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Abstract

Traditionally, dopamine neurons are hypothesized to encode a re-
ward prediction error which is used in temporal difference learning
algorithms. In previous work we studied the ability of the reward
prediction error (RPE) calculated by these algorithms to reproduce
dopamine activity recorded in a multi-choice task. It reveals an ap-
parent dissociation between the signal encoded by dopamine neurons
and behavioral adaption of the animals. Moreover, this activity seems
to be only partly consistent with an RPE. In this work we further
investigate the nature of the information encoded by dopamine neu-
rons by analyzing the evolution of dopamine neurons activity across
learning. Our results indicate that, complementarily to the RPE, the
value function fits well with dopamine neurons activity in this task
and could contribute to the information conveyed.
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1 Introduction

During the 90’s, Schultz and colleagues discovered that the phasic activity
of dopamine (DA) neurons shows strong similarity with an RPE (Schultz,
Dayan, & Montague, (1997) during pavlovian conditioning. Since then, Tem-
poral Difference (TD) learning algorithms (Sutton & Barto, [1998) have been
extensively used to explain the role of DA in learning (see (Glimcher} 2011)
for review), even if some alternative models exist (O’Reilly, Frank, Hazy, &
Watz, 2007). The RPE is used in TD learning to update a value function
that predicts the sum of future expected reward. These algorithms learn
to choose actions that maximize future rewards on the basis of such value
function. But the exact nature of the signal encoded by DA neurons is still
unclear, especially when the animal needs to choose between different ac-
tions. What does the DA signal encode when the animal has to perform a
choice?

Several neurophysiological studies (Roesch, Calu, & Schoenbaum)| 2007;
Morris, Nevet, Arkadir, Vaadia, & Bergman| 2006)) investigated this issue by
recording DA neurons during multi-choice tasks. In (Morris et al., [2006), the
information encoded by DA at the time of the presentation of the different
possibilities reflected an RPE dependent on the future choice of the animal.
These results are consistent with an RPE calculated by the SARSA algo-
rithm. In (Roesch et al. 2007)), the animals were trained to choose between
two adjacent wells (the right and the left well). During the free choice trials —
indicated by a specific odor —, both well led to differently delayed (short and
long delay; referred as delay case) or sized rewards (small and big reward;
referred as size case). They found that DA neurons reflected an RPE based
on the value of the best available option, suggested to be consistent with the
Q-learning algorithm.

Based on this discrepancy, in our previous work (Bellot, Sigaud, & Khamassi,
2012)) we quantitatively simulated and compared different T'D-learning algo-
rithms on the task used in (Roesch et al., 2007). We found that the RPE
calculated by the algorithms seemed to converge too fast to explain the DA
activity recorded in (Roesch et all) [2007) under the constraint of explain-
ing the behavior. This suggested a dissociation between the behavior of the
animals and the RPE signal encoded by DA neurons. This highlighted the
necessity to precisely analyze DA signals at different timings to be able to
relate such information to the observed dynamics of behavioral adaptation.

In this work, we first re-analyze DA neurons activity so as to distinguish
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Figure 1: DA activity during the first, middle and last 7 trials extracted from
Roesch et al. 2007.

this activity during first, middle and last trials of each learning block (Fig.
This first shows that the DA signal at the time of the stimulus (the odor)
now appears qualitatively compatible with SARSA by responding more for
the previously best option during first trials (red above blue and yellow above
green in fig 1 left), and more for the currently best option during last trials
(blue above red and green above yellow in fig 1 right). We then present our
simulations of T'D learning algorithms, trying to fit DA activity during these
different temporal windows across learning. We find that none of the tested
algorithms can be reasonably ruled out in this case, while DA activity studied
here might reflect the combined encoding of both RPE and value signals.

2 Method

To better model the dissociation between the behavior and the calculation of
the RPE, we fix the actor by directly matching the behavior of the animals:
We use the data from (Roesch et al., |2007) — fig.1(e,f) in the original article
— which define the probability that the animals choose the best action at
different moments within trial blocks.

To model the task we use a Markov Decision Process (MDP). This allows
us to model the different states that the animals experienced, and more
specifically the states where DA neuron activity of the animals seems to
respond to specific stimuli. These states represent the moment where the
animal makes the nosepoke, when the animals perceives the odor - indicating
a free-choice trial - and the time of the trial outcome. In order to compare the
information carried by DA neurons with the RPE calculated in simulation
at these states, we extract the DA activity at these different moments.



We compare three different kinds of critic that were discussed in the
original study: @Q-learning, SARSA and V-learning. These algorithms update
their value function according to the RPE, &;: Q(ss,ar) = Q(st, ar) + ady.
The computation of the RPE differs depending on the algorithm:

o V-learning : §; = ri11 + YV (s441) — V(sy)
o Q-learning : 0; = 1441 + Vmgx[Q(3t+1a a)] — Q(ss, ar)
o SARSA : 6 = riy1 +7Q (8141, ary1) — Q(s¢, ay)

These different RPEs predict different responses in a multi-choice task.
V-learning predicts a response based on an average value of the different
options. SARSA responds in function of the choosen action and Q-learning
in function of the value of the best available option.

We then optimize the meta parameters in order to fit DA activity. To
do so, we explore the meta parameters space with o € [0.01,...,0.9] and ~ €
[0.6,...,0.9]. As the DA activity and the RPE do not share a common scale,
we minimize the difference ||(ad,+b) — DA,||? where DA, is the experimental
DA activity in state s and ¢, is the average RPE computed in s over the
different trials. Thus we have: §, = 137 d,(e), where n is the number of
considered trials and d,(e) is the RPE computed from the e!® trial in s. The
(a,b) pair is determined with the least square method, used for the three
different set of trials.

3 Results
RPE Q-learning || RPE SARSA || RPE V-learning || Value function
! error ! error o error o error
delay | 0.05 16.9 0.075 | 23.8 || 0.01 19.2 0.05 5.51
size 0.01 34.7 0.01 35.7 0.01 43.0 0.01 16.26

Table 1: Fitting error when we take into account 21 trials (i.e. 7 for each
temporal window).

We can see on Table 1 that the learning rate that optimizes the reproduc-
tion of DA activity is very low for the three algorithms. This confirms the
hypothesis that the RPE encoded by DA seems to converge slowly. When
we compare the ability of the RPE of the algorithms to reproduce DA neu-
rons activity, one can see that even though Q-learning is the algorithm that
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Figure 2: Q-learning reproducing DA activity at the different temporal win-
dows.

quantitatively best reproduces this activity in the delay case (see Table 1,
illustrated in Fig.2), SARSA and V-learning are able to explain this activity
better than in previous work (Bellot et al., 2012)). Thus, modeling the DA
signal at different stages of learning more clearly emphasizes that the differ-
ence in the performance of the algorithms on these data is thin. Figure 2
illustrates the fit of Q-learning’s RPE on dopamine activity for the delay and
size cases. This shows that although Q-learning gets a good quantitative fit,
it does not reproduce the above-mentioned qualitative characteristics of DA
activity which a priori looked compatible with SARSA.

An important characteristics of DA activity which prevents the algorithms
from performing well — especially in the size case — is the persistent response
to the reward even during the last trials (Fig. 2), where learning is supposed
to have converged. This is different from Schultz’ original recordings where
DA neurons stopped to respond to expected rewards (Schultz et al., [1997).
This could appear more similar to a value function which becomes higher
and higher as the agent gets closer to the reward. Thus we also try to fit the
value function of the V-learning algorithms on DA activity. Interestingly, we
find that it gets a smaller fitting error on these data (Table 1).

This work thus partly confirms the results of our previous work by showing
that the RPE of Q-learning can better explain the activity of DA neurons
recorded in (Roesch et al., 2007)), comparatively to the RPE of SARSA and
V-learning. But, it also confirms that even though we did not try to fit the



behavior, none of the critics could explain the size case. Then it is reasonable
to ask whether this DA activity can really be compared to a pure RPE signal
or whether it also incorporates information relative to the value function.

4 Discussion

The starting hypothesis of this work was based on numerous studies that
showed that DA neurons encode an RPE signal comparable to the one used in
TD learning algorithms (Schultz et al., [1997; Bayer & Glimcher, 2005; Flagel
et al., 2010). Moreover, (Roesch et al. [2007)’s study presents a number of
control analyses showing that the recorded DA activity in the task presented
here indeed encodes an RPE. We thus wanted here to precisely characterize
the information encoded by such RPE signal and compare it with different
TD algorithms.

Our previous work (Bellot et al., 2012) had shown that we cannot re-
produce this activity with the same parameters than those that fit the rats’
behavior during the task. Hence, in this work we fixed the actor and com-
pared the ability of different critics to reproduce the information encoded by
DA neurons. These results confirm that ()-learning is best suited to repro-
duce DA activity. However, we cannot rule out SARSA because it is the only
algorithm that predicts a response that depends on the future action of the
animal. We also show more unexpectedly that a value function encoding the
sum of the immediate and future reward can quantitatively better explain
the illustrated activity than an RPE. This raises the question whether DA
signal only encodes an RPE or whether it also incorporates other kinds of
information such as a value function. Further investigation are needed in
order to elucidate this issue.
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