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Abstract

We propose an original particle filtering-based approach
combining optimization and decomposition techniques for
sequential non-parametric density estimation defined in
high-dimensional state spaces. Our method relies on An-
nealing to focus on the correct distributions and on prob-
abilistic conditional independences defined by Dynamic
Bayesian Networks to focus samples on their modes. After
proving its theoretical correctness and showing its complex-
ity, we highlight its ability to track single and multiple artic-
ulated objects both on synthetic and real video sequences.
We show that our approach is particularly effective, both in
terms of estimation errors and computation times.

1. Introduction

Articulated object tracking is an important task in com-
puter vision. Its applications include in particular gesture
recognition, human tracking and event detection. Unfor-
tunately, tracking articulated structures with accuracy and
within a reasonable time is computationally challenging
due to the high dimensionality of the state and observation
spaces. In this paper, we tackle this problem using Sequen-
tial Monte Carlo methods (a.k.a. Particle Filter – PF). Es-
sentially, this framework [3] aims at estimating a state se-
quence {xt}t=1,...,T , whose evolution is given by xt+1 =
ft+1(xt,n

x
t+1), from a set of observations {yt}t=1,...,T re-

lated to the state by yt+1 = ht+1(xt+1,n
y
t+1). Usually,

ft+1 and ht+1 are nonlinear functions, and nx
t+1 and ny

t+1

are i.i.d. noise sequences. This problem is naturally rep-
resented by the Markov chain of Fig. 1.(a). From a proba-
bilistic point of view, it amounts to estimate, for any t, ei-
ther i) p(x1:t|y1:t) or ii) p(xt|y1:t), where x1:t denotes the
tuple (x1, . . . ,xt). The first quantity can be computed by
iteratively using Eq. (1) and (2), which are referred to as a
prediction step and a correction step respectively.

p(x1:t+1|y1:t) = p(xt+1|xt)p(xt|y1:t) (1)
p(x1:t+1|y1:t+1) ∝ p(yt+1|xt+1)p(x1:t+1|y1:t) (2)
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Figure 1. (a) A Markov chain for state estimation. (b) A DBN.

with p(xt+1|xt) the transition corresponding to function
ft+1 and p(yt+1|xt+1) the likelihood corresponding to
ht+1. Probability p(xt+1|y1:t+1) can be computed simi-
larly with prediction and correction steps defined by:

p(xt+1|y1:t) =
∫
xt
p(xt+1|xt)p(xt|y1:t)dxt (3)

p(xt+1|y1:t+1) ∝ p(yt+1|xt+1)p(xt+1|y1:t). (4)

Basically, PF aims at approximating the above distribu-
tions using weighted samples. Thus, Eq. (3) and (4) are
estimated by samples {x(i)

t+1, w
(i)
t+1} of N possible realiza-

tions of the state x(i)
t+1 called particles. In the prediction step

(Eq. (3)), PF propagates the particle set {x(i)
t , w

(i)
t } using a

proposal function q(xt+1|x(i)
1:t,yt+1); in the correction step

(Eq. (4)), PF weights the particles using a likelihood func-

tion, so that w(i)
t+1 ∝ w

(i)
t p(yt+1|x(i)

t+1)
p(x

(i)
t+1|x

(i)
t )

q(x
(i)
t+1|x

(i)
1:t,yt+1)

,

with
∑N
i=1 w

(i)
t+1 = 1. The particles can then be resampled:

those with the highest weights are duplicated, while the oth-
ers are eliminated. The estimation of the posterior density
p(xt+1|y1:t+1) is then given by

∑N
i=1 w

(i)
t+1δx(i)

t+1
(xt+1),

where δ
x
(i)
t+1

are Dirac masses centered on particles x
(i)
t+1.

Of course, PF can approximate Eq. (1) and (2) in a similar
way using weighted samples of tuples (x(i)

1 , . . . ,x
(i)
t+1).

As shown in [6], the number of particles necessary for a
good estimation of the above densities grows exponentially
with the dimension of the state space, hence making PF’s
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basic scheme unusable in real-time. In the literature, differ-
ent variants of PF have been proposed to cope with high-
dimensional spaces. They can be roughly divided into three
categories: i) those that reduce the state space dimension
by approximating it; ii) those that reduce it by making local
searches; and iii) those that exploit natural independences
in the state space to decompose it into a set of sub-spaces of
reasonable sizes where PF can be applied. Here, for accu-
racy reasons, we focus on the last two approaches. Among
the local search-based approaches, let us cite the popular
Annealed Particle Filter (APF) [2] that consists of adding
annealing iterations (or layers) to PF’s resampling step in
order to better diffuse particles in the state space. Among
the third type of approaches, Partitioned Sampling (PS) [5]
decomposes the state space as a Cartesian product of con-
ditionally independent subspaces and iterates PF over all of
them. A similar idea based on Dynamic Bayesian Networks
(DBN) [7] is exploited in [4]: the proposal function q is de-
composed as the product of the conditional densities in each
node of the network, and PF is applied sequentially on each
node following a topological order of the DBN. These two
approaches are combined in [9] to define an algorithm for
PF totally integrated into a DBN. The work described in [1]
is probably the closest to ours: a parallel algorithm of PF is
described that uses the same joint probability in the DBN to
reduce the number of particles. The state space is divided
into subspaces in which the particles are independently gen-
erated by several proposal densities q. This approach en-
ables to easily choose q to sample each subspace. However,
it requires a specific independence structure in the DBN that
limits the generalization of the algorithm.

In this paper, we propose to significantly refine both PS
and APF by fully exploiting conditional independences in
the state space defined by DBNs. More precisely, we will
show that, using DBNs, some permutations of PS’s sub-
states can be performed that focus the samples on the modes
of the distributions. When combined with APF, this scheme
proves particularly effective, both to significantly reduce es-
timation errors and to keep computation times low. The
paper is organized as follows. In Section 2, we recall the
basics of APF and PS. In Section 3, we describe our ap-
proach, prove its correctness and show its computational
complexity. Using experiments on synthetic and real video
sequences, Section 4 highlights the efficiency of the method
both in terms of estimation errors and computation times.
Finally, we conclude and give perspectives in Section 5.

2. Basics of PS and APF
The key idea of PS is that the state and observation

spaces X and Y can often be naturally decomposed as
X = X 1 × · · · × XP and Y = Y1 × · · · × YP where con-
ditional independences between subspaces (X i,Yi) can be
exploited so that the sequential application of PF on each of

them provides samples over (X ,Y) estimating p(xt|y1:t).
As these subspaces are “smaller”, the distributions to esti-
mate have fewer parameters than those defined on (X ,Y),
which significantly reduces the number of particles needed
for their estimation and, thus, speeds up the computations.
More precisely, let (x̂(i),j

t ,x
(i),−j
t ) denote the particle with

the same state as x̂(i)
t on part j and the same as x(i)

t on the
other parts. Then, given a sample {x(i)

t } at time t, PS first
uses PF to compute sample {x̂(i),1

t+1 ,x
(i),−1
t )}where only the

first part is propagated/corrected. Then, with this new sam-
ple, PF is applied on the second part, and so on (see [5] for
details). As an example, to track a human body, X can be
naturally decomposed asX torso×X left arm×X right arm where,
given the position of the torso, the left and right arm posi-
tions are independent. PS then first applies PF on the torso,
then on the left arm and finally on the right arm. However,
by multiplying the number of subspaces, we also multiply
the resampling steps which, in turn, increases the noise in
the estimation process and decreases its accuracy.

Quite differently, APF increases the accuracy of PF by
exploiting a local search process in order to find the modes
of the distributions. More precisely, after applying PF on
the whole space X , it explores the neighborhood of the par-
ticles to move them toward the modes. To do so, it alternates
some form of weighted resampling that guarantees some
survival rate of the particles with iterations of PF. This pro-
cess is called annealing. Of course, APF can be combined
with PS by substituting each iteration of PF over X by one
of PS. This algorithm is denoted by PS-APF.

3. A Particle Filter with substate permutation

The algorithm we propose in this paper heavily relies for
its correctness on the DBN’s independence model, a.k.a. d-
separation [8]. An example of a DBN is shown in Fig. 1.b.
Basically, each node of a DBN represents a random variable
and is assigned its probability distribution conditionally to
its parents in the graph. The DBN represents the joint dis-
tribution of all its nodes as the product of all their condi-
tional distributions. Hence, two nodes, say xit and xjs are
dependent conditionally to a set of nodes Z if and only if
there exists a chain {c1 = xit, . . . , cn = xjs} linking xit
and xjs in the DBN such that i) for every node ck such that
the DBN arcs are ck−1 → ck ← ck+1, either ck or one
of its descendants is in Z; and ii) none of the other nodes
ck belongs to Z. Such a chain is called active. This is
the d-separation criterion [8]. In our body tracking prob-
lem, given the position of the body in the past, as both arms
are independent conditionally to the position of the torso,
p(torso, left arm, right arm) = p(torso) × p(left arm|torso)
×p(right arm|torso), justifying that the DBN of Fig. 1.b
models this tracking problem if x1

t ,x
2
t ,x

3
t represent the

torso and the left and right arms respectively.



PS, as introduced in [5], did not rely on DBNs. However,
the latter can be used to justify its correctness. Actually, if,
by d-separation, for any j ∈ {1, . . . , P}, xjt is independent
of (xj+1

t−1 , . . . ,x
P
t−1) conditionally to (x1

t , . . . ,x
j−1
t ,xjt−1),

then each iteration of PF over one substate xjt samples over
a distribution which is independent of (xj+1

t−1 , . . . ,x
P
t−1).

This is precisely what is needed to ensure that, after iter-
ating over the P parts of the object, PS and PS-APF have
both sampled over distribution p(xt|y1:t). For instance, in
the DBN of Fig. 1.b, x1

t ,x
2
t ,x

3
t satisfy the above property

and, thus, PS-APF can be used to perform PF first on the
torso, then on the left arm and finally on the right arm.

Our algorithm exploits d-separation, first, to identify
independent tracking subproblems where PF can be per-
formed in parallel and, second, to mix their results in a most
efficient way. More formally, we will assume that, within
each time slice, the DBN structure is a directed tree (or a
forest if we track multiple objects), i.e., there do not exist
nodes xit,x

j
t ,x

k
t with the graph topology xit → xjt ← xkt .

In addition, we will assume that arcs across time slices link
similar nodes, i.e., there exist no arc xit−1 → xjt with
j 6= i. For articulated object tracking, these requirements
are rather mild. Fig. 1.b satisfies both of them. For any set
R = {i1, . . . , ir} ⊆ {1, . . . , P}, by abuse of notation, xRt
denotes tuple (xi1 , . . . ,xirt ). Let Pa(xit) and Pat(xit) de-
note the set of parents of node xit in the DBN in all time
slices and in only time slice t respectively. For instance, in
Fig. 1.b, Pa(x2

t ) = {x1
t ,x

2
t−1} and Pat(x2

t ) = {x1
t}. In ad-

dition, let {P1, . . . , PK} denote the partition of {1, . . . , P}
defined by: i) P1 = {j : Pat(xjt ) = ∅} (in Fig. 1.b,
P1 = {1} because only x1

t has no parent in time slice t);
ii) for all i 6= 1, Pi = {j : Pat(xjt ) ⊆ {xkt : k ∈ ∪r<iPr}}
(in Fig. 1.b, P2 = {2, 3}). Intuitively, P1 is the central part
of the object, P2 are the subparts linked to P1, P3 those
linked to P2 and so on. Then, the following holds:

Proposition 1 The distribution estimated by applying PF
iteratively over each xit, i = 1, . . . , P , as PS-APF does, is
the same as that estimated by applying PF in parallel for
each set of parts Pi, i = 1, . . . ,K.

Proof: When PF is applied on node xjt , it propagates par-
ticles using p(xjt |Pa(xjt )) and correct them using p(yjt |x

j
t ),

overall modifying them using p(xjt ,y
j
t |Pa(xjt )). By d-

separation and the definition of the Pi’s, for each pair of
parts (j, k) ∈ Pi, (xjt ,y

j
t ) is independent of (xkt ,y

k
t ) con-

ditionally to Pa(xjt ). Hence, applying PF in parallel on each
xjt of a given setPi results in a correct estimation of the joint
a posteriori distribution and the proposition follows. �

Proposition 1 allows parallelizing PS-APF. For instance,
in the DBN of Fig 1.b, PF can be used first on x1

t and, then,
in parallel on x2

t and x3
t . But its proof also highlights an im-

portant property: if we extract from sample {x(i)
t } subsam-

ple {x(i),j
t } restricted to the jth part, the latter estimates, up

to a normalizing constant:

p(xjt ,y
j
1:t|Pat(xjt )) =

∫
p(xjt ,y

j
t |Pa(xjt ))p(xt−1, y

j
1:t−1)dxt−1.

Therefore, sample {xt(σj(i)),j} resulting from permuting
the elements of {x(i),j

t } by σj also estimates distribution
p(xjt ,y

j
1:t|Pat(xjt )). If the subsamples are permuted inde-

pendently for all parts j, the overall resulting sample {xσt }
will not in general represent p(xt|y1:t). It turns out that,
to enforce this property, we cannot use a particle filter es-
timating Eq (3) and (4), but we need one estimating Eq (1)
and (2). So, from now on, assume that samples at time t are
of the form {x(i)

1:t, w
(i)
1:t} instead of {x(i)

t , w
(i)
t }. Similarly to

states xt, weightswt can be decomposed aswjt = p(yjt |x
j
t ),

i.e., the likelihood of part j. The global weight wt of a par-
ticle is then defined as wt ∝

∏P
j=1 w

j
t and {x(i),j

1:t , w
(i),j
1:t }

samples p(xj1:t,y
j
1:t|Pa(xj1:t)), where Pa(xj1:t) represents⋃t

s=1{parents of nodes xjs in the DBN}. For instance, in the
DBN of Fig. 1.(b), the sample of the left arm positions over
all time slices {x(i),2

1:t , w
(i),2
1:t } estimates p(x2

1:t,y
2
1:t|x1

1:t),
the distribution of all variables on top line condition-
ally to the middle ones. Similarly, {x(i),1

1:t , w
(i),1
1:t } and

{x(i),3
1:t , w

(i),3
1:t } estimate p(x1

1:t,y
1
1:t) and p(x3

1:t,y
3
1:t|x1

1:t)
respectively. The joint distribution is then equal to:

p(x1:t,y1:t) =

P∏
j=1

p(xj1:t,y
j
1:t|Pa(xj1:t)).

Although it is often not the case that, if j, k ∈ Pi, xjt is
independent of xkt conditionally to Pat(xjt ), it is the case
that xj1:t is independent of xk1:t conditionally to Pa(xj1:t).
For instance, in Fig. 1.(b), x2

t is not independent of x3
t

conditionally to x1
t because {x2

t ,x
2
t−1,x

1
t−1,x

3
t−1,x

3
t} is

an active chain. However, there exists no active chain be-
tween x2

1:t and x3
1:t conditionally to x1

1:t. Now, consider two
subparticles (x

(i),3
1:t , w

(i),3
1:t ) and (x

(j),3
1:t , w

(j),3
1:t ) such that

x
(i),1
1:t = x

(j),1
1:t , then permuting them affects neither the es-

timation of p(x2
1:t,y

2
1:t|x1

1:t) (by conditional independence)
nor that of p(x3

1:t,y
3
1:t|x1

1:t) (permutations within samples
do not affect the probability they estimate). A fortiori, the
estimated joint distribution is unchanged.

This example can be generalized as follows: for all j ∈
{1, . . . , P}, let Desc({xjt}) denote the set of descendants of
{xjt} in time slice t, and Desc({xj1:t}) = ∪ts=1Desc({xjs}).
For every j ∈ {1, . . . , P}, let σj be any permutation of sam-
ple {x(i),j

1:t } such that only sub-particles with the same value
of Pa(xj1:t) are permuted. For every Pi, let the permutation
operation 	Pi be defined as: for all j ∈ Pi, permute the
subparticles belonging to parts {xj1:t}∪k∈Desc({xj

1:t})
{xk1:t}

w.r.t. σj . Then the following proposition holds:
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Figure 2. The permutation operation.

Proposition 2 Applying operators 	Pj , j = 1, . . . , P , on
{x(i)

1:t, w
(i)
1:t} does not change the distribution estimated.

Proof: After applying permutation σj on subsample {x(i),j
1:t }

∪k∈Desc({xj
1:t})
{x(i),k

1:t }, the resulting subsample estimates

p(x
{j}∪Desc({xj

1:t})
1:t , y

{j}∪Desc({xj
1:t})

1:t |Pa(xj1:t)). Moreover,
by d-separation, {xj1:t}∪k∈Desc({xj

1:t})
{xk1:t} is independent

of the rest of the DBN conditionally to Pa(xj1:t). Hence,
applying σj on {xj1:t} ∪k∈Desc({xj

1:t})
{xk1:t} does not

change the estimation of the joint distribution. Applying
inductively this argument on every j proves the result. �

The purpose of 	Pi is to focus the particles on the modes
of the distributions. As an example, consider Fig. 2.(a),
where 2 particles are represented, x1

t ,x
2
t ,x

3
t being the cen-

tral, left and right parts of the object respectively, and the
gray areas being the actual position of the object. These
particles have the same value of x1

t , so, by the above propo-
sition and according to Fig. 1.(b), their values on x3

t can
be permuted. Note that, before this permutation, the right
(resp. left) part of the first (resp. second) particle was far
from the true state, which induced overall small weights to
both particles. On the contrary, after permutation, the first
particle is very close to the true state (and thus has a high
weight) and the second one is far away (and thus has a low
weight). After resampling, the latter will probably be dis-
carded and only the best particle will remain.

Note that Proposition 1 also holds when samples are of
the form {x(i)

1:t, w
(i)
1:t}. So this suggests a new particle filter

in which samples are {x(i)
1:t, w

(i)
1:t} and in which PF is not ap-

plied sequentially on each xi1:t but rather in parallel on each
xPi
1:t followed by some permutation 	Pi that focuses parti-

cles on the modes of the distribution. Now, remark that, by
nature, state space X is continuous (position, angle of the
object, etc). Therefore, when two particles x

(i)
1:t and x

(j)
1:t

have the same value on Pat(xkt ), the parents of some node
xkt in time slice t, there is a high probability that these two
particles result from the duplication of another one during a
resampling step. In this case, it follows that both particles
have the same value on Pa(xk1:t) and Proposition 2 can be
applied to permute their kth part. Hence, in practice, it is
only a slight approximation to permute particle parts only
when their parents in time slice t are equal. The advan-
tage is that we get a particle filter estimating Eq. (3) and (4)
since all operations are related to time t instead of 1 : t.
This is much more efficient since it consumes less memory

Input: {x(i)
t , w

(i)
t }, partition {P1, . . . , PK}, L layers, image I

Output: {x(i)
t+1, w

(i)
t+1} at time t+ 1

{x(i), w(i)} ← {x(i)
t , w

(i)
t }

for n = 0 to L do
if n 6= 0 then
{x(i), w(i)} ← APF weighted resampling ({x(i), w(i)})

for j = 1 to K do
for k = 1 to |Pj | do
{x̂(i),k} ← propagation ({x(i),k})
{ŵ(i),k} ← correction ({x̂(i),k, w(i),k}, I)

{x(i), w(i)} ← 	Pi ({x̂(i), ŵ(i)})

{x(i), w(i)} ← resampling ({x(i), w(i)})
return {x(i), w(i)}

Algorithm 1: PS-APF with permutations: APF	 .

and provides more accurate results (the joint distribution on
time t having fewer parameters than that on slices 1 to t, its
estimation requires fewer particles). Overall, this leads to
Algorithm 1.

Of course, some permutations are better than others to
focus on the modes of the distribution. A “good” one can
easily be defined: from the preceding paragraph, two par-
ticles with the same value on Pat(xjt ) have most probably
been generated from the duplication of the same particle
during a resampling step. In this case, for all k ∈ Pi, they
also have a same value of Pa(xkt ). We can then partition the
sample ofN particles into subsetsN1, . . . , NR such that the
particles of a set Nr, r = 1, . . . , R, have the same value of
Pa(xjt ) for some j ∈ Pi. For each Nr, all possible permu-
tations are eligible. Let {r1, . . . , rs} be the elements of Nr.
For each j ∈ Pi, let σj be the permutation that sorts weights
w

(rh),j
t , h = 1, . . . , s, in decreasing order. By applying σj

for all j ∈ Pi, we get a permutation operation 	Pi that as-
signs to the first particle the set of the highest weights, to
the second one, the set of second best weights, and so on.
Thus, the first particles have the highest weights, and the
last ones the lowest (they will thus be discarded at the next
resampling step).

The time complexity of such an algorithm for all Pi is in
O(PN(E + logN)), where E is the size of variables xjt .
Actually, for a given Pi, by using a hash table, the complex-
ity of determining Nr is in O(N). For each Nr, we have to
sort |Pi| lists, which can be globally done in |Pi|N logN .
Finally, applying permutations modify at most P |xjt | per
particle and is then performed in O(NPE).

4. Experimental results

We have tested our approach on articulated objects track-
ing and have studied its ability to estimate high-dimensional
densities both on synthetic and real video sequences. In
particular, we provide computation times and estimation er-
rors for varying state space dimensions and number of parts
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Figure 3. Zooms on synthetic video sequences.

treated in parallel. The objects we track are moving and de-
forming over time. They are modeled by a set of P polygo-
nal parts (or regions): a central one P1 to which are linked
|Pi| arms of lengthK−1, i = 2, . . . ,K (see Section 3). The
polygons are manually positioned in the first frame. The
state vector contains the parameters describing all parts, and
is defined by xt = {x1

t , . . . ,x
P
t }, with xit = {xit, yit, θit},

where (xit, y
i
t) is the center of part i, and θit its orienta-

tion, i = 1, . . . , P . We thus have |X | = 3P . A particle
x
(j)
t = {x(j),1

t , . . . ,x
(j),P
t }, j = 1, . . . , N , is a possible

spatial configuration, i.e., a realization, of the articulated
object. Particles are propagated using a random walk whose
variance has been empirically fixed for all tests (σx = 1,
σy = 1 and σθ = 0.025). The particle weights are com-
puted using the color information of the current observation
(image), and are given by w

(j)
t+1 = w

(j)
t p(yt+1|x(j)

t+1) ∝
w

(j)
t e−λd

2

, with λ = 50 and d the Bhattacharyya distance
between target (prior) and reference (previously estimated)
8-bin histograms. PS-APF with l layers (denoted by APFl)
and our APF with permutation with 0 or 1 layer, denoted
by APF	

0 and APF	
1 respectively, were compared w.r.t. two

criteria: computation times and estimation errors. The lat-
ter are given by the sum of the Euclidean distances between
each corner of the estimated parts and its corresponding cor-
ner in the ground truth. All the results presented are a mean
over 60 runs performed on a MacBook Pro with a 2.66 GHz
Intel Core i7 processor.

Quantitative tests on synthetic sequences. We gener-
ated synthetic video sequences of 300 frames of 800× 600
pixels. Despite their visual simplicity (five colors), they
are very challenging because the densities to estimate are
very high-dimensional. Fig. 3 shows examples of synthetic
objects. Table 1 shows estimation errors and computation
times for the density estimations of objects with various
numbers of arms |Pi| and arm’s lengths K (see Fig. 3).
Tests were made with N = 50 and N = 300 particles. For
all of them, the permuted versions of APF always give better
estimations. In particular, APF	

1 is more robust than APF2:
a single permutation after an optimization step is more ac-
curate than 2 annealing layers. Note that our approach does
not increase computation times. Actually, the greater the
values of K and |Pi|, the more APF	

l outperforms APFl.
This results from the simultaneous treatment of the |Pi|
parts that reduces the number of resampling steps. We will
quantify this below on real video sequences.

Table 1. Estimation errors (e, in pixels) and computation times (t,
in sec.), for an object with (i) first three rows |Pi| = 4, depending
on K, and (ii) last three rows K = 2, depending on |Pi|.

APF	
0 APF1 APF2 APF	

1 APF	
2

N 50 300 50 300 50 300 50 300 50 300
K = 4
|Pi| = 4

e 309 209 251 204 231 196 208 184 203 181
t 6.2 37.9 12.6 77.4 18.9 115.9 12.3 76.1 18.5 114.5

K = 6

|Pi| = 4

e 735 471 508 405 542 357 391 321 350 299
t 10.3 63.8 21.2 134.6 32.1 206.0 20.5 130.2 31.0 195.2

K = 8

|Pi| = 4

e 1680 1392 1203 1174 1178 1081 1152 1062 1098 978
t 15.1 96.9 31.3 207.8 47.7 315.6 31.1 196.8 47.2 299.4

|Pi| = 6

K = 2

e 96 70 85 66 78 63 67 62 64 61
t 7.1 41.8 13.7 85.7 20.5 133.5 13.5 76.9 20.0 120.4

|Pi| = 8
K = 2

e 162 134 168 135 149 127 125 117 112 112
t 8.2 48.5 16.2 95.5 24.2 141.4 15.6 86.2 23.4 133.6

|Pi| = 10
K = 2

e 185 157 193 156 183 151 155 142 150 140
t 9.3 55.2 18.8 109.5 27.4 164.6 17.6 100.7 26.3 152.7
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Figure 4. Convergence study for tracking object of Fig. 3.(a) for
different approaches.

We now study the effect of one permutation compared to
different layers of annealing on the estimation of the den-
sity of the object of Fig. 3.(a). Fig. 4 shows that APF	

0 and
APF1’s convergence rates are almost similar. This high-
lights the mode-focusing feature of APF	

0 . But, more im-
portantly, APF	

1 converges much faster than all the other
methods: with only N = 30 particles, our approach con-
verges (e = 108, t = 7.5), whereas APF4 requires N = 70
particles to converge (e = 109, t = 42.8).

Quantitative and qualitative tests on real sequences.
We tested our approach on sequences from the UCF50
dataset1, to demonstrate the efficiency of our permutation
operation to make the particle set better focus on the modes
of the densities to estimate. This feature holds even when
there are wide movements over time and when images have
a low resolution. Qualitative results are given by super-
imposing on the frames of the sequences a red articulated
object corresponding to the estimation derived from the
weighted sum of the particles.

We present here results on the 242 320 × 240 frames of

1http://server.cs.ucf.edu/∼vision/data/UCF50.rar



Figure 5. The Fencing sequence. Tracking results (zooms on
parts of the images, N = 1000): from left to right, APF	

0 , APF1

and APF	
1 (frames 25, 65, 80, 120).

the Fencing sequence of this dataset. This sequence is
challenging because it contains two articulated objects de-
forming and moving quickly (see the relative positions of
the fencers w.r.t. the gray line on the floor). The fencers
were modeled using P = 27 parts, resulting in |X | = 81.
We manually annotated this sequence to get a ground truth
in order to compute estimation errors. This sequence is well
suited to highlight the efficiency of our approach that pro-
cesses in parallel both the different objects and their inde-
pendent parts. We compared single filters (one for the two
objects) and 2 independent filters (one per object). Qualita-
tive tracking results are given in Fig. 5 for 3 single filters and
N = 1000. Here again, the permutation operation improves
tracking results. Table 2 confirms this qualitative analysis.
As observed for synthetic sequences, our approach reduces
the estimation errors. Note again that APF	

1 as a single filter
outperforms both APF1 (single or parallel filter) and APF2.
Table 2 also provides computation times. Our permutation
operation is not time consuming compared to the resam-
pling steps. In addition, the parallel processing within the
Pi’s significantly reduces the number of resamplings in our
approach. Overall, the latter is faster than PS-APF. For in-
stance, for N = 2000, APF	

1 reduces resampling and total
computation times by 60% and 43% respectively compared
to APF1, and this with an error decreased by 18%. Our
tests also show that the results given by our approach (both
in terms of total computation times and estimation errors)
are equivalent whether we use 1 filter for the 2 objects or 1
filter per object. This shows its ability to correctly consider
independent parts and work in the appropriate subspaces.

5. Conclusion

We have presented a new approach for sequential estima-
tion of densities that (i) exploits the probabilistic indepen-
dencies encoded into DBNs to apply particle filter computa-
tions on smaller subspaces; and that (ii) permutes some sub-

Table 2. Fencing sequence. Estimation errors (e - in pixels) and
computation times (t = total times, r = resampling times, and
p = permutation times - in seconds).

APF	
0 APF1 APF	

1 2 APF1 2 APF	
1 APF2 APF	

2

N = 1000
e 420 418 335 382 327 360 302
t 99.3 379.3 231.6 253.1 224.2 583.6 368.4
r 21.1 218.4 77.3 119.5 84.8 360.6 136.9
p 7.7 - 24.1 - 14.3 - 42.7

N = 2000
e 280 275 225 245 225 229 196
t 217.8 943.4 536.3 612.1 513.8 1469.6 892.6
r 53.6 570.1 214.7 314.9 217.1 950.8 398.5
p 16.9 - 54.5 - 33.4 - 94.6

sets of particles so that they concentrate around modes of
the densities. We proposed a sound theoretical framework
that guarantees that distributions are correctly estimated. In
addition, we provided the time complexity of our approach.
Experiments showed that our permutation operation is not
time-consuming and, combined with the parallel process-
ing of conditionally independent parts that reduces signifi-
cantly the number of resamplings, it induces overall compu-
tation times that are often smaller than PS-APF. Moreover,
we have shown that this gain of computation time increases
with the state space dimension.

To conclude, our current works concern the choice a bet-
ter criterion for optimizing permutations. In particular, this
leads us to study new definitions of what a good particle set
should be.
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