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Abstract. In this paper, we present a new approach for quickly comput-
ing the histograms of a set of unrotating rectangular regions. Although it
is related to the well-known Integral Histogram (IH), our approach sig-
nificantly outperforms it, both in terms of memory requirements and of
response times. By preprocessing the region of interest (ROI) computing
and storing a temporary histogram for each of its pixels, IH is effective
only when a large amount of histograms located in a small ROI need be
computed by the user. Unlike IH, our approach, called Min-Space Inte-
gral Histogram, only computes and stores those temporary histograms
that are strictly necessary (less than 4 times the number of regions).
Comparative tests highlight its efficiency, which can be up to 75 times
faster than IH. In particular, we show that our approach is much less
sensitive than IH to histogram quantization and to the size of the ROI.
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1 Introduction

The complex nature of images implies that a large amount of data needs to be
stored in histograms (colors, edges, etc.), hence making their computations time
consuming. In many applications, large sets of histograms need be computed
frequently, hence making it a computational bottleneck. This explains why fast
histogram computation has received some attention in the literature [1,2,3,4].

An image yields a distribution over a color space by mapping each of its
pixels into its color. The histogram H of an N × M image I is defined by
H(k) =

∑N
x=1

∑M
y=1{I(x, y) = k}, where I(x, y) is a pixel, k = 0, . . . ,K − 1

is its value (in this paper, this is a color value, but gray intensities, gradient
orientations, etc., could also be considered). Binning the probability distribution
induced by H is a way to summarize it, and the applied quantization (bin size)
controls the rate of summarization. In such a case, histogram H is divided into
B bins b = 0, . . . , B − 1, and is defined by:

H(b) =

N∑

x=1

M∑

y=1

{

I(x, y) ∈
[

b
K

B
, (b+ 1)

K

B

[}

.

The classical approach to compute an histogram of a w× h region R consists of
browsing all its pixels, hence yielding a time complexity of O(wh).
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In this paper, we propose a novel approach to speed-up multiple histogram
computation by reducing computational redundancies. We will show that this
new method outperforms the well-known Integral Histogram (IH) both in terms
of memory requirements and of response times.

Our approach requires that the ROI in which the histograms need be com-
puted is known in advance, that it is still applicable to some major problems
of interest in computer vision, especially in visual object tracking methods that
generate multiple tracking hypotheses for each frame, where an hypothesis cor-
responds to an unrotated rectangular patch in the frame. This includes, for
instance, grid-based localization methods as well as particle filters [5], and also
some recent approaches that use sets of fragments to model objects [6,7,8,9]. Ac-
tually, our motivation for developing Min Space Histograms (MSIH) was particle
filtering-based tracking.

The paper is organized as follows. Section 2 first presents a short overview
of the main approaches that have been proposed in the literature to speed-up
histogram computation. In particular, it recalls IH’s approach. Section 3 then
describes our new approach: we first present the overview of the method and,
then, we detail it, including its time and space complexity. Section 4 gives some
comparative results for the computation of a set of histograms, both in terms
of response times and memory requirements. Three approaches are compared;
the classical one, IH and our method. Finally, concluding remarks are given in
Section 5.

2 Fast Histograms Computations

The classical approach would certainly be sufficient for practical applications did
the latter need computing only very few histograms. Unfortunately, in practice,
applications often have to repeatedly compute large sets of histograms and, in
those cases, a more efficient approach is compulsory to get admissible response
times. To achieve this, it can be observed that the rectangular regions where
histograms are computed often overlap, thus inducing some redundancies. Ex-
ploiting the latter is the key idea underlying fast histograms computation.

One of the first works in this direction was proposed in [1], in the context
of image filtering (median filter). Considering the histogram HR of a region R,
that of another region Q is computed by removing from HR the histogram of the
pixels that belong to R but not to Q and adding that of the pixels that belong
to Q but not to R. This approach can be very efficient when the two regions
considered have a large intersection. Similar in spirit, the method proposed in [2]
breaks up region R into the union of its columns in the image, and all the column
histograms are kept up to date in constant time using a two-step approach.
In [3], the authors propose the distributive histogram based on a distributive
property of disjoint regions combined with a per-column histogram maintenance
and a row-based update of these column histograms. This approach can be easily
extended to cope with non-rectangular regions and multi-scale processing.

When massive amounts of histograms need be computed, IH [4] proves to
be particularly effective and, actually, it is now used in many practical appli-
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cations, especially in recent tracking algorithms [6]. Consider a set of regions
{R1, . . . , Rn} where histograms need be computed. We will call them “goal his-
tograms” (GH). Each region Ri is identified by a quadruple 〈xi, yi, wi, hi〉 where
(xi, yi) are the coordinates of the bottom right corner of the region in the image
and wi and hi refer to the width and height of the region respectively. Instead of
computing directly the goal histograms, IH preprocesses the image to compute
efficiently a set of “temporary histograms” (TH) that prove to be sufficient to
compute all the GHs. More formally, let R be the smallest rectangular area con-
taining all the Ri, i = 1, . . . , n, i.e., R is the image’s region of interest (ROI).
IH’s preprocess consists of computing for each pixel p of the ROI the histogram
TH(p) of the upper left region of p. To perform this efficiently, it exploits the
following formula, for any pair of coordinates (x, y) of the ROI:

TH(x, y) = I(x, y) + TH(x− 1, y) + TH(x, y − 1)− TH(x− 1, y − 1). (1)

THs are computed from the upper left corner of the ROI to the bottom right
one and, thus, each TH is inferred from the previously computed THs using only
three arithmetic operations. This guarantees the efficiency of the method. Once
this preprocess is completed, for each region Ri, i = 1, . . . , n, the goal histogram
HRi of region Ri is simply computed as:

HRi = TH(xi, yi)−TH(xi−wi, yi)−TH(xi, yi−hi)+TH(xi−wi, yi−hi). (2)

Again, the three operations involved in Eq. (2) make IH particularly effective.
However, IH has two major drawbacks. First, if the ROI is large, IH consumes a
large amount of memory to store one TH per ROI’s pixel. Actually, if the ROI
is an N ×M region and if B is the total number of bins per histogram1, then,
the memory used by the THs is of size N ×M × B. Second, when the number
of GHs is relatively small, the classical approach that directly computes all the
GHs significantly outperforms IH as the latter needs to compute many THs. In
the next section, we will propose a new approach addressing both problems.

Note that all the methods presented above try to speed-up histogram compu-
tations by reducing the redundancies between the computations of the GHs in
the current image (see [3] for a comparative study). But other types of redun-
dancies can also be exploited, as in [10] where, relying on the spatial differences
arising between consecutive frames, the Temporal Histogram proves to be quite
effective. In the latter, to compute an histogram in a given frame, the correspond-
ing histogram in the preceding frame is simply updated taking into account only
the differences between the preceding frame and the current one. In our paper,
we focus on the first type of redundancy: that between the regions of the current
image and we provide in the next section a novel algorithm that significantly
outperforms both IH and the classical algorithm in most cases.

1 When the image contains several channels, B refers to the product of the number of
bins per channel, e.g., B = 512 for 3 channels of 8 bins each.
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3 Min-Space Integral Histogram

The Min-Space Integral Histogram (MSIH) is quite similar in spirit to IH. Ac-
tually, it computes some THs that correspond to histograms of the upper left
region of some pixels. However, unlike IH, it does not store one histogram per
pixel in the ROI but rather one per TH that is involved in Eq. (2). In other
words, MSIH only requires the THs of the pixels corresponding to the corners
of regions Ri

2. In addition to these points, it also uses one additional tempo-
rary histogram during its whole preprocess. Hence it never computes more than
(4n+1) THs, thus significantly reducing the memory consumption compared to
IH. In addition, this reduction also induces a significant speed-up.

3.1 Overview of the Method

The basic idea of MSIH is summarized in Fig. 1. Consider we wish to compute the
histograms of the seven regions of Fig. 1.a and assume that the ROI is a 100×100-
pixel area. Then IH has to store 10000 THs although only those corresponding
to the points in blue and red on Fig. 1.b, i.e., 28 THs, are actually used in
Eq. (2) to compute the histograms of the seven areas. MSIH focuses on these 28
THs. To do so, it first determines the grid where these points are located (the
gray lines in Fig. 1.b). Note that this grid contains only 12 rows and 14 columns,
hence an overall of 168 cells instead of 10000 for the ROI. Then, MSIH parses
this grid from left to right and from top to bottom and computes incrementally
the THs in an Integral Histogram-like manner. The basic idea is the following:
let TH(i, j) denote the TH at the ith row and jth column of the grid, then:

TH(i, j) =
∑

(x,y)∈Gij

I(x, y) + TH(i− 1, j) + TH(i, j − 1)− TH(i− 1, j − 1), (3)

A

B

a) 7 regions b) MSIH’s grid c) THs and GHs

Fig. 1. The key idea of MSIH

2 To be precise, like IH, for each region Ri = 〈xi, yi, wi, hi〉, MSIH uses the THs
corresponding to the points of coordinates (xi, yi), (xi − wi, yi), (xi, yi − hi) and
(xi−wi, yi−hi) in the image, which do not correspond exactly to the corners of Ri.
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where Gij is the rectangular area of the image defined by the extremal points
(GX(i− 1) + 1, GY (j − 1) + 1) and (GX(i), GY (j)), with GX(i) and GY (j) rep-
resenting the X and Y-coordinates in the image of the pixel corresponding to
the ith row and jth column of the grid respectively. This simple scheme already
outperforms IH both in terms of memory consumption (only 168 THs are stored
instead of 10000) and in terms of response time (since it involves much fewer
arithmetic operations on histograms). But this basic idea can be refined because,
computing TH(i, j) for every row and column of the grid is not necessary. Ac-
tually, as we will see, computing only those THs that are represented as green
squares, blue triangles and red circles on Fig. 1.c is sufficient to compute the
histograms of seven regions Ri of interest. This results in a significant improve-
ment as there are only 91 squares, triangles and circles compared to 168 cells on
the grid (12 rows by 14 columns). Note that the green points just correspond
to points where histogram computations are needed, they do not involve any
memory requirement: as mentioned before, at most (4n+1) THs will be kept in
memory (here only 29 THs are stored). Finally, we will see that even Eq. (3) itself
can be improved so that it involves only 2 arithmetic operations over histograms
instead of three, hence further speeding up the method.

3.2 Determination of the Temporary Histograms

Eq. (3) is the stepping stone of our TH computation: to the values of the pixels
of a rectangular region Gij are added or subtracted 3 previously computed THs:
those of the regions above and to the left of Gij and the TH of their intersection.
So, the green squares shall be determined in order to enforce that whenever a
region Gij is involved in Eq. (3), these three THs do exist. To understand how
this can simply be achieved, consider Fig. 2.a. The blue triangles and red circles
correspond to the left and right corners of the regions respectively. Consider the
computation of S’s TH. If THs are computed from left to right and from top
to bottom, then those of N , K and R have already been computed. Thus, to
avoid parsing pixels of the image more than once, we shall combine the previously
computed THs and add to this combination the pixels of the polygonNMRSKJ .
Unfortunately, this one is not a rectangle, hence ruling out an application of
Eq. (3). However, if points M and P are introduced and their THs are computed,
then that of S can be computed as TH(S) =

∑
(x,y)∈GS

I(x, y) + TH(R) +

TH(P ) − TH(M), where GS denotes rectangle SPMR. Note that M and P
are located on the same rows as R and S but on the column to their left. Now,
consider the computation of TH(N). As mentioned above, this one occurs after
the THs of C, F and M have been computed. But, as above, polygon CFMN is
not a rectangle. So, to exploit Eq. (3), we shall add a new green square J . Then,
TH(N) =

∑
(x,y)∈GN

I(x, y) + TH(M) + TH(J)− TH(F ), where GN denotes

rectangle NJFM . For the same reason, the computation of TH(M) requires
creating new point E. More generally, this suggests that whenever a TH needs
be computed at point (i, j), that at point (i − 1, j) shall be computed as well.
If the latter is not a corner of a region Ri of interest, then it shall be a green
square. However, this rule applies only to the points of the grid that belong to



Min-Space Integral Histogram 193

some region Ri: those that are outside all the regions need not be computed.
For instance, on Fig. 2.a, although the TH of K is needed, that of D is clearly
unnecessary. This rule is general and is precisely that applied on Fig. 1.c to
determine the 63 green squares. This leads to Algorithm 1 whose correctness is
proved in Proposition 1.

Proposition 1. The grid resulting from Algorithm 1 is such that the THs of all
its nonempty points, i.e., those in red, blue or green, can be computed parsing the
pixels of the ROI at most once and using Eq. (3) where only the THs of points
belonging to regions R1, . . . , Rn are taken into account.

Proof. We shall first prove by induction that, in lines 5–9, nb current regions
counts precisely the number of regionsRk whose right and left corners are located
in columns i + 1, . . . , w and 1, . . . , i respectively. Of course, at the beginning of
the algorithm, this property holds since VT and VB are initialized with zeros.
Assume that the property holds on the (i + 1)th rightmost columns of the grid
and let us show that it also holds on the ith one. Vectors VT and VB are updated
on lines 14 and 19: whenever the right side of a new region Rk is encountered
(lines 10–14), VT [tk] and VB[bk+1] are incremented, where tk and bk are the grid
Y-coordinates of the top and bottom corners of Rk respectively. Thus, within
loop 6–9, the increment of VT [tk] and VB [bk + 1] will induce on line 7 that
nb current regions will be incremented by 1 as well only on rows tk, . . . , bk, i.e.,on
the rows where region Rk is located. Similarly, when the left side of region Rk

is encountered, i.e., on loop 16–19, line 19 will do the inverse process, i.e., it
will decrease by 1 nb current regions on all the rows tk, . . . , bk. Hence, overall,
nb current regions precisely counts the number of regions whose right sides have
already been examined but not their left sides yet.

Thus, green squares are constructed on line 9 whenever i) there exist regions
whose right sides have been encountered in the columns already processed, i.e.,
on the right, but whose left sides have not been encountered yet; and ii) in
the right column, there exists either a green, blue or red point. Condition ii)
indicates the we shall systematically construct green squares on columns on the
left of nonempty points and condition i) removes only those green points that
would be created on areas of the grid where no region Rk is located (like point
D in Fig. 2.a). Consequently, if a nonempty point, say S has another point R
above it (see Fig. 2.a), then, on their left column, line 9 will create two points

d) computing TH [N ]c) computing TH [M ]b) computing TH [L]a) green squares
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Fig. 2. Computing green squares and the THs of a given column
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Input: a set of regions {R1, . . . , Rn}, a w × h grid G
1 initialize G: all cells are set to “empty” points (neither green nor blue nor red)

// create 2 vectors VT , VB counting, for each row, the number of

// top and bottom Ri’s corners processed yet on that row

2 VT , VB ← vectors of size h+ 1 filled with 0’s
// fill the grid from right to left

3 for i = w downto 1 do
// if there is a column on the right, create green the squares:

4 if i �= w then
5 nb current regions ← 0
6 for j = 1 to h do
7 nb current regions ← nb current regions + VT [j]− VB[j]
8 if nb current regions > 0 and G[i+ 1, j] �= empty point then
9 G[i, j]← green square

// fill G with the regions whose corners are on its ith column

10 R ← {regions Rk whose right sides are located on the ith column of G}
11 foreach Rk = 〈xk, yk, wk, hk〉 ∈ R do
12 convert image coordinates (yk, yk − hk) into grid coordinates (bk, tk)
13 G[i, bk]← red circle; G[i, tk]← red circle
14 VT [tk]← VT [tk] + 1; VB[bk + 1]← VB[bk + 1] + 1

15 L ← {regions Rk whose left sides are located on the ith column of G}
16 foreach Rk = 〈xk, yk, wk, hk〉 ∈ L do
17 convert image coordinates (yk, yk − hk) into grid coordinates (bk, tk)
18 G[i, bk]← blue triangle; G[i, tk]← blue triangle
19 VT [tk]← VT [tk]− 1; VB[bk + 1]← VB[bk + 1]− 1

Algorithm 1. Determination of the points where THs are computed

P and M unless those are outside any region Rk (like point D). Thus, Eq. (3)
can be applied and the proposition holds. �

We shall now see how the THs can be computed efficiently on the grid, mini-
mizing the number of arithmetic operations over histograms.

3.3 Efficient Computation of the Temporary Histograms

As suggested by Eq. (3), we shall construct the THs on the grid from left
to right and from top to bottom. But applying directly Eq. (3), as would be
done to construct the THs of IH, is not efficient because this would involve
3 operations over histograms whereas the same result can be obtained with
only 2. To achieve this, let Hcol be a column vector of histograms of size the
number of rows of the grid and let Htmp be an histogram. Assume that, on
Fig. 2.a, Hcol contains the THs of points E,F, J,K, i.e., Hcol[1] = TH [E] (resp.
Hcol[2] = TH [F ], Hcol[3] = TH [J ], Hcol[4] = TH [K]) is the histogram of the
union of the subparts of the regions Rk that lie above and to the left of E (resp.
F, J,K). Let us now compute the THs of L,M,N, P . First, each time we process
a new column in the grid, Htmp is cleared so that it contains no pixel. Now, add
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to Htmp the pixels of line ]E,L] as shown in red on Fig. 2.b. Then, to be a valid
TH for L, we should add to Htmp the histogram of the area on the left of E,
which corresponds precisely to Hcol[1]. Thus, adding Htmp to Hcol[1], the latter
contains TH [L]. Next, add to Htmp the pixels of rectangle MFEL (excluding
lines [E,L] and [E,F ]). Then Htmp contains the histogram of rectangle MFEL
excluding only line [E,F ] as shown in Fig. 2.c. So, as Hcol[2] = TH [F ] contains
the histogram of the area above and to the left of F , after addingHtmp toHcol[2],
the latter contains TH [M ]. Similarly, after adding to Htmp the pixels of rect-
angles NJFM (excluding lines [F,M ] and [F, J ]), Htmp contains the histogram
of rectangle NJEL excluding line [E, J ] (see Fig. 2.d). Hence, adding Htmp to
Hcol[3] = TH [J ], we get TH [N ]. By processing as shown above, we thus reduce
the number of arithmetic operations over histograms. This leads to Algorithm 2
whose correctness is shown in Proposition 2.

Input: an image I, a w × h grid G
Output: the set TH of temporary histograms of the blue and red points of G

1 Hcol ← a vector of size h of empty histograms
2 Htmp ← an empty histogram; TH ← ∅
3 for i = 1 to w do
4 clear Htmp

5 for j = 1 to h do
6 if G[i, j] is a red circle, a blue triangle or a green square then
7 let R be the rectangle from the last rows and columns where THs

were computed in the grid (e.g., NJFM for Hcol[3] in Fig. 2)
8 add to Htmp the pixels of rectangle R
9 add Htmp to Hcol[j]

10 if G[i, j] is a blue triangle or a red circle then
11 save Hcol[j] into TH [i, j]
12 if there exists no nonempty point on G[k, j] for k > i then
13 delete Hcol[j] from memory

14 return the set TH of histograms

Algorithm 2. Computation of the Temporary Histograms

Proposition 2. Applying Eq. (2) with the THs resulting from Algorithm 2
yields correct histograms HRi .

Proof. First, note that adding any histogramΔ1 to both TH(xi, yi) and TH(xi−
wi, yi) and adding any histogram Δ2 to TH(xi, yi−hi) and TH(xi−wi, yi−hi),
then, in Eq. (2), HRi is unaffected. So, in this proof, a temporary histogram
TH [i, j] is said to be valid if it represents the histogram of the area above and to
the left of point G[i, j] minus some histogram Δ and, for all points G[k, j] such
that the whole segment [G[i, j], G[k, j]] belongs to

⋃n
k=1 Rk, TH [k, j] represents

the histogram of the area above and to the left of point G[k, j] minus Δ. For
instance, in Fig. 1.c, all the THs on segment [A,B] should subtract the same Δ.
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This is sufficient to ensure that the sameΔ will be removed from both TH(xi, yi)
and TH(xi −wi, yi) (resp. TH(xi, yi − hi) and TH(xi −wi, yi − hi)) in Eq. (2).

The rest of the proof is by induction. For the leftmost column of the grid,
after executing lines 4–13, Hcol clearly contains the THs of every nonempty grid
point of the column since, at each iteration, Hcol[j] = Htmp and, by line 7, the
latter incrementally contains all the pixels from the top of the grid to the jth
row. Assume now that, until the (i − 1)th column, Hcol contains valid THs. At
the beginning of the processing of the ith column, Htmp is cleared and, each time
j is incremented, Htmp is updated by adding precisely the image pixels that it
lacked to be the histogram of all the points between columns i − 1 and i of the
grid from the top up to the jth row. Therefore, adding Htmp to Hcol[j] as done
in line 9, the latter actually contains a valid histogram of the area above and to
the left of G[i, j]. Hence the property also holds on column i.

Therefore, at each step Hcol contains valid THs. As lines 10–11 save those
corresponding to blue and red points, i.e., to the corners of regions R1, . . . , Rn,
set TH returned by Algorithm 2 contains valid THs. Applying Eq. (2) on them
thus produces the same result as IH. �
Proposition 3. Algorithm 2 never keeps in memory more than (4n+ 1) THs.
For a w × h grid, a N × M ROI and B bins, the time complexity of MSIH is
O(n log n+ whB +NM) whereas that of IH is in O(NMB).

Proof. Concerning the number of THs used by Algo. 2, remark that whenever a
row has no more nonempty point, line 13 removes the TH stored in Hcol[j]. Thus,
there are never more THs in vectorHcol than the number of columns where there
exist nonempty points. By construction of the grid, each green square and blue
triangle have at least one red point on their right. Hence, the number of THs
in Hcol is never higher than the number of red points, i.e., the number of right
corners, still to be examined by the algorithm. As there are at most 4n corners in
R1, . . . , Rn, the algorithm never uses more than (4n+1) THs (including Htmp).

For the time complexity, determining the rows and columns of the grid can be
done in O(4n log 2n) by sorting the set of X and Y-coordinates of the corners of
regions Ri. For Algo. 1, the initialization of the grid is made in O(w×h) as well
as the execution of lines 4–9. Parsing once the set of Ri’s, we can determine in
O(n) all the sets R and L that will be used on lines 10 and 15. As the union of
all those sets correspond to the set of corners of the Rk’s, the overall complexity
of lines 10–19 is in O(4n). Except the parsing of the image on line 7, there are w
histograms clearings (line 4), hence a complexity of O(wB). In addition, line 9 is
executed at most wh times, hence a complexity of whB, and line 11 is executed
at most 4n times. Finally, as the image pixels are parsed only once, if the ROI
has size N×M , then all the executions of line 7–8 involve a complexity ofN×M .
Overall, the construction of all the THs is in O(n log n+ whB +NM). �

4 Experimental Results

In this section, we compare three approaches in terms of computation times
and memory requirements: the classical histogram approach (CH) consisting
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of computing the goal histograms by scanning all the pixels of their regions,
the Integral Histogram (IH) which computes one TH per pixel of the ROI (see
Section 2), and our approach, the Min-Space Integral Histogram (MSIH), which
was described in Section 3. For this purpose, n centers of regions Ri are randomly
generated using a normal distribution centered on some location (x, y) with a

covariance matrix

(
σx 0
0 σy

)

. The size wi × hi of the regions can also vary, but

this does not play an important role in our tests. Histograms are computed on
HSV images, and their number of bins B is equal to (BH ×BS ×BV ). To make
them easier to read, all the curves presenting the results of the experiments are
Y -logscaled, and correspond to averages over 20 runs. The response times of IH
and MSIH include the computation of the THs and the goal histograms (GH).

4.1 Computations Times

Number of Computed Histograms. Fig. 3.(a) reports the computation
times of the (6× 6× 4)-bin histograms of regions Ri of size 10× 10, 50× 50 and
100× 100 respectively, in function of the number n of regions (n are 1000 times
the numbers indicated on the X-axis). As may be expected, CH linearly depends
on n. For small regions, e.g., on the left graph, and for small amounts of GHs
(e.g., n < 50), CH clearly outperforms IH because the computation of its THs is
too time expensive. In all benchmarks, MSIH proved to be the fastest method,
especially when regions Ri are large. MSIH outperforms IH even when numerous
GHs need be computed, which corresponds to situations where IH is known to
be very effective. In all our tests, MSIH is 1.5 (small regions, n = 20000) to 40
(large regions, n = 50) times faster than IH.

Quantization of Histograms. One of the major drawbacks of IH is its sensi-
tivity to the quantization of histograms: the computation of the THs (one per
pixel) requires a lot of operations (and memory) when B increases. Fig. 3.(b)
shows comparative results for the computation of the histograms of n = 1000
regions Ri of sizes 10 × 10, 50 × 50 and 100 × 100 respectively, in function of
the number of bins per channel. To simplify, we suppose here that all channels
are identically quantized. CH requires the highest computation times, and our
MSIH the lowest ones. For IH and MSIH, computation times increase with B,
but MSIH is less affected than IH. In all our tests, MSIH is 1.5 (small regions,
B = 2× 2× 2) to 20 (medium regions, B = 8× 8× 8) times faster than IH.

Percentage of Region Overlap. The percentage of region overlap reflects
the spatial dispersion of regions: the more spatially dispersed the regions, the
smallest the overlap. In our tests, σx and σy control this percentage. This one
is defined by %overlap = 100× N∩

NT
, where N∩ and NT are the number of pixels

belonging to at least two regions and belonging to at least one region respec-
tively. Fig. 4 displays the times to compute n ∈ {100, 500, 1000} (6× 6× 4)-bin
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Fig. 3. Computation times (logscale) for CH, IH and MSIH depending on: (a) the
number n (multiples of 1000) of regions Ri of sizes {10 × 10, 50× 50, 100× 100} from
top to bottom; GHs are (6×6×4)-bin histograms; (b) the number of bins per channels
(3 channels); n = 1000 regions of sizes {10×10, 50×50, 100×100} from top to bottom
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Fig. 4. Computation times (logscale) for CH, IH and MSIH depending on the percent-
age of region overlap, with (6× 6× 4)-bin histograms and regions of size 30× 30, and
n = {100, 500, 1000} from left to right

histograms of 30× 30 regions. CH is independent of the percentage of overlap-
ping because all pixels are scanned to populate its histograms. For both IH and
MSIH, computation times decrease when %overlap increases because the size of
the ROI in which they work decrease as well. For instance, in our tests with
n = 1000 GHs, when 20% of the regions are overlapping, the average size of the
ROI is 2800×2800 whereas it is only 30×30 for a 100% overlapping: this explains
the discrepancy between the corresponding response times. Note however that
MSIH is from 6 (n = 100, 100% overlapping) to 73 (n = 100, 20% overlapping)
times faster than IH. This highlights the fact that IH is much more sensitive to
the size of the ROI than our method: CH even outperforms IH when there is
less than 90% of overlapping whereas it outperforms MSIH only when there is
less than 20% of overlapping, which seldom happens in practice. Note that the
profiles of the curves remain unchanged when the size of regions varies (even
from very small regions to large ones).

4.2 Memory Requirements

The memory consumption of IH and MSIH depends linearly on the numbers
of THs they store, which are denoted as #histoIH and #histoMSIH (blue and
red points) respectively. Actually, each histogram is simply a B-length vector.
Thus, the memory gain of running MSIH instead of IH, i.e., the percentage of

IH’s THs that MSIH does not need to store, is given by 100×
(
1− #histoMSIH

#histoIH

)
.

Table 1 highlights how this gain is related to the number n and to the size of
the regions Ri. Observe that MSIH always computes fewer THs than IH. This
is especially true when large regions are considered and n is small (MSIH’s gain
can rise up to 99%). This is due to the fact that, when regions become large, the
size of the ROI increases, which increases accordingly the number of histograms
stored by IH. Table 2 highlights the impact of the percentage of region overlap,
for different values of n. A first remark concerns the fact that, for fixed values
of n, #histoMSIH is not very dependent on %overlap. On the contrary, #histoIH
drastically increases when this percentage decreases because the size of the ROI
increases. In average, MSIH stores 1500 times fewer histograms than IH for
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Table 1. Comparison of memory requirements for IH and MSIH to compute (6×6×4)-
bin histograms of regions (overlapping percentage: 95%), depending on n and wi × hi

n = 100 500 1000 5000 20000

small
region
10 × 10

size of ROI 76 × 79 89 × 89 93 × 95 105 × 105 112 × 111
#histoIH 6004 7921 8835 11025 12432

#histoMSIH 376 1510 2400 4548 6137
Gain 94% 81% 73% 59% 51%

medium
region
50 × 50

size of ROI 117 × 117 128 × 128 134 × 135 144 × 144 150×151
#histoIH 13689 16384 18090 20736 22650

#histoMSIH 390 1720 3018 7593 11742
Gain 98% 90% 84% 64% 49%

large
region
100 × 100

size of ROI 166 × 167 179 × 178 183 × 184 194 × 194 238 × 237
#histoIH 27722 31862 33672 37636 56406

#histoMSIH 387 1723 3017 7641 19568
Gain 99% 95% 92% 80% 66%

Table 2. Comparison of memory requirements for IH and MSIH to compute (6×6×4)-
bin histograms of regions of size 30× 30 depending on the overlapping percentage and
the number n of regions Ri

% = 30 50 70 90

n = 100

size of ROI 740 × 722 465 × 433 206 × 197 77×75
#histoIH 534280 201345 40582 5775

#histoMSIH 400 399 397 374
Gain 99.9% 99.9% 99.1% 94%

n = 500
size of ROI 1899 × 1964 1287 × 1211 629 × 654 106×109

#histoIH 3729636 1558557 411366 11554
#histoMSIH 1999 1996 1986 1701

Gain 99.9% 99.9% 99.6% 86%

n = 1000
size of ROI 2571 × 2711 1704 × 1627 713 × 714 171 × 180

#histoIH 6969981 2772408 509082 30780
#histoMSIH 3996 3989 3940 3385

Gain 99.9% 99.9% 99.3% 90%

%overlap = 30% and for any value of n. But when %overlap = 90%, MSIH stores
only 10 times fewer histograms.

5 Conclusion

We have introduced a new approach for fast multiple histogram computation
that significantly reduces response times as well as memory consumptions, com-
pared to both the classical approach and the well-known Integral Histogram.
The idea relies on the fact that the number of temporary histograms that are
computed by Integral Histograms can be reduced (up to 1500 times less). This
induces a significant decrease of the computation times (up to 75 times less) as
well as of memory requirement. Our current works concern the generalization of
our algorithm to the computation of histograms of rotated regions.
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