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1 Introduction
Optimal  Control  (OC)  is  a  useful  framework  for 
modeling Human Motor Control (HMC) properties 
[5],  [1],  but  the  corresponding  methods  are  too 
expensive to be applied on-line and in real-time as 
would  be  required  for  modeling  everyday 
movements. A straightforward solution to this cost 
problem  consists  in  improving  a  parametric 
feedback  controller  all  along  the  lifetime  of  the 
system  through  its  interactions  with  its 
environment.  Such a method also comes with the 
benefits of adaptation and can be implemented by 
using incremental, stochastic optimization methods. 

In [3], a model of human reaching movement was 
proposed  based  on  the  assumption  that  HMC  is 
governed by an optimal feedback policy computed 
at  each  visited  state  given  a  cost  function.  This 
model  explains  the  optimal  movement  time  as 
emerging  from a  trade-off  between  the  utility  of 
successfully  reaching  and  the  cost  in  terms  of 
efforts. In this paper, we present a machine learning 
approach to get a reactive parametric controller that 
performs well w.r.t. their method and can be further 
improved  through  stochastic  optimization,  while 
being fast enough to be used on-line. Moreover, it 
shows interesting generalization capabilities.

2 Methods
Our approach consists in  3 steps:  first, the Near-
Optimal Planning System (NOPS) of [3] is used to 
generate a few sample trajectories, i.e. sequences of 
state-action pairs. Then, a state-of-art  regression 
method, XCSF [6], is fed with these pairs to learn a 
mapping from states to actions. As XCSF relies on 
a sum of weighted local models, it can be to used as 
a parametric controller, called “XCSF controller”. 
This  controller  will  have  good  initial  parameters 
thanks to NOPS demonstrations, while being able 
to  compute  its  control  in  real-time. Finally, a 
stochastic optimization can be performed over these 
parameters using a direct  Policy  Search  method 

based on a Cross Entropy method, CEPS [2], which 
robustly  improves the controller  performance by 
trial and errors.

Fig. 1. Optimal movement  time.  Reaching cannot 
be performed under a certain time (dashed area) and 
is  less  and  less  costly  in  terms  of  efforts  as  the 
movement  is  performed  more  slowly  (red  line). 
However  the  subjective  reward  for  reaching  the 
goal decreases with time to account for greediness, 
i.e., we are less interested in gains that will occur in 
a distant future than at the present time. The reward 
versus cost criterion, resulting from the sum of the 
subjective reward and the (negative) cost reaches a 
maximum for a certain time. When the criterion is 
negative  (outside  useful  interval),  the  subject 
should not move, i.e., the movement is not worth it. 
Details can be found in [3], [2].

3 Results and Discussion
We apply our approach to a simulated reaching task 
with a 2 degrees-of-freedom planar arm actuated by 
6 muscles (Fig. 2, see [2] for details).

We demonstrate  the  generalization  capabilities  of 
our  approach  using  NOPS  demonstrations  for  a 
small set of targets, located in the central region of
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the workspace, and testing the XCSF controller on 
a  larger  set  that  covers  the  workspace.  The 
performance that  NOPS optimize,  i.e.  the  reward 
versus cost criterion illustrated in Fig. 1, is used for 
evaluating all  controllers.  Table  1  shows that  the 
XCSF controller performance over the small set is 
very  close  to  NOPS,  but  decreases  as  targets 
become  more  distant,  resulting  in  a  poor  mean 
performance over the large set. However, it can be 
significantly  improved  by  allowing  CEPS  to 
perform trial and errors for targets of the large set. 
The  performance  over  the  small  set  slightly 
decreases as a consequence of generalization.

Fig. 2. The arm workspace. The reachable space is 
delimited by a dashed line envelope. Arm segments 
are represented by bold green lines. Start position is 
represented as a star, small target set as green dots 
and large target set as red crosses.

small set large set
NOPS 28.22 ± 2.06 27.46 ± 3.73
XCSF 27.45 ± 2.35 2.44 ± 46.03

XCSF+CEPS 22.96 ± 11.50 12.76 ± 22.28

Table 1. Mean perfomance over each target set and 
for each method. Sets used for learning are in bold.

4 Conclusions
We have presented a machine learning approach to 
modelling HMC applied to reaching task. As in [3], 
the speed of movement emerges from a 
compromise between the subjective value of the 
reward and the cost of movement. As opposed to 
The  computational cost of OC methods is avoided 
by  optimizing  a  reactive  parametric  controller, 
which offers generalization capabilities  that makes 
the learning process reasonably easy in practice.

From a neurosciences perspective, this  parametric 
approach might be seen as a computational model 
of how the Central Nervous System might store the 

capability to reach optimally and in real-time from 
any start position and to any target.

For now, our approach requires knowledge of the 
exact  arm  dynamics,  as  it  is  needed  by  NOPS, 
however we could replace it by a learned model [4]. 
On the long run, we would like to apply such 
approach  to the whole body control of humanoid 
robots like iCub, so that they perform more human-
like movements.
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