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Abstract—The paper is an introduction to feedback control
design for a family of robotic aerial vehicles with Vertical Take-
Off and Landing (VTOL) capabilities such as quadrotors, ducted-
fan tail-sitters, helicopters, etc. Potential applications for such
devices, like surveillance, monitoring, or mapping, are varied
and numerous. For these applications to emerge, motion control
algorithms that guarantee a good amount of robustness against
state measurement/estimation errors and unmodeled dynamics
like, e.g., aerodynamic perturbations, are needed. The feedback
control methods here considered range from basic linear control
schemes to more elaborate nonlinear control solutions. The
modeling of the dynamics of these systems is first recalled and
discussed. Then, several control algorithms are presented and
commented upon in relation to implementation issues and various
operating modes encountered in practice, from teleoperated
to fully autonomous flight. Particular attention is paid to the
incorporation of integral-like control actions, often overlooked
in nonlinear control studies despite their practical importance
to render the control performance more robust with respect to
unmodeled or poorly estimated additive perturbations.

I. INTRODUCTION

The growing interest for the robotics research community
in Vertical Take-Off and Landing (VTOL) vehicles as ex-
emplified by quadrotors [10], [19], [21], [23], [65], [82],
ducted-fan tail-sitters [43], [58], [63], and helicopters [16],
[32], [39], is partly due to the numerous applications that
can be addressed with such systems like surveillance, in-
spection, or mapping. Recent technological advances in sen-
sors, batteries and processing cards, that allow embarking
on small vehicles all components necessary for autonomous
flights at a reasonable cost, also constitute a favorable factor.
The development of these applications raises several issues.
First, from a mechanical viewpoint, the vehicle must have
good flying capabilities and provide with enough payload
for embarked sensors and energy. Then, real-time pose es-
timation, necessary for feedback loops implementation, is
often challenging. Since in a non-instrumented environment
no single sensor can produce direct measurements of the
pose, a combination of sensors has to be used. Data fusion
algorithms must be designed to cope with sensor limitations
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associated with, for instance, unreliable magnetometers, low-
precision GPS devices, and low-frequency visual processing
of camera images. Finally, feedback control laws must achieve
fast response and robustness to aerodynamic perturbations (i.e.,
wind gusts). All these difficulties are amplified on small-scale
vehicles due to the limited payload, the high sensitivity to
aerodynamic perturbations and the complexity of aerodynamic
effects at this scale.

Many autonomous flight experiments have been reported in
recent years. In particular, aggressive maneuvers have been
achieved with quadrotors, like spins and flips [45], dance in
the air [75], or high-speed flight through narrow environments
[54]. The control algorithms used for these extreme maneuvers
much rely on feedforward action in order to account for and
anticipate strong dynamic effects. This type of performance
has been obtained in indoor environments by taking advantage
of full state measurements acquired at high-frequency rates
with an external 3D tracking system. Reported results for aerial
robotic vehicles using onboard sensors only, such as GPS, laser
range finders, cameras, or acoustic sensors, address far less
aggressive maneuvers [29], [9], [19], [23], [62], [77] because
the system then suffers from a heavier payload (sensors and
data processing cards) which reduces its maneuverability,
and also from low-frequency measurement rates and poor
quality state estimates little compatible with the monitoring
of aggressive maneuvers.

The present paper focuses essentially on feedback control
aspects, knowing that mechanical design and state estima-
tion aspects are equally important. The main objective is to
provide the reader with an introduction to feedback control
methods, linear and nonlinear, developed for translational
velocity and/or position stabilization and trajectory tracking
applications. Whereas linearization of the system’s dynamics
yields well-known control analysis and design tools, that are
local in scope, the nonlinear approach exploits the physics
of the motion control problem at hand in a more natural
way. This aspect reflects in algorithms which are not more
complex, and a computational effort not more important than
that of linear controllers. Under certain conditions, nonlinear
controllers can also be endowed with provable global stability
and convergence properties. As for robustness, although no
robustness analysis per say is reported, it is a permanent
preoccupation whose related issues are discussed at various
places in the paper. For VTOL vehicles, these issues are all
the more important that:
• precise aerodynamic models, valid in a large range of

operating conditions, are extremely difficult to obtain;
• wind gusts are unpredictable, and embarked power is

not always sufficient to counterbalance the destabilizing
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effects of these perturbations;
• pose measurement/estimation errors, in relation to the size

and inertia of the vehicle, can be significant.
The paper is organized as follows. Control models are

reviewed in Section II, with complementary comments on
the contribution of aerodynamic forces and torques. Sections
III and IV contain an overview on existing feedback control
techniques developed for the class of underactuated VTOL
vehicles. First, in Section III linear techniques based on
linearized control models are reviewed. The classical pole
placement method invoked for the determination of the control
gains can be complemented with an optimization policy (LQR,
LQG, H2, H∞, etc.) and also extended to slowly time-varying
operating conditions via gain-scheduling techniques. In Sec-
tion IV nonlinear techniques (exact input-output feedback
linearization, backstepping, hierarchical control, etc.) are pre-
sented. This section contains also a more detailed exposition
of the control approach proposed in [26]. Finally, concluding
remarks and perspectives are given in Section V. Suggestions
of references for complementary reading are pointed out along
the paper.

II. SYSTEM MODELING

In the first approximation, VTOL vehicles can be modeled
as rigid bodies immersed in a fluid and moving in 3D-space.
These vehicles are usually controlled via a thrust force ~T along
a body-fixed direction ~k to create translational motion and a
torque vector Γ ∈ R3 for attitude monitoring. In practice,
the torque actuation is typically generated via propellers (e.g.,
multirotors), rudders or flaps (e.g., ducted-fan tail-sitters), or
a swashplate mechanism (e.g., helicopters).

Fig. 1. Inertial frame I and body frame B.

We assume that the thrust ~T = −T~k, with T ∈ R, applies
at a point that lies on, or close to, the axis {G;~k}, with G
the vehicle’s center of mass (CoM) so that it does not create
an important torque at G. All external forces acting on the
vehicle (gravity and buoyancy forces, added-mass forces, and
dissipative aerodynamic reaction forces, etc.) are summed up
in a vector ~Fe. Due to aerodynamic reaction forces, this vector
generally depends on the airflow’s velocity and direction
relatively to the vehicle, as well as on its translational and
angular accelerations (via added-mass effects). Applying the
Newton-Euler formalism, one obtains the following equations

of motion of the vehicle (see, e.g., [17, Ch. 2], [78, Ch. 1],
[26]):

mξ̈ = −TRe3 + Fe(ξ̇, ξ̈, R, ω, ω̇, d(t)) +RΣRΓ (1)

Ṙ = RS(ω) (2)

Iω̇ = −S(ω)Iω+Γ+Γe(ξ̇, ξ̈, R, ω, ω̇, d(t)) + τg+ΣTTe3

(3)

where the following notation is used:
• m is the vehicle’s mass, I ∈ R3×3 its inertia matrix.
• I={O;~ıo,~o,~ko} is a fixed (inertial or Galilean) frame

with respect to which the vehicle’s absolute pose (position
+ orientation) is measured. This frame is typically chosen
as the NED frame (North-East-Down) with ~ıo pointing
to the North, ~o pointing to the East, and ~ko pointing to
the center of the earth. B={G;~ı,~,~k} is a frame attached
to the body. The vector ~k is parallel to the thrust force
axis. This leaves two possible and opposite directions
for this vector. The direction here chosen (~k pointing
downward nominally) is consistent with the convention
used for VTOL vehicles (see Fig. 1).

• ξ = (ξ1, ξ2, ξ3)> ∈ R3 is the vector of coordinates of the
vehicle’s CoM position expressed in the inertial frame I.

• R ∈ SO(3) is the rotation matrix representing the
orientation of the body-fixed frame B with respect to the
inertial frame I. The column vectors of R correspond
to the vectors of coordinates of ~ı, ~, ~k expressed in the
basis of I.

• ω = (ω1, ω2, ω3)> ∈ R3 is the angular velocity vector
of the body-fixed frame B relative to the inertial frame I
and expressed in B.

• Γe is the external torque vector induced by all external
forces.

• S(·) is the skew-symmetric matrix associated with the
cross product (i.e., S(u)v = u× v,∀u, v ∈ R3).

• d(t) represents external disturbances, including wind ef-
fect, which do not depend on the vehicle’s position and
motion.

• τg is the gyroscopic torque associated with rotor crafts.
• e3 = (0, 0, 1)> is the third vector of the canonical basis

of R3 and also the vector of coordinates in B of the thrust
direction vector ~k.

• ΣT and ΣR denote 3× 3 (approximately) constant cou-
pling matrices.

To be complete, the dynamical model should also include a
modeling of the generation of force and torque control inputs,
since these inputs are typically produced via actuators which
have their own dynamics. Experience shows that the actuators’
dynamics of a well-designed VTOL system are sufficiently
fast with respect to the vehicle’s dynamics so that they can be
neglected, at least in the first approximation. Another reason
for considering this approximation is that it allows for the
decoupling of the generic aspects of the control problem from
the specifics attached to each particular vehicle. Nevertheless,
the value of this decoupling assumption needs in practice
to be re-assessed and, eventually, re-considered in order to
bring adequate modifications and refinements to the control
algorithms. For instance, in the case of vehicles with propellers
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and deflecting surfaces, the way actuation thrust force and
torques depend on the airflow needs to be looked at closely.
Advanced specialized issues like this one, addressed in [29]
for instance, call for complementary studies which are beyond
the scope of the present paper.

A. About the coupling between thrust and actuation torques

The constant matrices ΣT and ΣR in Eqs. (1) and (3) rep-
resent the coupling between the thrust force and the actuated
torques. For instance, the term ΣTTe3 in Eq. (3) accounts
for the fact that the thrust force vector ~T may not apply
exactly at the vehicle’s CoM. For most VTOL vehicles this
term is relatively small so that it can be compensated for by
control torque actions. By contrast, the influence of the torque
control inputs on the translational dynamics via the coupling
matrix ΣR in Eq. (1), whose expression mainly depends on the
vehicle’s torque generation mechanism, is more involved. The
coupling term RΣRΓ is often referred to as small body forces
in the literature. This coupling is negligible (i.e., ΣR ≈ 0) for
quadrotors [21], [65], [10] such as the CEA-List X4-flyer (see
Fig. 2), but it can be significant for helicopters, due to the
swashplate mechanism [24, Ch.1], [15], [39], [46], [59, Ch.
5], and for ducted-fan tail-sitters, due to the rudder system
[60, Ch. 3], [63]. For instance, the coupling matrix ΣR of a
conventional helicopter is approximately given by (see, e.g.,
[24, Ch.1], [59, Ch.5], [39])

ΣR =

 0 ε1 0
ε2 ε3 ε4

0 0 0


where the εi’s depend on the position of the main and tail
rotor disks. Referring to the model of ducted-fan tail-sitters,
such as the HoverEye (see Fig. 3), the coupling matrix ΣR is
given by (see, e.g., [63], [60, Ch. 3])

ΣR = − 1
L

S(e3), (4)

with L the distance between the plane of controlled fins and
the vehicle’s CoM. More details on the difficulties associated
with this coupling term and control solutions proposed in the
literature will be provided further on.

Fig. 2. X4-flyer: quadrotor developed by CEA-List.

Fig. 3. Ducted-fan tail-sitter HoverEye of Bertin Technologies.

B. About external forces and torques

The modeling of the external force Fe and torque Γe acting
on the vehicle is a major problem due to the complexity of
fluid dynamics and of the interactions between the vehicle, the
actuators, and the surrounding fluid (for more details about this
issue, see, e.g., [65], [29], [10] for quadrotors, [35], [38], [60,
Ch. 3], [61] for ducted-fan tail-sitters, and [56], [67], [83] for
helicopters). In particular, when the vehicle is designed so as to
take advantage of strong aerodynamic lift forces, as in the case
of airplanes, modeling the dependence of lift and drag forces
upon the vehicle’s orientation relatively to the airflow direction
(i.e., the so-called angle of attack and side-slip angle) is not a
simple matter. To our knowledge, no analytical representation
of these forces over the vehicle’s entire operating envelop has
ever been worked out. Existing models are often based on
a superposition principle which consists in i) decomposing
the vehicle in distinct rigid parts (propellers, rudders, duct,
etc.), ii) computing a force/torque acting on each of these parts
by neglecting the aerodynamic effects created by the other
parts, and iii) summing up all these forces/torques to obtain the
resultant force/torque. For ducted-fan tail-sitters for example,
the vehicle is decomposed into the duct structure, the propeller,
and rudders. Aerodynamics forces include lift and drag forces
(and resp. momentum drag force) generated by the airflow
circulating outside (resp. through) the duct structure, as well as
lift and drag forces on the propeller and rudders generated by
the airflow inside the duct. Evaluating these forces separately
is hardly justified since, rigorously, the vehicle moves in a fluid
which exerts, by the rotation of the propeller and by airflow
deflection from the rudders, a force on the fluid which in turn
applies a force on the duct structure.

Good understanding of aerodynamic effects and fine mod-
eling of these effects are crucial to design the vehicle’s ge-
ometrical and mechanical characteristics in order to optimize
the system’s maneuverability and energetic efficiency. They
are also useful for simulation purposes in order to evaluate
the performance, robustness, and also the limitations of a
controller. For control design, however, the knowledge of a
precise and well-tuned model is not as important. A classical
reason is that a well-designed feedback control is expected
to grant robustness in the sense of performance insensitivity
with respect to model inaccuracies. In this respect, energy
dissipation due to friction also tends to be a favorable factor.
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In practice, it is possible to use an approximate model or
a real-time estimation of the terms Fe and Γe. The latter
possibility is preferred when adequate and accurate on-board
sensors allow for it. Moreover, experiments show that in most
cases an explicit model of Γe is not necessary. The possibility
of obtaining a good on-line estimation of Γe, via dynamic
inversion or high-gain observer, mainly depends on the quality
and frequency acquisition of the vehicle’s attitude estimation
and of the measurement of its angular velocity.

C. A simplified control model

The control model (1)–(3) is very general, but it involves
terms –aerodynamic forces and torques in particular– which
are very complex. For many VTOL vehicles, simplified models
of these terms can be sufficiently accurate for feedback control
design purposes. To keep the exposition simple without impair-
ing its generality too much, feedback control will be discussed
on the basis of the following simplified control model:

mξ̈ = −TRe3 + Fe(ξ̇, d(t)) +RΣRΓ (5)

Ṙ = RS(ω) (6)
Iω̇ = −S(ω)Iω+Γ (7)

Assumptions under which the reduction of system (1)–(3) to
the above form is justified are the following:
• Added mass effects are negligible (i.e., Fe and Γe do not

depend on ξ̈ and ω̇);
• Aerodynamic forces do not depend on the vehicle’s

orientation and they apply close to the vehicle’s CoM
(i.e., Fe and Γe depend neither on R nor on ω). This
assumption corresponds ideally to the case of a spherical
vehicle with a perfectly smooth surface, for which the
resultant of drag forces applies at the CoM;

• Both τg and ΣT are either negligible or known so that
they can be directly compensated for by the control torque
action.

These assumptions, although restrictive, hold with a reason-
ably good degree of accuracy for many VTOL vehicles for
which the resultant aerodynamic reaction force is, in nominal
conditions, dominated by the drag component, as in the case
of quadrotors, ducted fans, helicopters, etc.

System (5)–(7) shows full actuation of the rotational dy-
namics, via the 3-dimensional torque control vector Γ, and
underactuation of the translational dynamics, via the mono-
dimensional thrust intensity T . At the translational level, in the
case where ΣR = 0, controllability results from the nonlinear
coupling term TRe3 between the control input T and the
vehicle’s orientation characterized by the rotation matrix R.
Feedback control thus has to exploit this coupling in order
to stabilize the vehicle’s translational dynamics. The next
sections gives an overview of feedback methods, starting with
linear control schemes.

III. BASIC CONTROL DESIGN FOR VTOL VEHICLES:
LINEAR CONTROL SCHEMES

Linear control techniques are based on linear approxima-
tions of the system’s dynamics about desired feasible state

trajectories. They are widely used in airplanes autopilots. For
these vehicles, the angle of attack over the nominal flight
envelop is small and the linearization of aerodynamics models,
that are precisely tuned by using extensive wind tunnel mea-
surements over a restricted set of nominal cruising velocities,
then yields accurate linearized models. For VTOL vehicles,
the variations of the vehicle’s attitude with respect to the
airflow direction can be much more important. Nevertheless, a
similar control design approach can be adopted. This approach
basically consists in considering a set of reference trajectories
associated with constant translational velocities, in developing
control laws for each of them, and in combining these laws
via interpolation to obtain a practical control algorithm. To
simplify the exposition, the focus is hereafter put on the case
of quasi-stationary flight in the absence of wind, which can
be seen as an extension to the problem of stabilizing a fixed
position in space with a reference velocity equal to zero.
The reviewed approaches can be extended to other trajectories
and flight conditions, such as constant velocity cruising with
constant wind, provided that aerodynamic forces are either
measured or estimated on-line so that the equilibrium about
which linearization is done can be calculated.

In the case of hovering and in the absence of wind, aerody-
namic forces arising from relative vehicle/wind velocity can be
neglected in front of the gravity force, since their intensities are
proportional to the square of this velocity. As a consequence,
the external forces are essentially reduced to Fe = mge3

(with g the gravity acceleration). The equilibrium orientation
matrix Re associated with hovering at a constant position ξ
and zero yaw angle (with ξ̇ = 0 and ω = 0) is the identity
matrix. A first-order approximation of the matrix R about this
equilibrium is R ≈ I3 + S(Θ), with Θ ∈ R3 any minimal
parametrization of SO(3) around the identity matrix (e.g., the
vector of Euler angles φ: roll, θ: pitch, ψ: yaw). This yields
the following linear approximation of system (5)–(7) at the
equilibrium (ξ = 0, ξ̇ = 0,Θ = 0, ω = 0, T = mg,Γ = 0):

mξ̈ = −mgS(Θ)e3 − T̃ e3 + ΣRΓ (8)

Θ̇ = ω (9)
Iω̇ = Γ (10)

with T̃ = T − mg. Without loss of generality, let us
assume that the vehicle’s inertia matrix is diagonal (i.e.,
I = diag(I1, I2, I3)). For most VTOL vehicles and especially
for tail-sitters and helicopters, the coupling matrix ΣR requires
close attention. This coupling, which induces marginally stable
or unstable zero dynamics depending on the vehicle’s actuation
configuration, has motivated various research studies [24,
App.A], [39], [61], [65]. As a case study, let us consider
the class of ducted-fan tail-sitters for which the coupling
matrix ΣR is given by Eq. (4). In this case, system (8)–(10)
can be decomposed into four independent Single-Input-Single-
Output (SISO) linear systems. The first two systems concern
the vehicle’s altitude and Euler yaw angle dynamics. Their
equations are

mξ̈3 = −T̃
I3ψ̈ = Γ3
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The origins (ξ3, ξ̇3) = (0, 0) and (ψ, ω3) = (0, 0) of these
double integrators are exponentially stabilized by classical PD
(Proportional Derivative) controllers which can be comple-
mented with an integral action (yielding a PID controllers).
One remarks that the third torque control variable Γ3 is only
used for the control of the vehicle’s yaw angle, but is of no
use for the control of the vehicle’s position ξ. The other two
independent SISO linear systems are{

mξ̈1 = −mgθ + Γ2/L

I2θ̈ = Γ2
(11)

{
mξ̈2 = mgφ− Γ1/L

I1φ̈ = Γ1
(12)

By an adequate change of coordinates, each of these two
systems can be rewritten as

ẋ1 = x2

ẋ2 = x3 + εu

ẋ3 = x4

ẋ4 = u

(13a)
(13b)
(13c)
(13d)

with (x1, x2, x3, x4) = (ξ1, ξ̇1,−gθ,−gθ̇), u = −(g/I2)Γ2,
and ε = −I2/(mgL) for system (11); and (x1, x2, x3, x4) =
(ξ2, ξ̇2, gφ, gφ̇), u = (g/I1)Γ1, and ε = −I1/(mgL) for
system (12). The linear system (13a)–(13d) is controllable but
the stabilization of its origin x = 0, although obvious, deserves
close attention. A certain number of contributions on nonlinear
control of VTOL vehicles turn out to have a close kinship with
the linear control approaches summarized below:
1) The first approach focuses on the exponential stabilization
of (x1, x2) = (0, 0) by using the control input εu when ε 6= 0.
Setting v := x3 + εu, one obtains the double integrator{

ẋ1 = x2

ẋ2 = v
(14)

whose origin is exponentially stabilized by the PD controller

v = −k0x1 − k1x2, with k0,1 > 0.

The closed-loop exponential convergence of v to zero also
follows. Once this convergence is achieved (i.e., when x1 =
x2 = 0), the dynamics of the variables x3 and x4 are given
by {

ẋ3 = x4

ẋ4 = −x3/ε
(15)

It appears from these equations that the origin of system (15) is
at best marginally stable. It is so when ε > 0, but it is unstable
when ε < 0. Besides, even when it is marginally stable as in
the case of a helicopter for instance, it is oscillatory at a high
frequency, since ε is often very small, and thus highly sensitive
to the slightest perturbation. For these reasons this approach,
which looks simple and attractive in the first place because it
exploits the coupling terms associated with a non-zero matrix
ΣR, is not commendable.
2) The second approach consists in designing a full state
feedback controller

u = −k0x1 − k1x2 − k2x3 − k3x4, with k0,1,2,3 > 0,

yielding the exponential stabilization of the origin of system
(13a)–(13d). In this case, when ε is small the term εu affects
the control performance marginally only. In fact, it suffices
to choose the control gains ki (i = 0, . . . , 4) so that the
characteristic polynomial of the closed-loop system, given by

p4 + (k3 + εk1)p3 + (k2 + εk0)p2 + k1p+ k0,

is Hurwitz. For example, by choosing k2 and k3 large enough
with respect to εk0, the precise knowledge of ε does not matter.
Although this approach looks simple enough, it is seldom used
in practice. A probable reason is that practitioners prefer to
decompose the fourth-order system (13a)–(13d) into a cascade
of subsystems of order two at most so as to facilitate control
implementation (with on-the-shelf PID controllers) and failure
diagnosis. In particular, a separation principle between the
control of x1 (in a so-called Guidance loop) and the control
of x3 (in a so-called Control loop) is often adopted. It is
partly justified by the different control and measurement rates
associated with the two levels: low frequency for the Guidance
loop and high frequency for the Control loop. This yields the
hierarchical control described next.
3) Classical hierarchical control essentially neglects the cou-
pling term εu in the translational dynamics (i.e., by setting
ε = 0 or equivalently ΣR = 0) and consists in considering x3

as a control input for subsystem (13a)–(13b). Then, the desired
value of x3, here denoted as xd3, is used as a reference value
for subsystem (13c)–(13d). Either backstepping or a high-gain
technique can be applied. For instance, backstepping leads to
rewrite the system as

ẋ1 = x2

ẋ2 = xd3 + x̃3

˙̃x3 = x̃4

˙̃x4 = −ẍd3 + u

with x̃3 = x3 − xd3 and x̃4 = x4 − ẋd3. With this approach
xd3 represents a desired control input for the asymptotic
stabilization of the origin of subsystem (13a)–(13b). With
a PD controller of the form xd3 = −k0x1 − k1x2, with
k0,1 > 0, closing the loop yields ẋd3 = −k0x2 − k1x3 and
ẍd3 = −k0x3−k1x4. It then remains to design a control input
u which asymptotically stabilizes the “errors” x̃3 and x̃4 at
zero. One can take, for instance

u = ẍd3 − k2x̃3 − k3x̃4, with k2,3 > 0. (16)

Since the characteristic polynomial of the closed-loop system
is

(p2 + k1p+ k0)(p2 + k3p+ k2),

the positivity of all gains ki (i = 0, . . . , 3) indeed ensures, by
a straightforward application of the Routh-Hurwitz criterion,
the exponential stability of the origin of the initial fourth-order
system. A variation of the backstepping technique consists in
using a high-gain controller for the second subsystem (i.e.,
subsystem (13c)–(13d)) while neglecting the dynamics of the
reference variable xd3 (i.e., by setting ẋd3 = ẍd3 = 0 in the
expression (16) of the control input u). This yields the simpler
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controller u = −k2x̃3−k3x4 and the closed-loop characteristic
polynomial

p4 + k3p
3 + k2p

2 + k1k2p+ k0k2

which is Hurwitz if and only if k3 > k1 and k2 >
k2
3k0

k1(k3−k1) >
0, by application of the Routh-Hurwitz criterion. The choice
of high gains k2 and k3 is consistent with these inequalities
and is legitimate in practice when the attitude dynamics can
be rendered fast compared to the translational dynamics, and
high-frequency measurements of the vehicle’s attitude and
angular velocities are available. With recent advances on
MEMS gyrometers, precise high-frequency angular velocity
measurements from an embedded Inertial Measurement Unit
(IMU) are now available at a modest cost. However, estimating
the vehicle’s orientation is much more difficult. The use
of accelerometers to recover roll and pitch angles is often
invoked, but the subject remains controversial [53]. Alternative
approaches have been proposed lately based on complemen-
tary measurements (issued from a GPS, for instance). This
still constitutes an active research topic [13], [25], [47], [52],
[72]. A separation of the system’s dynamics which better takes
the above-mentioned measurement rates and limitations into
account consists in moving the orientation variables to the slow
Guidance loops, together with the position and translational
velocity variables. This yields the hierarchical control scheme
described next.
4) Another hierarchical control strategy consists in using x4

(i.e., the variable associated with roll and pitch angular veloc-
ities) as a virtual control input for the third-order subsystem
(13a)–(13c), with the coupling term εu being neglected. The
desired value of x4, denoted as xd4, is then used as a reference
for the second subsystem which, in this case, is reduced
to the first-order equation (13d). For instance, applying a
backstepping technique yields the following system:

ẋ1 = x2

ẋ2 = x3

˙̃x3 = xd4 + x̃4

˙̃x4 = −ẋd4 + u

with x̃4 = x4 − xd4 and xd4 typically chosen of the form xd4 =
−k0x1−k1x2−k2x3 with k0,1,2 > 0. Then, the control input
u is designed in order to exponentially stabilize x̃4 = 0. For
instance, the feedback controller

u = ẋd4 − k3x̃4, with k3 > 0, (17)

yields the following closed-loop characteristic polynomial

(p3 + k2p
2 + k1p+ k0)(p+ k3)

which is Hurwitz provided that all gains ki (i = 0, . . . , 3)
are positive and k1k2 > k0. A simplified solution consists in
using a high-gain controller for the second subsystem (i.e.,
subsystem (13d)) while neglecting the dynamics of xd4 (i.e.,
by setting ẋd4 = 0 in the expression (17) of u). Then, the
closed-loop characteristic polynomial is

p4 + k3(p3 + k2p
2 + k1p+ k0)

and it is Hurwitz if and only if k1k2 > k0 and k3 >
k2
1

k1k2−k0 .
The latter inequality is consistent with the choice of a high
gain k3 for the control of the second subsystem.

Beyond classical pole placement techniques, modern Linear
Control Theory is concerned with the determination of opti-
mal control gains associated with optimal control problems.
Typical underlying preoccupations are energy efficiency and
robustness with respect to model uncertainties and/or aerody-
namic disturbances. Examples of published studies along this
direction are:
• [7], where a Linear-Quadratic-Regulator (LQR) controller

is proposed for the control of the rotational dynamics of
a quadrotor helicopter and compared to a PID controller.
The LQR control technique has also been applied to the
stabilization of the lateral position and Euler roll angle of
a quadrotor helicopter [11] and to velocity stabilization
of a ducted-fan tail-sitter [79].

• [3], where a Linear-Quadratic-Gaussian (LQG) controller,
incorporating a quadratic criterion for weighting the
model sensibility with respect to parametric variations,
is applied to a model of quadrotor helicopter.

• [12], [44], [48], [66], [80], where robust H2 and H∞
control techniques are applied to helicopter models.

The main limitation of linear control techniques is the local
nature of the control design and analysis. More precisely,
the following issues should be kept in mind when applying
these techniques, especially for cruising flight (with non-zero
reference velocity):
• In the case of reference trajectories with time-varying

velocities, or in the case of wind gusts, the equilibrium
orientation varies with time. The linearized system asso-
ciated with the error dynamics is then also time-varying,
and ensuring the stability of the origin of this system be-
comes much more involved. Such is the case, for instance,
of the “gain-scheduling” approach used for helicopters
(e.g., [36]) and airplanes autopilots (e.g., [30]), which is
based on interpolating local linear controllers calculated
for a set of nominal operating conditions. By essence, this
approach does not account for rapidly changing operating
conditions that render the stability analysis untractable
even in the ideal case where all forces are measured
exactly.

• Due to aerodynamic disturbances, the vehicle may at
some point depart from its nominal operating domain and
even get far from it. In this case, the linearized dynamics
are no longer representative of the real dynamics.

• A more purely technical issue, here mentioned essentially
to point out useless complications, is that linearization in-
volves a minimal parametrization of the vehicle’s attitude.
This yields representation singularities which artificially
limit the domain of application of the controller, unless a
switching procedure between several local minimal rep-
resentations, specifically tailored to solve this problem, is
added to the controller. In this respect, some parametriza-
tions (e.g., Rodrigues parametrization) are known to be
better than others because their domain of validity is
larger. For instance, despite their historical importance
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and frequent use, Euler angles are not best appropriate
for the control of small VTOL vehicles.

IV. NONLINEAR CONTROL

Compared to control design methods based on linearization,
nonlinear methods can yield controllers with a significantly en-
larged domain of stability and enhanced robustness, especially
in the case of highly nonlinear dynamics, input saturations,
or fast time-varying perturbations. To simplify the exposition
nonlinear feedback control laws for underactuated VTOL
vehicles are here classified into two families, depending on
the design approach which is considered.

A. Controllers based on dynamic extensions

The approach essentially consists in considering TRe3 as a
system state variable and in differentiating it until three inde-
pendent control variables allowing for the exact linearization
of the translational dynamics are obtained. Early work [22],
based on exact input-output linearization [31], has focused on
the control of a planar vertical takeoff and landing (PVTOL)
aircraft. Extensions to the 3D case for a nonlinear model of a
conventional helicopter are reported in [39]. To provide the
reader with a more precise idea of the approach, without
complicating the exposition too much, let us again assume
that the external forces acting on the vehicle are reduced to the
vehicle’s weight (i.e., Fe = mge3) and that the coupling term
ΣRΓ in the translational dynamics can be neglected. Then, one
derives the following relations from the equations of system
(5)–(7): 

Ẋ1 = X2/m

Ẋ2 = X3

Ẋ3 = X4

Ẋ4 = U

(18)

with

X = (X1, X2, X3, X4)>

= (ξ,mξ̇,−TRe3 +mge3,−Rδ)>,
δ = (Tω2,−Tω1, Ṫ )>,

U = R(−T̈ e3 + TS(e3)I−1Γ + 2ṪS(e3)ω − TS(ω)2e3

− TS(e3)I−1S(ω)Iω).

Provided that T 6= 0, the application (T̈ ,Γ) −→ U is
surjective, thus allowing one to view U as a new control vector.
Since system (18) is linear and controllable, the asymptotic
stabilization of a given reference trajectory for ξ = X1 is then
a simple matter. Although this approach looks attractive at first
glance, its implementation raises a few issues:
• For rotary-wing VTOL vehicles, such as ducted-fans and

quadrotors, the thrust force is generated by propeller(s)
and T is a function of the associated motor’s angular
velocity, a quantity commonly used as a reference input
by motor manufacturers. If, instead of this velocity, T̈
is used as a control variable this means that the motor’s
jerk becomes a control input which has to be monitored.
This in turn induces serious complications along the

necessity to incorporate the motor’s dynamics into the
control design.

• In view of the expression of U , the calculation of the
control inputs T̈ and Γ involves the knowledge of T
and Ṫ . For most platforms, these two variables are not
available to measurement. Theoretically, these variables
could be estimated on-line from measurements of the
vehicle’s velocity. In practice, however, the low frequency
rate of these measurements (approximately 10Hz with a
GPS) does not allow for accurate estimations.

• The control is well-defined as long as T 6= 0. But the
non-crossing of zero by T , as a state variable, is not
guaranteed.

B. Hierarchical controllers

Many nonlinear control laws of this type for underactuated
VTOL vehicles have been proposed. Problems addressed with
this class of methods include:
• way-point navigation [62];
• visual servoing [40];
• control with partial state measurement [1], [6];
• robustness with respect to unmodeled dynamics like, e.g.,

variations of the vehicle’s mass or gravitational field [21],
[41], aerodynamic disturbances [26], [62], [63], [73],
parametric uncertainties [33], [49], [50];

• robustness with respect to measurement errors [14];
• actuators saturation [20], [50], [51], [74], [86].

Most design methods are based on “classical” Lyapunov-type
approaches, but other techniques have also been used such as
sliding-mode control [8], [42], [85] or predictive control [5],
[34], [37].

A common denominator of hierarchical nonlinear con-
trollers is their focus on the determination of the thrust vector
TRe3 to control the vehicle’s translational dynamics. They
are reminiscent of the hierarchical linear controllers described
in Section III by their two-stages architecture composed of a
“low-level” fast inner-loop and a “high-level” slow outer-loop.
The principles of hierarchical control for the stabilization of
reference translational velocities are presented next. Indica-
tions of how these principles can be extended to other control
objectives, such as the stabilization of reference position
trajectories and the compensation of unmodeled dynamics and
perturbations via the use of an integral action, are then given.

Let us first further simplify the control model (5)–(7)
by neglecting the coupling term ΣRΓ in Eq. (5) and by
using ω as a control variable. Both simplifications are often
made. While the validity of the former should be assessed
on a case-by-case basis, the latter corresponds to the linear
hierarchical strategy considered last in the previous section,
with x4 taken as a virtual control input. It is justified by the
full actuation of the vehicle’s orientation and by the high-
frequency rate measurement of the angular velocity vector ω
from an embedded set of gyrometers, which allows for the fast
convergence of ω to a desired reference value ωd. The control
model is then reduced to the following equations:{

mξ̈ = −TRe3 + Fe(ξ̇, d(t))
Ṙ = RS(ω)

(19)
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with T and ω as control inputs.
1) Velocity control:

Let ξ̇r denote a reference translational velocity expressed in
the inertial frame I, ξ̈r its time-derivative, and ˙̃

ξ := ξ̇− ξ̇r the
velocity error expressed in the same frame. One obtains the
following error model:{

m
¨̃
ξ = −TRe3 + F (ξ̇, t)

Ṙ = RS(ω)

(20a)

(20b)

with
F (ξ̇, t) := Fe(ξ̇, d(t))−mξ̈r(t) (21)

and with either ξ̃ :=
∫ t

0
˙̃
ξ(s)ds the integral of the velocity

error, or ξ̃ := ξ − ξr the position tracking error when a
reference trajectory ξr is specified.
a) Equilibrium analysis

In order to asymptotically stabilize zero for the velocity
error ˙̃

ξ := ξ̇ − ξ̇r, ˙̃
ξ ≡ 0 must be an equilibrium of Eq. (20a).

This in turn implies that ¨̃
ξ ≡ 0 must be satisfied and thus, in

view of Eq. (20a), that

Tη = F (ξ̇r, t), (22)

with η := Re3 the unit vector characterizing the thrust force
direction. The underlying geometrical interpretation is clear: at
the equilibrium the thrust direction is aligned with the direction
of the external force (corrected by the reference acceleration)
and the thrust intensity counterbalances the external force in-
tensity. The above basic relation calls for simple but important
remarks:
• As long as F (ξ̇r, t) is different from zero, there exist only

two solutions (Tr, ηr) to Eq. (22), given by

(Tr, ηr) =

(
±|F (ξ̇r, t)|,±

F (ξ̇r, t)
|F (ξ̇r, t)|

)
. (23)

In practice, the chosen solution is most of the time
imposed by physical considerations, such as the positivity
of the thrust intensity.

• As already mentioned in the linear control section, moni-
toring the translational motion of a flying vehicle does not
impose by itself any constraint upon the yaw angle (i.e.,
the modification of which does not change the thrust di-
rection). This angle can thus be controlled independently
to achieve a complementary objective. This also means,
as one could logically expect, that only three independent
actuation inputs corresponding to three degrees of free-
dom are needed to control the three translational velocity
(or position) coordinates of a vehicle.

• When F (ξ̇r, t) = 0, any unit vector η satisfies Eq.
(22) with T = 0. This singular case corresponds to
specific operating conditions which are not commonly
encountered in practice with VTOL vehicles. This is due
to the gravity term involved in F (ξr, t) which keeps
this force away from zero when aerodynamic forces and
translational accelerations are not too strong. However,
intense wind gusts or very aggressive reference trajecto-
ries may provoke this situation whose severity, in terms of

control, can be appreciated by the fact that the lineariza-
tion of the error system (20) at any equilibrium point
( ˙̃
ξ,R) = (0, R∗) satisfying the equilibrium condition
F (ξ̇r, .) ≡ 0 is not controllable, even though the system
itself remains theoretically (mathematically) controllable.
Stabilization of such equilibria is a challenging problem
whose solution involves very specific nonlinear control
techniques (see, e.g., [55]), the exposition of which is
beyond the scope of the present paper.

• When F (ξ̇r, t) 6= 0, well-posedness of the solutions
(23) to Eq. (22) is much related to the dependence of
Fe upon the vehicle’s orientation (i.e. upon the rotation
matrix R). More precisely, when Fe and, thus, F do not
depend on R, as in the hovering case for which Fe is
essentially reduced to the vehicle’s weight, it is clear that
the equation has a unique solution ηr once the sign of
Tr has been chosen. Another favorable case is when the
aerodynamic force Fe is dominated by its drag (vs. lift)
component whose direction is (by definition) given by
the airflow, and is thus essentially independent of the
vehicle’s orientation. Otherwise, the equation becomes
implicit in ηr and existence and uniqueness of the so-
lution (given the sign of Tr) are no longer systematic.
Several sub-cases can then be considered in order to
attempt determining sufficient conditions under which
these properties are satisfied. We will come back to this
issue further on.

b) Orientation control
In a first stage, let us consider the problem of stabilizing a

given desired direction characterized by a unit vector ηd, in-
dependently of other possible control objectives. This desired
direction may equally be specified by the orientation of a user’s
joystick, or be the (locally) unique solution ηr previously
evoked for velocity control purposes. For instance, in the case
of hovering, one can take ηd = e3 and nonlinear solutions
to the control problem can be compared to the linear ones
presented in the previous section. Defining ω1,2 := (ω1, ω2)>,
a possible nonlinear control solution, among many other
possibilities, is [26]

ω1,2 =
(
R>
(
k0

η × ηd
(1+η>ηd)2

− S(η)2(ηd × η̇d)
))

1,2

(24)

with k0 > 0. This control ensures the exponential stability
of the equilibrium point η = ηd provided that the initial
conditions η(0) and ηd(0) are not opposite to each other. It is
obtained by considering the storage function V := 1 − η>ηd
whose non-positive time-derivative, along any solution to the
controlled system, satisfies

V̇ = −k0
|η × ηd|2

(1+η>ηd)2
.

Two remarks are in order at this point. The first one concerns
the time-derivative η̇d which is present in the right-hand side
of Eq. (24). This term can be problematic when the desired
direction ηd depends on the vehicle’s orientation R because its
time-derivative then involves ω. Relation (24) then becomes
an implicit equation in ω which may not have a (bounded)
solution. Note that, in the case where ηd is taken equal to ηr,



9

this difficulty may arise even when the well-posedness of ηr
is established. In this case, another control solution must be
sought. The second remark concerns the calculation of ηr as a
reference direction. In practice, and in general, the expression
of aerodynamic forces along arbitrary reference trajectories
is not known. As a consequence, neither F (ξ̇r, t) nor ηr is
known. On the other hand, it is often possible to obtain an
on-line estimation of F at the current point (i.e., F (ξ̇, t))
via, for example, accelerometer measurements or high-gain
observers (see [27], [24, Ch. 2] for more details). For this
reason, control approaches based on this latter information
are often preferable. The velocity control schemes discussed
next take this route, knowing that stabilization of the reference
thrust direction is not by itself sufficient to ensure velocity sta-
bilization and that complementary terms involving the velocity
error ˙̃

ξ must also be introduced in the control law.
c) Classical control design

This approach (see, e.g., [62],[63]) is an extension of the
previous orientation control design to translational velocity
control. First, the velocity error dynamics is rewritten as
(compare with Eqs. (20a)-(21))

m
¨̃
ξ = −β( ˙̃

ξ)− Tη + F̄ (ξ̇, t), (25)

with
F̄ (ξ̇, t) := β( ˙̃

ξ) + F ( ˙̃
ξ, t) (26)

and β(.) a function chosen so as to make ˙̃
ξ = 0 a globally

asymptotically stable equilibrium of the equation m
¨̃
ξ =

−β( ˙̃
ξ). A simple example is the linear function defined by

β(x) := kβx, with kβ > 0. It then only remains to ensure the
asymptotic stability of F̄ −Tη = 0 via an adequate choice of
the thrust intensity T and of the control of the thrust direction
η. Assuming that F̄ does not vanish, a possibility consists
in defining T and a desired thrust direction ηd according to
(compare with Eq. (23))

(T, ηd) =

(
±|F̄ (ξ̇, t)|,± F̄ (ξ̇, t)

|F̄ (ξ̇, t)|

)
and in making η converge to ηd. To this purpose, if ηd does
not (or little) depend(s) on the vehicle’s orientation, one can
use the orientation control ω1,2 := (ω1, ω2)> defined by Eq.
(24).

Let us briefly comment upon the choice of the feedback
term β( ˙̃

ξ). Beside the infinite number of possibilities for the
choice of the function β, it matters to limit the risk of a
vanishing F̄ . To this end a function uniformly smaller in norm
than the vehicle’s weight (corresponding to the norm of Fe
when hovering in the absence of wind) seems preferable to
the linear function used in linear controllers. One can consider,
for instance

β( ˙̃
ξ) := sat∆(Kβ

˙̃
ξ),

with Kβ a diagonal positive gain matrix, ∆ < mg, and
sat∆(.) either the classical saturation function defined by
sat∆(x) := xmin(1,∆/|x|) or a differentiable approximation
such as sat∆(x) := ∆x/(1 + |x|).
d) Other control design

A nonlinear control design, recently proposed by the authors
[26] and with a structure slightly different from the classi-
cal design presented previously, involves the “current” force
F (ξ̇, t) of relation (21) whose intensity Tc and direction ηc
are given by

(Tc, ηc) =

(
±|F (ξ̇, t)|,± F (ξ̇, t)

|F (ξ̇, t)|

)
.

The proposed controller, whose angular velocity components
are reminiscent of these defined by Eq. (24) with ηd replaced
by ηc, is

T = Tc + Tc(ηT ηc − 1 + k2η
T ˙̃
ξ)

= Tcη
T (ηc + k2

˙̃
ξ)

ω1,2 = R>
(
k0

η × ηc
(1+η>ηc)2

− S(η)2(ηc × η̇c)
)

1,2

+
(
k1TcR

>(η × ˙̃
ξ)
)

1,2

(27a)

(27b)

It is derived by considering the storage function

L :=
mk1

2
| ˙̃ξ|2 + (1− η>ηc)

whose time-derivative

L̇ = −k0
|η × ηd|2

(1+η>ηd)2
− k1k2Tc(η>

˙̃
ξ)2

along any solution to the controlled system is non-positive.
It ensures the asymptotic stability of the equilibrium ( ˙̃

ξ, η) =
(0, ηc) and the convergence to this equilibrium of all system’s
solutions with initial conditions such that η(0) and ηc(0) are
not opposite to each other.

The main difference with the classical control design is the
use of F rather than F̄ in the definition of the “desired” thrust
direction ηc, with the advantage of not adding the contribution
of the feedback term β( ˙̃

ξ) to the risk of encountering the
singular case associated with the vanishing of F̄ . Being less
prone to ill-posedness, this control solution potentially applies
to a larger operating domain.
e) Complementary remarks
• Several studies (see, e.g., [18], [50], [51], [59, Ch. 5])

propose to define a desired vehicle’s orientation Rd ∈
SO(3) instead of a desired thrust direction ηd (= Rde3).
For example, Rd may be computed from ηd and another
non-collinear direction which defines a desired value for
the yaw angle. Stabilization of R to Rd can then be
achieved with any of the numerous control solutions
proposed in the literature (see, e.g., [50], [51], [33], [73],
[81], [82], [84], [18], [59, Ch. 5], [64]). However, the
approach presented here shows that there is no necessity
in the first place to determine the vehicle’s orientation
completely when the objective is just to control its
translational velocity (or its position). Controlling the
yaw angle corresponds to a complementary decoupled
objective which is achieved via the determination of the
remaining angular velocity component ω3, provided, of
course, that this degree of freedom is itself associated
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with an independent means of actuation. For instance, in
the case of helicopters and airplanes in cruising mode it
usually matters to keep the slide-slip angle, i.e., the lateral
angle between the airflow and the vehicle’s longitudinal
axis, small. This is achieved via the monitoring of the
yaw angle (called the roll angle in the case of airplanes,
because the longitudinal axis and thrust direction are
quasi horizontal) either by relying on passive aerody-
namic forces associated with the geometry and shape of
the vehicle (helicopter’s tail, airplane’s dihedral angle), or
by using complementary actuators (helicopter’s tail rotor,
airplanes ailerons) that allow for a more precise control
of ω3 and the yaw (resp. roll) angle in a large operating
range.

• As pointed out before, well-posedness of the nonlinear
velocity control solutions here considered partly relies
on the assumption of a force F (ξ̇, t) or F̄ (ξ̇, t) always
different from zero. Particularly harsh unpredictable fly-
ing conditions capable of inducing large tracking er-
rors can clearly invalidate this property, no matter how
good the control system is. However, the fact that these
forces essentially reduce to the resultant external force
Fe(ξr, d(t)) at the equilibrium (when the reference ac-
celeration is small) suggests to select reference velocities
for which the magnitude of this force remains larger
than a certain “security” threshold. Furthermore, using
the dissipativity (passivity) of aerodynamic forces, it has
been shown (see [26] for details) that properties of quasi-
global stability can be obtained under the sole condition
that F (ξ̇r, d(t)) 6= 0 for all t.

• Another potential cause, also pointed out before, for ill-
posedness of the controllers is the strong dependence of
the external force Fe upon the vehicle’s orientation R. In
particular, a detailed analysis of equilibrium thrust direc-
tions in the case where the lift component is important
has revealed that, given a reference translational veloc-
ity, there may exist several such equilibrium directions
and, furthermore, that their number may vary with the
reference velocity [68]. This in turn implies that some
of these equilibria may disappear when the reference
velocity changes, in which case the asymptotic stabi-
lization of such an equilibrium is clearly meaningless.
This difficulty, intimately related to the appearance of the
so-called “stall” phenomenon, calls for complementary
investigations.

• The control expressions (24) and (27b) involve the time-
derivative of the desired (resp. current) thrust direction ηd
(resp. ηc). Since these directions themselves depend on
the vector of external forces Fe, an estimation of the time-
derivative of this vector is needed to calculate the control
inputs. Obtaining a good estimation of this derivative
for arbitrary flight conditions is not easy. However, for
favorable flight conditions, such as hovering or constant
velocity cruising with constant wind, this derivative can
be taken equal to zero without much affecting the control
performance. More details on the issue can be found in
[4] in the particular hovering case. This simplification is
also commonly made in practice for way-point navigation

and visual servo-control.
• In relation to the previous remark, not only can Fe

vary quickly in some cases, because of either rapidly
changing environmental conditions or important refer-
ence accelerations required by the execution of extreme
maneuvers, the possible dependence of this force upon
the vehicle’s orientation makes the time-derivative of
this force a function depending linearly on the angular
velocity ω, thus rendering the control expressions (24)
and (27b) implicit in the control inputs ω1,2. As long
as the corresponding “gains” are small, this dependence
can be neglected in the calculation of the control inputs.
Otherwise, it has to be evaluated via a model of Fe and
eventually used in a modified expression of the control.
This issue particularly concerns vehicles with large wing
surfaces that produce strong lift forces depending on their
orientation with respect to the airflow. Exploring it further
is of utmost importance to extend and generalize the
nonlinear control methods presented here.

Basic extensions of the previous nonlinear velocity con-
trollers to the more demanding control objectives of velocity
control with integral correction and of position control are
presented next. For the sake of brevity these extensions are
only specified for the classical design version, but they apply
similarly to the other design (see [26] for details).

2) Velocity control with integral correction:
Robustness against model uncertainties is discussed next. The
control laws presented so far involve the knowledge of the
external force vector Fe. In practice, whatever the method used
for estimating Fe (e.g., functional modeling, on-line estimation
from embarked sensors data, etc.) the knowledge of this term is
never totally accurate. To counterbalance the negative effects
resulting from imprecise knowledge of this force and from
other unmodeled terms involved in the system’s dynamics, an
integral action can be incorporated into the control law. For
example, as suggested in [62], [63], [73], one can modify the
feedback term β in Eq. (25) so as to introduce an integral
correction term, i.e.,

β(∫ ˙̃
ξ,

˙̃
ξ) = Kβ2

∫
˙̃
ξ + sat∆(Kβ1

˙̃
ξ), (28)

with ∆ a positive number and (Kβ1 ,Kβ2) a pair of positive
diagonal gain matrices. Note, in view of Eq. (26), that the
expression of F̄ is then also modified.

It is common knowledge that integral correction action (i.e.,
the term

∫ ˙̃
ξ) constitutes an effective means to compensate

for model uncertainties. But it is also well-known that this
type of correction may generate instability and wind-up prob-
lems (like, e.g., large overshoot, slow desaturation, actuator
saturation, etc.). For instance, even when ˙̃

ξ stays close to
zero its integral can grow arbitrarily large. As a consequence,
there is an increased risk for F̄ to cross zero and for the
control expression to become singular. On the other hand, the
use of a saturation function sat∆I

(
∫ ˙̃
ξ) in place of

∫ ˙̃
ξ in the

expression of β(·) does not prevent this integral term from
growing arbitrarily large, leading to slow desaturation and
sluggish dynamics. A possible remedy consists in using an
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anti-windup integrator technique (see, e.g., [26], [28], [76] for
anti-windup solutions). For instance, one may replace the term∫ ˙̃
ξ in Eq. (28) by the “bounded” integral term z calculated as

follows (see, e.g., [76])

ż = kz(−z + sat∆z (z + ˙̃
ξ)), |z(0)| < ∆z ,

with kz > 0 and ∆z > 0. Using the classical saturation
function, this relation yields a pure integrator ż = kz

˙̃
ξ when

|z + ˙̃
ξ| ≤ ∆z , and also |z(t)| ≤ ∆z and |ż(t)| ≤ 2kz∆z ,

∀t ≥ 0.
3) Position control:

As in the case of velocity control with integral correction,
position trajectory tracking can be achieved via a suitable
modification of the feedback term β. A first solution is

β(ξ̃, ˙̃
ξ) = sat∆2(Kβ2 ξ̃) + sat∆1(Kβ1

˙̃
ξ),

with (∆1,∆2) a pair of positive numbers and (Kβ1 ,Kβ2) a
pair of positive diagonal gain matrices. The position feedback
term sat∆2(Kβ2 ξ̃) provides with the correction necessary to
the convergence of ξ̃ to zero, while saturation functions are
again used to reduce the risk of a vanishing F̄ .

To further add robustness with respect to unmodeled dynam-
ics, a bounded nonlinear integrator with anti-windup properties
can be also incorporated into the controller. The solution
proposed in [26] involves new tracking error variables defined

by ¯̃
ξ := ξ̃ + z,

˙̃̄
ξ := ˙̃

ξ + ż, with z a “bounded integral”
of ξ̃, twice differentiable and with a second time-derivative
uniformly bounded in norm by an arbitrary number specified
by the user. Examples of calculation of such a term are given in
[26] and [28]. In the latter reference z is calculated as follows

z̈ = −kvz ż + satz̈max/2(kpz(−z + sat∆z
(z + ξ̃))),

z(0) = 0, ż(0) = 0,
(29)

with the classical saturation function, and kvz, kpz,∆z, z̈max
denoting positive numbers. This relation yields the following
upper-bounds: |z| < ∆z + z̈max/(2k2

vz), |ż| < z̈max/(2kvz),

|z̈| < z̈max. Using the definitions of ¯̃
ξ and

˙̃̄
ξ in the equations

of system (20) yieldsm ¨̃̄
ξ = −TRe3 + Fz(ξ̇, z̈, t)

Ṙ = RS(ω)

(30a)

(30b)

with Fz(ξ̇, z̈, t) := F (ξ̇, t)+mz̈. Since Eqs. (30a)–(30b) are of
the same form as those of the original system (20), one can use
the position controller evoked previously, modulo the change

of (ξ̃, ˙̃
ξ, F ) to ( ¯̃

ξ,
˙̃̄
ξ, Fz), to obtain the asymptotic stability of

( ¯̃
ξ,

˙̃̄
ξ) = (0, 0). If z were the exact (unbounded) integral of ξ̃,

the convergence of ¯̃
ξ to zero would clearly imply the one of

ξ̃ to zero. It is not difficult to show that the same conclusion
holds when z is calculated according to Eq. (29).

V. CONCLUSION

Basic control design ideas and principles for VTOL vehicles
have been reviewed. One of the messages that we have tried to
pass on is that the nonlinear approach to the control problems

has definite assets with respect to the well established and
universally used linearization approach. It is founded on the
physics of flight, it is respectful of the geometry of motion in
space, and it allows for a large operating domain. The control
schemes derived from it are not more complex and may in fact
be seen as natural extensions of locally approximating linear
control schemes. The interest of this latter point of view is that
it reconciles the two approaches by also pointing out that linear
control gain optimization techniques are useful for the tuning
of a certain number of parameters involved in nonlinear control
schemes. The paper is an introduction to control principles on
which it is possible to elaborate fully operational automatic
control flight systems. As such it does not pretend to cover
all aspects of flight control. Nor does it address all VTOL
vehicles. In this respect, the assumption of independence of
aerodynamic forces with respect to the vehicle’s orientation
is a severe limitation. Many problems, a certain number of
which have been pointed out along the paper, are still unsolved
and directions for further exploration are numerous (sensory
fusion for state estimation, coupling of state estimation with
control, vision-based control, to name a few). Let us just again
mention here the importance of taking aerodynamic forces into
account in the control design if the objective is to fly small
devices in adverse wind conditions, and/or when lift becomes
the dominant aerodynamic force component. Convertible aerial
vehicles capable of hovering and of economy-cruising by using
lift are particularly concerned by this issue and the adjacent
problem of transition between these two modes [69], [70],
[57]. The spectrum of vehicles of this type, from blimps to
flapping-wing devices [2], [71], is very large. Beyond the
case of flying vehicles, many other “thrust-propelled” vehicles,
such as marine ships, hovercrafts, and submarines, can also
be addressed with similar ideas and techniques by properly
taking the specific nature and properties of external forces
into account. All works in this direction participate in the
development of a unified control theory for the ever growing
family of underactuated vehicles.
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