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Abstract—Unmanned ground vehicles (UGV) may experience
skidding when moving at high speeds, and therefore have its
safety jeopardized. For this reason the nonlinear dynamics
of lateral tire forces must be taken into account into the
design of steering controllers for autonomous vehicles. This
paper presents the design of a state feedback piecewise affine
controller applied to an UGV to coordinate the steering and
torque distribution inputs in order to reduce vehicle skidding on
demanding maneuvers. The control synthesis consists in solving
an optimization procedure involving constraints in the form of
Linear Matrix Inequalities which are obtained from stability
conditions of a piecewise quadratic Lyapunov function. The
improved performance of the piecewise affine controller with
respect to a linear controller is confirmed through simulations
on degraded tire-floor adhesion.

I. INTRODUCTION

Increasingly attention and research has been recently de-

voted to the development unmanned ground vehicles (UGV)

at high speeds, mainly motivated by applications such as

transportation, search and rescue, surveillance and disas-

ter relief. Faster displacement is advantageous in several

autonomous tasks, which may become more effective if

accomplished in less time [1]. Vehicle dynamic effects such

as rollover, ballistic motion, sideslip and wheelslip may

occur at high speeds, specially on degraded surfaces due

low adhesion or roughness. Therefore these aspects must be

treated adequately in order to ensure the safety of the vehicle

and satisfactory performance of the planned maneuvers as in

[1] and [2] considering vehicle control on rough ground and

on loose surfaces, respectively .

Usually the inputs for controlling the lateral dynamics

of UGV consist of wheel steering, but independent wheel

traction can also be used to generate yaw moment. Combined

actions of both control inputs is also subject of recent

research [3], [4].

In order to design controller for UGV which are able to

operate at high speeds which involve large vehicle sideslip,

the nonlinear behavior of the lateral tire forces may not

be neglected. Piecewise affine (PWA) systems are able to

capture saturations of engineering systems and also approx-

imate nonlinearities arbitrarily [5], being thus an interesting

approach for the design of controllers for nonlinear system

(e.g. [5], [6], [7]). Concerning vehicle lateral control, some

applications of PWA controllers can be found in [8] and

[9], respectively for the design of vehicle handling and path

following systems.
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telligents et de Robotique (ISIR), Université Pierre et Marie Curie,
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This paper addresses the design of a PWA state feedback

controller for a path following application of a four-wheel

UGV, which is capable of handling vehicle instability by

avoiding skidding at the slipping behavior of tire forces.

The UGV is equipped with front wheel steering system and

independent propulsion torque at each wheel, that allows the

generation of yaw moments. The proposed PWA controller

can be considered as an extension of linear state feedback

from [3], since it takes into account the nonlinear behavior

of lateral tire forces. The control synthesis of the proposed

PWA controller is based on the search of a Piecewise

Quadratic Lyapunov (PWQL) function by means of op-

timization procedure involving Linear Matrix Inequalities

constraints (LMI) [7].

The paper is organized as follows: the next section shows

development of PWA model used in the control synthesis,

developed from a commonly used single track nonlinear

model. In addition, assumptions required for the proposed

control synthesis are also discussed. Section III is dedicated

to the the control PWA control strategy, presenting the

LMI constraints used in the convex optimization process for

control synthesis, as well as proposal for the repartition of the

control efforts. In section IV, the numerical results from the

control synthesis are presented. Then, resulting performance

is analyzed from simulations using a nonlinear model of

UGV with degraded tire-ground adhesion. The conclusions

and perspectives in section V wrap up the paper.

II. FAST ROBOT MODEL

A widely used simplified single track vehicle model [10],

which is considered to capture the essential vehicle lateral

steering dynamics, is approximated by a PWA system in

order to design the controllers that avoid saturation of the

lateral tire forces.

A. Nonlinear Vehicle Model

The wheels of the front and rear axles are lumped into one

located at the axle center, and only the lateral translational

and yaw motions are considered while the roll and pitch

motions are neglected. The dynamic equations describing this

model are given by:
{

m(v̇y + rvx) = Fyf cos δf + Fyr

Jṙ = lfFyf cos δf − lrFyr +Mz,
(1)

where vx and vy are the lateral and longitudinal vehicle

speed, r is the vehicle yaw rate, δf is the steering angle,

m is the vehicle mass, lf and lr are the distances from the

front and rear axle, respectively, to the center of gravity (CG),

J is the vehicle inertia respect to the vertical axle through
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the CG, Mz is the resulting yaw moment from differential

torque, Fyf and Fyr are the front and rear lateral forces,

which are represented according to Pacejka’s model [11] as

follows:

Fyκ(ακ) = Dκ sin(Cκatan[(1−Eκ)Bκακ+Eκatan(Bκακ)]),
(2)

where ακ, with κ = (f, r), stands for the front or rear tire

sideslip angle. Considering that the angles remain small, the

sideslip angles for front and rear tires are given by:

αf = δf − β − lfr/v, αr = −β + lrr/v, (3)

where β is the vehicle sideslip angle, which replaces vy since

vy = vx sinβ, and the approximation v = vx is also valid.

The black dashed curve in Fig. 1 illustrates the Pacejka

model for the front wheel.
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Fig. 1. Pacejka model for front wheel lateral tire force (dashed) and PWA
approximations (solid), according to partitioning of wheel sideslip angle
domain (dash-dot) in three operating regions.

In order to include the positioning of the UGV with respect

to a predefined path, the model (1) has to be expanded

with the dynamics of the relative yaw angle and the lateral

displacement with respect to the path center-line. Let ψL =
ψ − ψd be the yaw angle error which is the angle between

the vehicle orientation and the tangent to the road. The path

reference curvature ρref is defined by (ψ̇d = vρref ), and the

following equality can be derived:

ψ̇L = r − vρref . (4)

Denoting by ls the look-ahead distance, the equation

giving the dynamics of the measurement of the lateral offset

yL from the center-line is obtained by

ẏL = v(β + ψL) + lsr. (5)

An illustration of the state variables is provided in Fig. 2,

and the numerical values of the vehicle parameters are

presented in Table I.

B. PWA Model for Lateral Dynamics

In order to take into account the nonlinear behavior of

the lateral tire forces, the Pacejka tire model (2) can be

approximated by the following PWA functions:

Fyκ = dκiακ + eκi, if ακ ∈ Ri (6)
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Fig. 2. Single track vehicle model.

with κ = (f, r), and the index i representing the polytopic

operating region Ri which are defined by intervals of the

front and rear tire sideslip angles, i.e. Ri = [αriᾱri) ∩
[αfiᾱfi), with ακi and ᾱκi being the lower and upper bounds

of intervals, respectively. The blue lines in Fig. 1 illustrate

PWA approximations for the front tire.

According to (3), the boundaries of operating regions

expressed in terms of the front wheel sideslip angle are

directly affected by the steering angle. Such situation should

be avoided in order to employ the control synthesis based

on PWQL functions, therefore it is preferable to express the

partitions of the operating regions in term of state variables.

As suggested in [6] and [7], a first-order dynamics, with

large enough bandwidth, representing the steering actuator

is included in the vehicle model:

δ̇f = −ω0δf + ω0uc, (7)

where ω0 = 62.8rad/s, and u = [uc, Mz]
T becomes the

new control input.

To obtain a PWA model of the UGV, (1) is linearized

about uniform rectilinear motion and the nonlinear lateral

tire forces are replaced by the PWA approximations (6).

Equations (5) and (4) representing the positioning with

respect to the center of the planned path and (7) representing

the actuator dynamics are included, leading to the following

PWA system:

ẋ = Aix+Biu+Bρρpref + ai (8)

where x = [β, r, ψL, yL, δf ]
T , u = [uc, Mz]

T and the
corresponding dynamics are:
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The operating regions Ri can be then described in terms

of state space variables, as follows:

Ri =
{

x ∈ R
5 / Hix− gi < 0

}

(10)

where

Hi =









−1 −lf/v 0 0 1
1 lf/v 0 0 −1
−1 lr/v 0 0 0
1 −lr/v 0 0 0









, gi =









−ᾱfi,
αfi,
−ᾱri,
αri









.

(11)

C. Assumptions for PWA Control Synthesis

It is considered that the vehicle has understeering behavior,

therefore, only the nonlinear behavior of the front tire is taken

into account. For the rear tire, a simple linear approximation

is considered for the whole domain of wheel sideslip angle,

i.e. dri is constant and eri = 0. An analogous approach may

be employed for oversteering vehicles.

This simplification renders the operating regions slab, so

that they can be exactly described by degenerated ellipsoids

[6], [7], as follows:

Ri = {x ∈ R
5 / ||Eix+ fi||2 ≤ 1} (12)

where, Ei = 2

ᾱfi−αfi
[−1, −lf/v, 0, 0, −1] and fi =

−
ᾱfi+αfi

ᾱfi−αfi
.

Such representation is advantageous in comparison to

(10) since it yields the search of less unknowns during

the optimization procedure, as it is shown in section III.

Moreover, only three regions are considered in the PWA

model for the control synthesis in order to reduce the

number of constraints. The regions are delimited by sym-

metrical threshold values αf = ±ᾱf as shown in Fig. 1.

Although PWA system may approximate the nonlinearities

to arbitrarily precision, the results obtained with this simple

approximation can already enhance the performance as it will

be shown in section IV.

Disturbances and exogenous inputs, such as the planned

path curvature, are not taken into account for the control syn-

thesis, therefore ρref is set to zero in the model describing

the vehicle dynamics (8).

All the state variables are supposed available for mea-

surement. Although sophisticated algorithms exist for the

estimation of the front wheel sideslip angle, such as [12], in

the proposed approach this variable is computed according

to (3) due to its simplicity in implementation.

It is assumed that a lower level controller acting on

the propulsion torque of each wheel is able to adequately

generate the yaw moment Mz .

III. CONTROL STRATEGY

The procedure proposed in [7] is used to compute the

PWA controllers for the UGV. The goal is to stabilize the

PWA vehicle model (8), with a PWA state feedback gain u =
Kix+mi. The closed-loop state-space equation becomes:

ẋ = (Ai +BiKi)x+ (ai +Bimi) = Āix+ b̄i. (13)

The matrix Āi of the closed loop system of each region is

designed such that it is invertible and its equilibrium point

is denoted xieq . This condition is mathematically expressed

by:

(Ai +BiKi)x
i
eq + (ai +Bimi) = 0. (14)

A. Piecewise Quadratic Lyapunov Based Control

The asymptotic stability of the closed-loop system (13)

can be ensured by the existence of a PWQL function. Such

form is less conservative than a single quadratic Lyapunov

function and it can be written as:

Vi(x) = xTPix+ 2qTi x+ ri, (15)

where Pi = PT
i and for this application, Pi ∈ R

5×5, qi ∈
R

5, and ri ∈ R. Vi(x) is a Lyapunov function with a decay

rate αi, for the region Ri if the following conditions are

satisfied:

x ∈ Ri,

{

Vi(x) > ǫ||x− xeq ||2

d
dtVi(x) < −αiVi(x),

(16)

where xeq is the equilibrium point of the closed loop system

and ǫ ≥ 0 is a fixed constant.

Since the lateral tire forces are symmetric with respect

to the origin, as well as the dynamics of the PWA vehicle

model (8), only regions R1 and R2 are considered in the

control synthesis. The gains obtained for region R1 can be

applied in region R3, e.g. K1 = K3 and m1 = −m3. This

simplification reduces the number of LMIs to be solved.

Rendering the vehicle to the center of the planned path is a

stabilization problem for systems (13), since in a straight line

all state variables should converge to the origin. Therefore

the desired equilibrium point of the closed loop system, xeq
is placed at the origin. Since xeq ∈ R2, the terms of the

PWQL function (15) are then set to q2 = 05×1 and r2 = 0
to ensure that V (0) = 0 for systems (13). Consequently, the

Lyapunov stability condition (16) relative to R2 can simply

be rewritten in LMI form as for a linear system:
{ [

P2 − ǫIn
]

≻ 0
[

ĀT
2 P2 + P2Ā2 + α2P2

]

≺ 0
(17)

Concerning the dynamics inR1, there is no need to impose

conditions (16) to the whole state space, since they must

be valid only in R1. These conditions may be relaxed by

the use of S-Procedure [13], due to the quadratic form of

the ellipsoidal description for the operating regions (12), as

follows:






























































λ1 > 0, γ1 > 0,




P1 − ǫIn + λ1E
T
1 E1 q1 + ǫxeq + λ1E

T
1 f1

∗
ri − ǫxTeqxeq

+λ1(f
T
1 f1 − 1)



 ≻ 0









ĀT
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(18)
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where λ1 and γ1 are scalars and ∗ indicates the transpose.

The continuity of the PQWL function (15) across the

borders of R1 and R2 is ensured by the following constraint:



















FT
{1,2}(P1 − P2)F{1,2} = 0

FT
{1,2}(P1 − P2)l{1,2} + FT

{1,2}(q1) = 0

lT{1,2}(P1 − P2)l{1,2} + 2(q1)
T l{1,2} + (r1) = 0

(19)

where:

F{1,2} =













−
lf
v 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1













, l{1,2} =
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f
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,

(20)

obtained from a parametric description of the cell bound-

aries, as a subset of the state space (see [6], [7]), given

by: R̄1 ∩ R̄2 ⊆ {l{1,2} + F{1,2}s / s ∈ R
4}. The

elements of (20) are computed considering H{1,2} =
{

x / hT{1,2}x+ ᾱf = 0
}

the hyperplane in which the facet

boundary between the regions R1 and R2 is contained,

hence hT{1,2} = [−1, −lf/v, 0, 0, 1]. Then, F{1,2} ∈ R
5×4

(full rank) is the matrix whose columns span the null

space of h{1,2}, and l{1,2} ∈ R
5 is given by l{1,2} =

−h{1,2}(h
T
{1,2}h{1,2})

−1ᾱf .

Constraints (18) consist of a Bilinear Matrix Inequality

(BMI) due to the product of P1 and B1K1. Although

algorithms are available for solving BMI (i.g. [14]), the V-K

iterative method [7] was used in this work. This algorithm

consists in solving alternately two LMI problems which are

obtained by fixing one of the terms in the BMI, as follows:

V-step: Given a fixed controller, and fixed decay rates αi,

solve:
Find: P1, q1, r1 and P2,

such that: (17), (18), (19),

ǫ > 0, γ1 > 0, λ1 > 0,

(21)

K-step: For Pi, qi and ri fixed at the previous step, solve:

max
(

min
i
αi

)

such that (14), (18), (17),

ǫ > 0, γ1 > 0, λ1 > 0, αi > l0 > 0,

−l1 < Ki < l1, −l2 < mi < l2,

(22)

where l1 and l2 are vector bounds.

For each iteration of the K-step, the decay rates α1

and α2 must be greater than the value computed at the

previous iteration. The loop must be repeated until there is

no significant improvement on the cost function or the LMIs

become infeasible. The previously obtained results are thus

retained.

B. Repartition of Control efforts

The repartition of the control inputs (steering and yaw mo-

ment) is moderated by two parameters, µδf ∈ [µmin
δf

, µmax
δf

]

and µT ∈ [µmin
T , µmax

T ]. These parameters depend on the

front wheel sideslip angle, following the gaussian functions:

µδf = µmin
δf

+ (µmax
δf

− µmin
δf

)e
−α2

f/2σ
2

δf

µT = 1−
(

µmin
T + (µmax

T − µmin
T )e−α2

f/2σ
2

T

) (23)

where σδf and σT are calibration parameters that influences

their dispersion. Such strategy privileges the use of steering

angle in the linear domain of tire forces, and tends to increase

the contribution of differential torque as the lateral tire forces

tend to saturate. The repartition of the control efforts is taken

into account in the control synthesis of the initial controller,

so that the closed-loop system is asymptotically stable with

any combination of µδf and µT , as detailed in the subsequent

section.

IV. RESULTS

In this section the initial controller and iterations of the V-

K method (21)-(22) are presented, as well as the simulation

results obtained with the synthesized PWA controller.

A. PWA state feedback control synthesis

The choice of an initial controller, Kk=0
i , used in the

first iteration the V-K method is important for the proposed

PWA control synthesis. Several possibilities exist in the

literature, including LQR, as presented in [7]. In this paper,

the initial controllers are obtained from the control synthesis

proposed in [3]. Such approach is particularly interesting,

since it employs quadratic Lyapunov stability condition and

LMI methods for the computation of a linear state feedback

controller in the design of a driver assistance system with

steering and differential braking as control inputs. In order to

compute the gains for the initial controller, a linear vehicle

model has been used. For that, only the dynamics of R2

from (8) are considered. The vehicle parameters involved in

the control synthesis from [3] are shown in Table I. The

computed gain

Kk=0
i =

[

0.006, −0.069, −0.318, −0.027, −0.044
3.077, −15.201, −30.865, −2.352, 0.712

]

,

(24)

has been applied for R1 and R2 at the first iteration, with

mi being set to zero for both regions.

The V-K method tends to generate controllers that are

too reactive, due to the maximization of the decay rates

in the objective function. Although the limitations of the

actuators have been taken into account for the synthesis

of (24) using the procedure from [3], the same constraints

cannot be used in the V-K method, since the they would

require the computation of P−1

i , and consequently another

parametrisation of the boundaries to ensure the continuity

of the PWQL function (19). In order to circumvent this

adversity, the controller corresponding to the linear region is
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limited to a fixed range of the initial controller through the

following constraint added to the K-Step of the algorithm:

0.7|K0
i | < |Kk

2 | < 1.3|K0
i | (25)

Each step of the V-K method has been solved using [15].

Considering (24) as initial controller, ǫ = 10−6, l1 = 2|K0
i |,

l2 = [δmax
f , Mmax

z ]T , a constant vehicle longitudinal speed

v = 10 m/s and the vehicle parameters as shown in Table I,

The obtained gains are given by:

K1 =

[

−0.016 −0.046 −0.261 −0.024 0.084
0.326 4.519 −50.042 2.727 0.004

]

,

K2 =

[

0.012 −0.045 −0.260 −0.024 0.056
0.542 2.412 21.294 0.483 0.140

]

,

K3 = K1,

m1 =

[

0.0025
32.5019

]

, m2 =

[

0
0

]

and m3 = −m1

(26)

This resulting PWA controller has been implemented in a

robot model for simulations as detailed in the subsequence.

B. Simulation Results

In order to evaluate the improvement of the PWA con-

troller, the same maneuver has been performed with UGV

in two configuration: UGV named lin-crtl is equipped with a

linear controller corresponding to K2; UGV named PWA-crtl

is equipped with the PWA controller (26).

The maneuver consists of a left turn of 70° with fillet

radius of 10m. The vehicle longitudinal speed has been

regulated by a proportional controller at v = 10m/s. For
the simulations, a nonlinear four-wheel vehicle model has

been used. The longitudinal and lateral forces of each tire

are computed according to Pacejka model (2). The adhesion

between the tires and the surface was allowed to vary

randomly within the interval µ ∈ [0.7, 1] throughout the
simulation. This condition is incorporated in the parameters

of (2) by changing Bκ to (2 − µ)Bκ, Cκ to (5 − µ)Cκ/4
and Dκ to µDκ, as detailed in [16].

The performance of both vehicles are depicted in Fig. 3-6,

being lin-crtl represented by the dashed blue lines and the

response of PWA-crtl is shown in solid black lines.

The planned path for the vehicle is shown in black thin

dashed line on Fig 3. Since the maneuver is very demanding,

the trajectories of both vehicles deviates from the reference.

Nevertheless it is clear that the response of PWA-crtl in terms

of positioning is improved, since it oscillates less than lin-

crtl.

The dynamics of both vehicles during the maneuver is

shown in Fig. 4. It can be seen that the PWA controller can

significantly reduce the vehicle skidding by comparing both

vehicles sideslip angles as depicted on the upper subplot.

While max(|β|) reaches 0.25 rad for lin-crtl it does not

overcome 0.12 rad for PWA-crtl. The yaw rate of both

vehicles are represented in the lower subplot of Fig. 4.

The steering angle is shown in the upper subplot of Fig. 5,

and the lower subplot shows the computed front wheel

sideslip angle, according to (3). It can be noticed that for
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Fig. 3. Vehicle trajectories for lin-crtl in dashed blue line and PWA-crtl

in solid black line
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Fig. 4. Vehicle sideslip angle and yaw rate responses during maneuver for
lin-crtl in dashed blue line and PWA-crtl in solid black line

both vehicles the front wheel sideslip angle surpasses the

threshold delimiting the linear region, which induces the

switching of the PWA controllers (from K2 to K3) for PWA-

crtl. Due to the distinct input control, PWA-crtl operates in

the sliding behavior of the tire forces over a shorter time

interval when compared to the response of lin-crtl.

The control inputs uc and Mz are shown respectively on

the upper and lower subplots of Fig. 6.

V. CONCLUSIONS

In this paper the design of a PWA state feedback controller

for lateral motion of a fast UGV has been presented. The

controller is able to handle the sliding behavior of lateral tire

forces, reducing the vehicle skidding by coordinated action

of front wheel steering angle and four wheel independent

torque distribution. For the PWA controller synthesis, a PWA

modeling of the vehicle dynamics has been developed. In

addition, a linear state feedback controller has been extended
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Fig. 6. Control inputs during maneuver for lin-crtl in dashed blue line and
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to the PWA formulation by means of an optimization pro-

cedure under LMI constraints. The closed loop asymptotic

stability is guaranteed by a PWQL function obtained from

the solution of the same optimization problem. The improved

performance of the PWA controller with respect to a con-

troller considering only the linear region has been confirmed

through simulation on a nonlinear UGV model with degraded

tire-ground adhesion.

One of the main limitations of the proposed approach is

the overshoot with respect to the desired path which may the

be reduced considering anticipation algorithms or integration

of a longitudinal dynamics control in order regulate the

vehicle speed adequately according to the curvature. Future

work should be focused on these aspects.

TABLE I

VEHICLE PARAMETERS AND PWA APPROXIMATIONS OF LATERAL TIRE

FORCES

Vehicle Parameters PWA approximations

m 85 [kg] df1 558 [N/rad]

J 58 [kg m2] df2 1999.8 [N/rad]

lf 0.6 [m] df3 558 [N/rad]

lr 0.6 [m] ef1 -100.9 [N]

ls 3 [m] ef2 0 [N]

δmax
f 0.09 [rad] ef3 100.9 [N]

Mmax
z 327 [Nm] dr 1749.7 [N/rad]

[µmin
δf

, µmax
δf

] [0.2, 1] er 0 [N]

[µmin
T , µmax

T ] [0, 0.8] ±ᾱf ±0.07 [rad]
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