jacobi-
Bellman equation [17] relating the optimal Hamiltonian (17)
and the value function (18)

H (X ,b,∇XV (X ,b, t),∇bV (X ,b, t), t)−∇tV (X ,b, t) = 0.
(20)

Up to here we have only optimized over the signals vω |[0 , t]
and vb|[0 , t]. To complete the optimal filtering problem, we
also need to optimize V over the initial values X0 and b0.
This is equivalent to further optimizations over X(t) and
b(t) since (the minimizing) X(t) and b(t) are uniquely deter-
mined given the measurements u|[0 , t], the equations (1), (7)
and (8), the (minimizing) signals vω |[0 , t] and vb|[0 , t] and
the (minimizing) initial values X0 and b0. Hence, similar



to Mortensen’s approach [6], the minimum-energy estimates
X̂(t) and b̂(t) are characterized by the criticality conditions

∇XV (X ,b, t)|X=X̂(t), b=b̂(t) = 0,

∇bV (X ,b, t)|X=X̂(t), b=b̂(t) = 0.
(21)

Solving Equations (21) is clearly a way to obtain the
minimum-energy estimates X̂(t) and b̂(t), minimizing the
cost (14) at every time t. However, in the following, rather
than solving this optimization problem for each time t, the
goal is to find differential equations (filters) that dynamically
update these estimates when new measurements are obtained
as time evolves.

III. FILTER DERIVATION AND RESULTS

In this section, we propose a filter that estimates the state X
and the bias b by approximating the solution to Problem (1).
The proposed filter is derived using Mortensen’s approach [6]
albeit modified to the geometric structure of the state space
SO(2)×R. In order to introduce geometry in our algebra,
first we define the gradients in (21).

In the following the gradients ∇XV (X ,b, t) ∈ T SO(2)
and ∇bV (X ,b, t) ∈ R are defined in terms of directional
derivatives. For all α,γ ∈ R

DXV (X ,b, t)◦Xα× = 〈∇XV (X ,b, t),Xα×〉,
DbV (X ,b, t)γ = 〈∇bV (X ,b, t),γ〉,

(22)

where the cross notation was defined in (3). The scalar inner
product 〈·, ·〉 : R×R−→ R is defined as

〈α,γ〉 := αγ, (23)

and the left invariant inner product 〈·, ·〉 : T SO(2) ×
T SO(2)−→ R is defined as

〈Xα×,Xγ×〉= 〈α×,γ×〉 := trace(
1
2

α
>
× γ×) = 〈α,γ〉. (24)

Similarly the following second order directional derivatives
are defined.

D2
XV (X ,b, t)◦ (Xα×,Xγ×) = 〈∇2

XV (X ,b, t)◦Xα×,Xγ×〉
= 〈Xα×,∇

2
XV (X ,b, t)◦Xγ×〉,

D2
bV (X ,b, t)◦ (α,γ) = 〈∇2

bV (X ,b, t)◦α,γ〉
= 〈α,∇2

bV (X ,b, t)◦ γ〉,
Db(DXV (X ,b, t)◦Xα×)γ = DX (DbV (X ,b, t)◦α)◦Xγ× =

〈∇b∇XV (X ,b, t)◦α,γ〉= 〈Xα×,∇X ∇bV (X ,b, t)◦Xγ×〉.
(25)

Note that (25) shows that the second order derivatives are
symmetric bi-linear mappings to R, in the directions α and
γ . Therefore, we use the following parametric representations
to serve as their values.

D2
XV (X ,b, t)◦ (Xα×,Xγ×) := P′1αγ,

D2
bV (X ,b, t)◦ (α,γ) := P′2αγ,

Db(DXV (X ,b, t)◦Xα×)γ := P′12αγ,

DX (DbV (X ,b, t)γ)◦Xα× := P′12αγ,

(26)

where P′1,P
′
2,P
′
12 ∈ R.

Now we can rewrite the final conditions (21) in terms of
directional derivatives. For all α,γ ∈ R,

DXV (X ,b, t)◦Xα×|X=X̂(t), b=b̂(t) = 0,

DbV (X ,b, t)γ|X=X̂(t), b=b̂(t) = 0.
(27)

Condition (27) holds for every time t and therefore the total
time derivative of (27) satisfies

d
dt
{DXV (X ,b, t)◦Xα×}|X=X̂(t), b=b̂(t) = 0,

d
dt
{DbV (X ,b, t)γ}|X=X̂(t), b=b̂(t) = 0.

(28)

Applying the chain rule and changing the order of the
derivatives gives

{D2
XV (X ,b, t)◦ ( ˙̂X ,Xα×)+DX (DbV (X ,b, t) ˙̂b)◦Xα×+

DX (∇tV (X ,b, t))◦Xα×}|X=X̂(t), b=b̂(t) = 0,

{D2
bV (X ,b, t) ˙̂bγ +Db(DXV (X ,b, t)◦ ˙̂X)γ+

Db(∇tV (X ,b, t))γ}|X=X̂(t), b=b̂(t) = 0.
(29)

Next, the derivatives DX (∇tV (X ,b, t)) ◦ Xα×
and Db(∇tV (X ,b, t))γ are calculated by first
replacing the time gradient ∇tV (X ,b, t) with
H (X ,b,∇XV (X ,b, t),∇bV (X ,b, t), t) using (20). First,
using (17) and (22) yields

H (X ,b,∇XV (X ,b, t),∇bV (X ,b, t), t) =
1
2

(
−QωDXV (X ,b, t)◦∇XV (X ,b, t)

−QbDbV (X ,b, t)∇bV (X ,b, t)+‖y−X>ẙ‖2
R−1

)
−DXV (X ,b, t)◦X(u−b)×.

(30)

Therefore,

DX (H (X ,b,∇XV (X ,b, t),∇bV (X ,b, t), t))◦Xα× =

−QωD2
XV (X ,b, t)◦ (∇XV (X ,b, t),Xα×)

−QbDb(DXV (X ,b, t)◦Xα×)∇bV (X ,b, t)

+2α vexPa(R−1(y−X>ẙ)ẙ>X)

−D2
XV (X ,b, t)◦ (X(u−b)×,Xα×)

−DXV (X ,b, t)◦XPa(α×(u−b)×),

Db(H (X ,b,∇XV (X ,b, t),∇bV (X ,b, t), t))γ =

−QωDX (DbV (X ,b, t)γ)◦∇XV (X ,b, t)

−QbD
2
bV (X ,b, t)∇bV (X ,b, t)γ

−DX (DbV (X ,b, t)γ)◦X(u−b)×+DXV (X ,b, t)◦Xγ×,
(31)

where the anti-symmetric projection operator Pa(·) :
R2×2 −→ so(2) for all M ∈ R2×2 is defined as

Pa(M) :=
1
2
(M−M>). (32)

Next, we substitute (31) in (29). Note that the first order
derivatives, that appear in (31), evaluated at X = X̂(t), b =
b̂(t), yield zero. This is due to the final conditions (21)
and (27). Replacing the second order derivatives from (26)



and canceling the arbitrary directions α and γ from both
sides of (29) yields

P1 vex(X̂> ˙̂X)+P12
˙̂b+2vexPa(R−1(y− ŷ)ŷ>)

−P1(u− b̂) = 0,

P2
˙̂b+P12 vex(X̂> ˙̂X)−P12(u− b̂) = 0,

(33)

where

ŷ := X̂>ẙ,

P1 := P′1|X=X̂(t), b=b̂(t),

P2 := P′2|X=X̂(t), b=b̂(t),

P12 := P′12|X=X̂(t), b=b̂(t).

(34)

Rearranging (33) yields the observer equations

˙̂X = X̂
(

u− b̂−P−1
1

(
l +P12

˙̂b
))
×
,

˙̂b =−P12

P2

(
−u+ b̂+vex(X̂> ˙̂X)

)
,

(35)

where l := 2vexPa(R−1(y− ŷ)ŷ>). The initial conditions
X̂(0) = I and b̂(0) = 0, are obtained using (19) and (27).

The proposed observers (35) yield the exact dynamical
equations that will update the value of the minimum-energy
estimates X̂(t) and b̂(t) (that are the solutions to Problem 1),
for every time t. Note that the two observers (35) are inter-
connected and use the current measurements u(t) and y(t) to
update their estimates. The measurements are weighted by
dynamic gains P1, P2 and P12 that are related to the value
function defined in (18) through (26).

In order to implement these observers we also need
dynamical equations that concurrently update the gains P1,
P2 and P12. This can be done using the definitions (26) and
by calculating the total time derivatives

Ṗ1αγ =
d
dt
{D2

XV (X ,b, t)◦ (Xα×,Xγ×)}X=X̂(t), b=b̂(t),

Ṗ2αγ =
d
dt
{D2

bV (X ,b, t)◦ (α,γ)}X=X̂(t), b=b̂(t),

Ṗ12αγ =
d
dt
{Db(DXV (X ,b, t)◦Xα×)γ}X=X̂(t), b=b̂(t).

(36)

The calculation details for (36) are similar to our observer
derivations and are omitted due to space limitations. It is
worth noting that the right hand sides of (36) are going to
depend on the third order derivatives of the value function.
However, in this work, we assume that the third order
derivatives of the value function are negligible. Subsequently,
the following Riccati equations are obtained that update the
gains of the observers on-line.

Ṗ1 =−Qω P2
1 −QbP2

12− ŷ>1 SR−1Sŷ+(y− ŷ)>R−1ŷ,

Ṗ2 =−QbP2
2 −Qω P2

12 +2P12,

Ṗ12 =−Qω P12P1−QbP2P1 +P1,

(37)

where
S :=

[
0 −1
1 0

]
. (38)

The initial conditions P1(0) = K−1
1 , P2(0) = K−1

2 and
P12(0) = 0 are obtained using (19) and (26). Note that these

Riccati equations (37) provide a second-order approximation
of the minimum-energy dynamics of the observer gains.
We can continue deriving dynamics of the higher order
derivatives of the value function using calculations similar
to our previous workings. However, as was suggested by
simulations in previous work [12], the third order derivatives
of the value function are going to be small and there is no
advantage in adding more computations to model their small
effect. Therefore, we restrict this work to a second order
approximation of the minimum-energy filter.

In summary the following filter is proposed

˙̂X = X̂
(

u− b̂− P2

P1P2−P2
12

l
)
×
,

˙̂b =
P12

P1P2−P2
12

l,

l := 2vexPa(R−1(y− ŷ)ŷ>),

Ṗ1 =−Qω P2
1 −QbP2

12− ŷ>1 SR−1Sŷ+(y− ŷ)>R−1ŷ,

Ṗ2 =−QbP2
2 −Qω P2

12 +2P12,

Ṗ12 =−Qω P12P1−QbP2P1 +P1,

(39)

where X̂(0) = I, b̂(0) = 0, P1(0) = K−1
1 , P2(0) = K−1

2 and
P12(0)= 0. Note that the equations (35) have been rearranged
into a new form in which the kinematics of the state and the
bias estimates are in cascade form. This form is more useful
for implementing the filter by discretization.

Lemma 2: If the measurement model (11) along with the
cost (13) is considered instead of (9) and (12), the resulting
filer equations are

˙̂
θ = u− b̂− P2

P1P2−P2
12

sin(y′′− θ̂), θ̂(0) = 0,

˙̂b =
P12

P1P2−P2
12

sin(y′′− θ̂), b̂(0) = 0,

ṗ1 =−Qω p2
1−Qb p2

12 + cos(y′′− θ̂), p1(0) = K−1
1 ,

ṗ2 =−Qb p2
2−Qω p2

12 +2p12, p2(0) = K−1
2 ,

ṗ12 =−Qω p12 p1−Qb p2 p1 + p1, p12(0) = 0.

(40)

Moreover, equations (40) are equivalent to the proposed filter
equations (39) if the matrix D, and hence R, is equal to the
identity matrix.
The proof of Lemma 2 involves an argument, similar to the
proof of Lemma 1, to show the first equation in (40). Fur-
thermore, all the calculations that involve the measurements
y need to be done using y′′ instead.

IV. SIMULATIONS
In this section we provide a simulation study of the

estimation performance of the proposed filter (39), in the
presence of measurement errors, initialization errors and bias
in the angular velocity measurements. We have tested the
proposed filter in many situations involving different levels of
input, initialization, measurement errors and bias variations.
The proposed filter proves to be robust producing consistent
results in all these tests. In this section we demonstrate
simulation results that are typical for the general performance
of the proposed filter.



Fig. 2. The state tracking performance of the proposed filter is shown in the
presence of bias and measurement errors. Note that the state measurements
are shown in green with the “+” markers and are scattered around the true
state trajectory. Note that there three transient periods, in the beginning,
first quarter and the third quarter of the simulation time, before the filter
converges. These are due to the initial bias error and the two bias jumps.
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Fig. 3. The performance of the proposed filter in tracking the bias is
shown. Note that the value of the true bias has two jumps at times 25 time
units and 75 time units.

Consider the following simulation parameters. The sys-
tem (1) is initialized to θ0 = 45◦ and an initial bias of
45 degrees per time units is considered. The angular ve-
locity measurement error vω and the bias variation vb are
considered as zero mean random variables with standard
deviations of Bω = 17 degrees per time units and Bb = 52
degrees per squared time units. The output measurement
error w is set to a zero mean random vector with standard
deviation of D = 0.4I. A sinusoidal angular velocity input
ω(t) = sin(.25t) derives the system. We consider a situation
in which there are three sudden jumps in the bias value.

As can be seen in Figure 2, after a short transient period,
the proposed filter (39) is able to track the bias very well.
Figure 3 shows the performance of the proposed filter in
tracking the angle of rotation of the system state. As can be
seen, the estimated angle converges to the true angle after
a transient that is slightly longer than the bias estimation
transient period.

V. CONCLUSIONS

In this work we proposed a second-order nonlinear
minimum-energy filter for a kinematics model of an object
moving on the unit circle using angular velocity measure-
ments that include an unknown small disturbance and slowly

time-varying bias. We model the system on the Lie group
SO(2) to allow for using vector measurements rather than
full state measurements and also to facilitate future extension
of the method to the Lie group SO(3). The proposed filter
provides excellent on-line estimates of the bias and the state
and is robust to different levels of bias and measurement and
initialization errors as shown in the simulations.
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