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Abstract—Attitude estimation is a key component of the
avionics suite of any aerial robotic vehicle. This paper details
theoretical and practical solutions in order to obtain a robust
nonlinear attitude estimator for flying vehicles equipped with
low-cost sensors. The attitude estimator is based on a nonlinear
explicit complementary filter that has been significantly enhanced
with an effective gyro-bias compensation via the design of an anti-
windup nonlinear integrator. A measurement decoupling strategy
is proposed in order to make roll and pitch estimation robust
to magnetic disturbances that are known to cause errors in yaw
estimation. In addition, the paper discusses the fixed-point nu-
merical implementation of the algorithm. Finally, simulation and
experimental results confirm the performance of the proposed
method.

Index Terms—attitude estimation, nonlinear observer, gyro-
bias compensation, anti-windup integrator, magnetic disturbance,
unmanned aerial vehicle

I. I NTRODUCTION

The development of a small-scale low-cost autonomous
aerial vehicle system requires effective solutions to a number
of key technological problems. The avionics subsystem of
such a vehicle is arguably the technology that is most closely
coupled to the autonomy of the vehicle. Within an avionics
system, the attitude estimator provides the primary measure-
ment that ensures robust stability of the vehicle flight. The
development of a robust and reliable attitude estimator, that
can run on low-cost computational hardware, and that requires
only measurements from low-cost and light-weight sensing
systems, is a key technology enabler for the development
of such systems. Theoretically, it is possible to estimate the
attitude just by integrating the rigid body kinematic equation
of rotation and using the angular velocity measurement data
provided by gyrometers. However, such a solution is not
viable beyond a few hundred milliseconds due to the effects
of sensor noise and bias. Several alternative solutions have
been proposed since the early 1960s’. The surveys about
attitude estimation methods [8], [9], [11], [21] are useful
references to begin research on the topic. In fact, the attitude
can be algebraically determined by using the measurements,
in the vehicle body-fixed frame, of at least two known non-
collinear inertial directions (i.e. vectors) as explainedin [24],
[34], [40]. However, imperfect measurements and/or imprecise
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knowledge of the considered inertial directions can generate
large errors in the extracted attitude. This motivates the de-
velopment of algorithms that fuse vector measurements, such
as those provided by magnetometers or accelerometers, with
the angular velocity measurements provided by gyrometers to
obtain a more accurate and less noisy attitude estimation [3],
[4], [5], [6], [7], [10], [12], [18], [20], [21], [22], [25], [26],
[28], [29], [30], [31], [36], [37], [38], [39].

Recent advances in observer theory has lead to the develop-
ment of nonlinear attitude observers that address this problem
[4], [10], [21], [22], [26], [30], [37], [39]. These observers
are algorithmically simple and can be implemented on low-
processing power fixed-point microprocessors in unit quater-
nion form. The observers need only vector measurement inputs
from low-cost and light-weight MEMS strap-down inertial
measurement units (IMUs). Typically, the algorithms use a
measurement of angular velocity measured by a 3-axis suite of
rate gyrometers, a vector direction estimate of the gravitational
direction derived from a 3-axis suite of accelerometers, and
where possible, vector measurement of magnetic field, mea-
sured by a 3-axis suite of magnetometers [10], [21], [26]. All
low-cost MEMS devices are subject to significant noise effects.
Gyrometers and accelerometers suffer from time-varying bias
and noise due to temperature change, vibration and impacts,
magnetometer readings are corrupted by on-board magnetic
fields generated by motors and currents, as well as external
magnetic fields experienced by vehicles that manoeuvre in
built environments. Earlier work in development of attitude
observers tackled the question of bias in the gyrometer MEMS
devices [10], [21], [26], [37], [38] by introducing an adaptive
bias estimate in the algorithm. Decoupling of input signalsto
ensure that the roll and pitch estimates are not disturbed by
deviation in the magnetometer measurements was considered
in [14], [26] and represents an important modification of the
basic algorithm to improve the overall quality of the attitude
estimate. However, onlylocal decouplingof the roll and
pitch estimation from the magnetometer measurements has
been proved [14], [26], the global decoupling has remained
unsolved. Another question that has not been considered in
the literature is that of limiting wind-up in the bias estimate
of the algorithm. This is particularly important during start-up
and take-off manoeuvres where the bias estimate integral can
“wind-up” during the period when the vehicle is still in contact
with the ground, potentially causing significant estimation
errors at the moment the vehicle becomes airborne. There has
also been little discussion of issues related to the fixed-point
implementation of the algorithms on small-scale low-power
microprocessors.
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In the present paper we propose a novel nonlinear attitude
estimation algorithm for IMUs that is almost-globally stable
and locally exponentially stable, and that ensures the global
decoupling of the dynamics of the roll and pitch estimates
from magnetic disturbances and from the dynamics of the
yaw estimate. Moreover, we propose an effective gyro-bias
compensation via the design of an anti-windup nonlinear
integrator. Finally, we discuss issues related to the fixed-
point implementation of the attitude estimation algorithm.
The algorithm has been fully tested and experimental results
provided indicate the performance of the algorithm.

II. PROBLEM FORMULATION

A. The Explicit Complementary Filter for Attitude Estimation

The attitude of a rigid body can be modeled by a rotation
between a body-fixed frameB and an inertial reference frame
I (see, for example, [33], [35] for various attitude parameteri-
zations). A convenient representation of attitude is the rotation
matrix R ∈ SO(3), with SO(3) the special orthogonal group.
The kinematic equation ofR satisfies the following equation

Ṙ = RΩ× , (1)

with Ω ∈ R3 the body’s angular velocity expressed in the
body-fixed frameB, and (·)× the skew-symmetric matrix
associated with the cross product×, i.e. x×y = x × y,
∀x,y ∈ R3.

For analysis purposes, we use an Euler angle parametriza-
tion of the rotation matrices, knowing that singularities may
occur for such a minimal parametrization. Letφ, θ and ψ
denote the Euler angles corresponding to roll, pitch and yaw,
commonly used in the aerospace field. Then, the attitude
matrix R can be written as

R=





CθCψ SφSθCψ−CφSψ CφSθCψ+SφSψ
CθSψ SφSθSψ+CφCψ CφSθSψ−SφCψ
−Sθ SφCθ CφCθ



, (2)

with C andS denoting thecos(·) and sin(·) operators.
In practice, the angular velocity vectorΩ is typically

measured by gyrometers. For the sake of observer design and
associated analysis, the measured angular velocity, denoted as
Ωy, is modeled as the sum of the real angular velocityΩ with
an unknown constant (or slowly time-varying in practice) bias
vectorb ∈ R3, i.e. Ωy = Ω + b (see, for example, [21]).

Let us recall and discuss theexplicit complementary filter
proposed in [10], [21]. Let{vI

i } denotes a set ofn (≥ 2)
known non-collinear unit vectors of coordinates expressedin
the inertial frameI, and{vB

i } a set of measurement data of
these vectors expressed in the body-fixed frameB. Let R̂ and
b̂ denote the estimates ofR andb, respectively. The explicit
complementary filter is written as







˙̂
R = R̂ (Ωy − b̂ + σR)×, R(0) ∈ SO(3)
˙̂
b = σb, b̂(0) ∈ R3

σR :=

n∑

i=1

kiv
B
i × R̂>vI

i , σb := −kIσR

(3)

with kI and ki, (i = 1, · · · , n), denoting positive gains. As
proved in [21], observer (3) ensures almost-global stability and

local exponential stability of the equilibrium(R̃, b̃) = (I3,0),
with R̃ := RR̂>, b̃ := b − b̂ andI3 the identity element of
SO(3).

B. Standard Implementation with IMUs

Assume that the IMU fixed to the body consists of a 3-axis
gyrometer, a 3-axis accelerometer and a 3-axis magnetometer.

• The 3-axis accelerometer measures the specific accel-
eration aB ∈ R3 expressed in the body-fixed frame
B. One hasaB = R>(ẍ − ge3), where the vehicle’s
acceleration expressed in the inertial frameI is ẍ, and
the gravitational acceleration expressed in the frameI is
ge3, with e3 = (0, 0, 1)>.
It is known that for an ideal thrust controlled aerial
vehicle, the measurement of the gravity direction cannot
be directly extracted from accelerometer measurement
data [23], [27]. In practice, aerial robotic systems are
subject to secondary aerodynamic forces that inject low
frequency information on the actual inertial gravitation
direction into the accelerometer measurements [23], [27].
It follows that the modelaB ≈ −gR>e3 is an effective
model for vector attitude measurement in a wide range
of practical systems [10], [20], [21], [26].

• The 3-axis magnetometer measures the geomagnetic field
vectormB ∈ R3 expressed in the body-fixed frameB. If
the magnetometer measurement data is not corrupted by
magnetic disturbances, then one hasmB = R>mI , with
mI ∈ R3 the geomagnetic field expressed in the inertial
frameI. One can check at [1] for the geomagnetic field
vector by using the IGRF-11 model.

Standard implementation of the explicit complementary
filter (3) consists in defining the innovation termσR as (see
[21] for more details)

σR = ks1uB × R̂>uI + ks2m̄B × R̂>m̄I , (4)

with ks1,2 positive gains,uB := −aB/g, uI := e3, m̄B :=
mB/|mI| and m̄I := mI/|mI |. Let us call this solution
as standard observerto distinguish it with theconditioned
observerproposed in Section III.

C. Coupling Issues with Standard Implementation with IMUs

In view of Eq. (2) the roll and pitch anglesφ and θ can
be directly deduced fromR>e3 which can be approximated
by the accelerometer measurementaB. As a consequence,
theoretically estimating roll and pitch can be done inde-
pendently from magnetometer measurements. However, the
standard implementation of the explicit complementary filter
(3) with IMUs encounters some issues well discussed in the
literature (see, for example, [26]):

• Magnetic disturbances and bias influence the estimation
of roll and pitch angles. In many applications especially
for small-size electric motorized aerial robots, significant
magnetic disturbances are almost unavoidable, leading to
significant time-varying deterministic error betweenmB

andR>mI . This not only leads to large estimation errors
of the yaw angleψ but also non-negligible errors in the
roll and pitch estimation.
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• The dynamics of roll, pitch and yaw estimates are highly
coupled. This implies that the estimation of the yaw angle
strongly affects the estimation of the roll and pitch angles.
This issue can be observed when taking a close look
at the linearized system around the system equilibrium.
For the sake of simplicity, let us neglect the gyro-bias
b and the dynamics of the estimated biasb̂ only in
this subsection. This supposition in association with Eqs.
(3) and (4) ensures the following dynamics of the error
attitudeR̃ = RR̂>:

˙̃
R = −(ks1e3 × R̃e3 + ks2m̄I × R̃m̄I)×R̃. (5)

Consider a first order approximation of̃R around the
equilibrium R̃ = I3 as R̃ = I3 + x×, with x =
(x1, x2, x3)

> ∈ R3. Note that locally the first, second
and third components ofx correspond, respectively, to
the roll, pitch and yaw error estimates. One easily verifies
from Eq. (5) that

ẋ = −ks1e3 × x×e3 − ks2m̄I × x×m̄I

=
(
−ks1(I3 − e3e

>
3 ) − ks2(I3 − m̄Im̄

>
I )

)
x

=





−ks1−k
s
2(1−m̄

2
1) ks2m̄1m̄2 ks2m̄1m̄3

ks2m̄1m̄2 −ks1−k
s
2(1−m̄

2
2) ks2m̄2m̄3

ks2m̄1m̄3 ks2m̄2m̄3 −ks2(1−m̄
2
3)



x

= Axx. (6)

In practice, the gravity vector and the geomagnetic field
vector (i.e.e3 and m̄I) can be “ill-conditioned” in the
sense that they are very close to each other. In such a
case, the third component of̄mI is dominant to its first
and second ones. For example, in Francem̄3 ≈ 0.9. As
a consequence, in view of Eq. (6) the dynamics of the
roll and pitch errors (i.e.x1 andx2) are strongly coupled
with the yaw error dynamics (i.e.x3).

• On the other hand, the strong dynamics coupling is not
the sole issue. The ill-conditioning of the two vectorse3

and m̄I may also lead to the impossibility of finding
a set of “non-high” gains{ks1, k

s
2} so as to provide the

system with fast time response, bearing in mind that high
gains may excessively amplify measurement noises. For
discussion purposes and without loss of generality, let us,
for instance, assume that̄m2 ≈ 0 (i.e. m̄2

1 +m̄2
3 ≈ 1) and

m̄2
3 � m̄2

1. Under this approximation, it is straightfor-
ward to verify that three poles of System (6) are given
by:






λs1 = −(ks1+ks2)

λs2 = − 1
2 (ks1+ks2)

(

1+
√

1−
4ks

1
ks

2
m̄2

1

(ks

1
+ks

2
)2

)

λs3 = − 1
2 (ks1+ks2)

(

1−
√

1−
4ks

1
ks

2
m̄2

1

(ks

1
+ks

2
)2

)

≈−
ks

1
ks

2
m̄2

1

ks

1
+ks

2

(7)

The poleλs1 is associated with the pitch dynamics, and the
polesλs2 andλs3 are associated with the coupled roll and
yaw dynamics. The less negative poleλs3, approximated
by −ks1k

s
2m̄

2
1/(k

s
1+ks2), will be very close to zero ifks1

andks2 are not chosen sufficiently high, sincēm2
1 � 1.

This leads to slow time response of the coupled roll and
yaw dynamics.

In Section III we propose a novel observer ensuring the
global decouplingof the roll and pitch estimations from the
yaw estimation and from magnetometer measurements.

D. Wind-up Issues on Gyro-bias Estimation

Additionally to the decoupling issues, one can observe some
problems in practice when using the integral correction term
b̂, meant to compensate for the unknown constant bias vector
b. For instance, the integral term̂b may grow arbitrarily large
leading to slow desaturation (and slow convergence) and/or
important overshoots of the estimation error variables (i.e. R̃
and b̃). Various sources of this phenomenon can be identi-
fied such as large initial errors, poor gain tuning, imprecise
knowledge of the considered inertial vectors, and imperfect
measurements of these vectors due to sensor misalignment,
sensor vibration, noises and biases, etc. Consequently, one
may choose a very small value for the integral gainkI to
reduce overshoots, but this in turn degrades the estimation
performance. In fact, this issue is well-known as the so-called
“integral wind-up effects” and has been well studied in the
literature, particularly in the context of control systems[13],
[15], [17], [32]. However, in the context of attitude estimation
design, to our knowledge, there are no standard references for
anti-windup for observers.

In Section III we propose some modifications on the dynam-
ics of b̂ so that the properties of convergence and stability of
the filter are still ensured, and integral wind-up effects can be
limited.

III. O BSERVERDESIGN FORIMU S

Let us make the approximation thataB ≈ −gR>e3 and
compute the following vectors (see Figure 1)







uB := −
aB

g
, vB :=

πuB
mB

|πuI
mI |

,

uI := e3 , vI :=
πuI

mI

|πuI
mI |

.
(8)

with πx := |x|2I3 − xx>, ∀x ∈ R3, denoting the orthogonal
projection on the plan orthogonal tox. One easily verifies that

uB = R>uI , vB = R>vI . (9)

Denote also

ûB := R̂>uI , v̂B := R̂>vI . (10)

Theorem 1: Consider the rotation kinematics (1) and the
angular velocity measurement model

Ωy = Ω + b , (11)

with b ∈ R3 an unknown constant bias. Consider the following
“conditioned observer”:







˙̂
R = R̂ (Ωy − b̂ + σR)×, R̂(0) ∈ SO(3)

˙̂
b = −kbb̂ + kbsat∆(b̂) + σb, |b̂(0)| < ∆

σR := k1uB × ûB + k2ûBû>
B (vB × v̂B)

σb := −k3uB × ûB − k4vB × v̂B

(12)
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Fig. 1. Vectors involved in attitude estimation.

with k1, k2, k3, k4, kb and∆ denoting positive numbers, and
sat∆(·) the classical saturation function defined by sat∆(x) :=
xmin(1,∆/|x|). Choosek3 andk4 such that

k4 < k3. (13)

Assume thatΩ is bounded and that the gyro-biasb is bounded
in norm by∆, i.e. |b| ≤ ∆. Then,

1) The dynamics of the estimate errors(R̃, b̃), with R̃ =
RR̂> andb̃ = b− b̂, have only four isolated equilibria
(R̃, b̃) = (R̃?

i ,0), i = 0, · · · , 3, with R̃?
0 = I3.

2) The equilibrium(R̃, b̃) = (I3,0) is locally exponen-
tially stable.

3) The equilibria (R̃?
1,0), (R̃?

2,0) and (R̃?
3,0) are

unstable. Thus, for almost all initial conditions
(R̂(0), b̂(0)) 6= (R̃?>

i R(0),b), i = 1, 2, 3, the
trajectory (R̂(t), b̂(t)) converges to the trajectory
(R(t),b(t)).

4) The dynamics of̂uB does not depend onmB when
consideringb̂ as an input.

5) The estimated gyro-biaŝb is bounded in norm bȳ∆ :=
∆ + (k3 + k4)/kb, i.e. |b̂(t)| ≤ ∆̄, ∀t ≥ 0.

Proof: It is straightforward to prove Parts 4 and 5 of the
theorem statement. Using (10) and the first equation of (12),
one deduces

˙̂uB = −(Ωy − b̂ + σR)×ûB

= −(Ωy − b̂ + k1uB × ûB)×ûB

where the last equality is obtained using

(k2ûBû>
B (vB × v̂B))×ûB = 0.

From here, it is clear that the dynamics ofûB is independent of
the magnetometer measurement vectormB when considering
b̂ as an input.

The proof of Part 5 of the theorem statement is based on the
positive functionV = 1/2|b̂|2 whose time-derivative verifies

V̇ = −kb|b̂|
2 + b̂>(kbsat∆(b̂) + σb)

≤ −kb|b̂|
2 + |b̂|(kb∆ + sup(σb))

≤ −kb|b̂|
2 + kb|b̂|

(

∆ +
k3 + k4

kb

)

. (14)

Let us prove by contradiction that|b̂(t)| ≤ ∆̄ = ∆ + (k3 +
k4)/kb, ∀t ≥ 0. Assume there exist a time instantT > 0 and
a small numberε > 0 such that|b̂(T )| > ∆̄, |b̂(T − ε)| = ∆̄
and |b̂(τ)| is increasing forτ ∈ [T − ε, T ]. This implies that
V(τ) = 1/2|b̂(τ)|2 is also increasing forτ ∈ [T − ε, T ]. This
implies thatV̇(T − ε/2) > 0. However, since|b̂(T − ε/2)| >
|b̂(T − ε)| = ∆̄, inequality (14) implies thaṫV(T − ε/2) < 0.
The resulting contradiction allows one to conclude the proof
of Part 5 of the theorem statement.

We consider the following candidate Lyapunov function

L := (1 − u>
B ûB) +

k4

k3
(1 − v>

B v̂B) +
1

2k3
|b̃|2 (15)

and compute its time-derivative. First, one verifies from Eqs.
(9), (10), (11) and (12) that

d

dt
(1 − u>

B ûB) = −u>
BΩ×ûB + u>

B (Ω + b̃ + σR)×ûB

= −k1|uB × ûB|
2 − b̃>(uB × ûB),

d

dt
(1 − v>

B v̂B) = −v>
BΩ×v̂B + v>

B (Ω + b̃ + σR)×v̂B

= −k1(uB × ûB)>(vB × v̂B)

− k2(û
>
B (vB × v̂B))2 − b̃>(vB ×v̂B),

˙̃
b = −

˙̂
b = −kbb̃ + kb(b − sat∆(b − b̃)) − σb.

From here, one straightforwardly verifies that the time-
derivative ofL is given by

L̇ = −k1|uB × ûB|
2 −

k2k4

k3
(û>

B (vB × v̂B))2

−
k1k4

k3
(uB × ûB)>(vB × v̂B)

−
kb
k3

|b̃|2 +
kb
k3

b̃>
(

b − sat∆(b− b̃))
)

. (16)

Then, using the inequality|b− sat∆(b− b̃)| ≤ |b̃|, ∀b̃ ∈ R3,
provided that∆ ≥ |b| by assumption (see [11, Chap.2, Sec.
2.8.14] for the proof), one deduces from Eq. (16) that

L̇ ≤ −k1|uB × ûB|
2 −

k2k4

k3
(û>

B (vB × v̂B))2

−
k1k4

k3
(uB × ûB)>(vB × v̂B). (17)

In the sequel, relation (17) will be further developed. From
the definition ofvI given in (8), one deduces that this constant
unit vector is orthogonal toe3 and, consequently, belongs to
Span(e1, e2). Thus, there exists a constant angleα such that

vI = Cα e1 + Sα e2 =





Cα −Sα 0
Sα Cα 0
0 0 1





︸ ︷︷ ︸

=:Rα∈SO(3)

e1 = Rαe1.

(18)

DefineR := R>
αR, R̂ := R>

α R̂, and the new attitude error

R̃ := RR̂
>

. One verifies that̃R = RαR̃R>
α . Consequently,

if R̃ converges toI3, then so does̃R. Using the fact that
uI = e3 = Rαe3 andvI = Rαe1, one verifies the following
relations:

uB = R>e3, vB = R>e1, ûB = R̂
>
e3, v̂B = R̂

>
e1. (19)
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Let Q denote the group of unit quaternions. Denote the unit
quaternion associated with̃R as q̃ := (q̃0, q̃v)

> ∈ Q, where
q̃0 and q̃v = (q̃1, q̃2, q̃3)

> are its real and imaginary parts,
respectively. Then, using the Rodrigues’ rotation formula

R̃ = (q̃20 − |q̃v|
2)I3 + 2q̃0q̃v× + 2q̃vq̃

>
v ,

along with Eq. (19), one verifies that

uB × ûB = R̂
>

(R̃
>
e3 × e3)

= 2R̂
>

((−q̃0q̃v× + q̃vq̃
>
v )e3 × e3)

= 2R̂
>

(−q̃0e
2
3×q̃v − q̃3e3 × q̃v)

= 2R̂
>

(q̃0q̃v − q̃0q̃3e3 − q̃3e3 × q̃v).

Similarly, one obtains

vB × v̂B = 2R̂
>

(q̃0q̃v − q̃0q̃1e1 − q̃1e1 × q̃v).

From here, one deduces that

|uB × ûB|
2 = 4|q̃0q̃v − q̃0q̃3e3 − q̃3e3 × q̃v|

2

= 4(q̃20 |q̃v|
2 − q̃20 q̃

2
3 + q̃23 |e3 × q̃v|

2)

= 4(q̃20 + q̃23)(q̃
2
1 + q̃22), (20)

(û>
B (vB × v̂B))2 = 4(e>3 (q̃0q̃v − q̃0q̃1e1 − q̃1e1 × q̃v))

2

= 4(q̃0q̃3 − q̃1q̃2)
2, (21)

and

(uB × ûB)>(vB × v̂B)

= 4(q̃0q̃v − q̃0q̃3e3 − q̃3e3×q̃v)
>(q̃0q̃v − q̃0q̃1e1 − q̃1e1×q̃v)

= 4(q̃20 q̃
2
2 + q̃1q̃3(e3 × q̃v)

>(e1 × q̃v))

= 4(q̃20 q̃
2
2 − q̃21 q̃

2
3). (22)

The substitution of Eqs. (20), (21) and (22) into (17) yields

L̇ ≤ −
4k2k4

k3
(q̃0q̃3 − q̃1q̃2)

2 − 4k1(q̃
2
0 q̃

2
1 + q̃22 q̃

2
3)

− 4k1

(

1 +
k4

k3

)

q̃20 q̃
2
2 − 4k1

(

1 −
k4

k3

)

q̃21 q̃
2
3 . (23)

Condition (13) and inequality (23) ensure the non-positivity
of L̇ and, consequently, the non-increasing ofL. This and
the definition (15) ofL ensure the boundedness ofb̃ and,
thus, of ˙̃

b. Then, one can easily verify from Eq. (16) thatL̈
also remains bounded, which implies the uniform continuityof
L̇. From here, the application of Barbalat’s lemma (see [16])
ensures the convergence ofL̇ to zero. This convergence and
inequality (23) imply the following relations:







q̃0q̃1 → 0

q̃0q̃2 → 0

q̃1q̃3 → 0

q̃2q̃3 → 0

q̃0q̃3 → q̃1q̃2

which ensure the convergence of the unit quaternionq̃ asso-
ciated withR̃ to one of the following quaternions:

(±1, (0, 0, 0))>, (0, (±1, 0, 0))>,

(0, (0,±1, 0))>, (0, (0, 0,±1))>,

which respectively correspond to the following rotation matri-
ces:







R̃
?

0 := I3

R̃
?

1 := diag([1,−1,−1])

R̃
?

2 := diag([−1, 1,−1])

R̃
?

3 := diag([−1,−1, 1])

(24)

One verifies that̃R?
i = RαR̃

?

iR
>
α , with i ∈ {0, 1, 2, 3}, and,

thus, R̃?
0 = I3. It remains to prove that̃b converges to the

null vector. To this end, we analyze the dynamics associated
with R̃:

˙̃
R = RΩ×R̂

>
− R(Ω + b̃ + σR)×R̂

>

= −(b̄ + k1e3×R̃e3 + k2R̃e3e
>
3 (R̃

>
e1×e1))×R̃

= −(b̄ + k1e3×R̃e3 − k2R̃e3(e
>
1 R̃e2))×R̃ , (25)

with b̄ := Rb̃. SinceR̃ converges to a constant matrix̃R
?

i (as

proved previously) anḋ̃R is uniformly continuous, one ensures
that ˙̃

R converges to the null matrix. With̃Ri specified by (24)
one verifies thate3×R̃

?

i e3 = e>1 R̃
?

i e2 = 0. Therefore, one
ensures that̄b and, thus,̃b converge to the null vector.

We proceed by computing the dynamics of the new variable
b̄ and using the dynamics of(R̃, b̄) to prove the stability
properties of the equilibria. The dynamics ofb̄ are locally
given by

˙̄b = R̃Ω×b̃ − Rσb

= (Ω)×b̄ + k3e3×R̃e3 + k4e1×R̃e1, (26)

with Ω := RΩ. Consider a first order approximation of(R̃, b̄)

(25) and (26) around an equilibrium point(R̃
?

i ,0), with i ∈
{0, 1, 2, 3},

R̃ = R̃
?

i (I3 + x×), b̄ = −y, with x,y ∈ R3.

The linearization of Eq. (25) is given by

R̃
?

i ẋ× = (y − k1e3×R̃
?

ix×e3 + k2R̃
?

i e3(e
>
1 R̃

?

ix×e2))×R̃
?

i

and, thus,

ẋ = −k1R̃
?

i e3×R̃
?

ix×e3 + k2e3(e
>
1 R̃

?

i x×e2) + R̃
?

iy

= k1(R̃
?

i e3)×e3×x − k2e3(R̃
?

i e1 × e2)
>x + R̃

?

iy

= Aix + R̃
?

iy, (27)

with






A0 := diag([−k1,−k1,−k2])

A1 := diag([k1, k1,−k2])

A2 := diag([k1, k1, k2])

A3 := diag([−k1,−k1, k2])

(28)

The linearization of Eq. (26) can be written as

ẏ = −k3e3×R̃
?

ix×e3 − k4e1×R̃
?

ix×e1 + Ω×y

= k3e3×(R̃
?

i e3)×R̃
?

ix + k4e1×(R̃
?

i e1)×R̃
?

ix + Ω×y

= Bix + Ω×y, (29)
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with 





B0 := diag([−k3,−k3 − k4,−k4])

B1 := diag([k3,−k3 + k4, k4])

B2 := diag([−k3, k3 + k4,−k4])

B3 := diag([k3, k3 − k4, k4])

(30)

One deduces from Eqs. (27) and (29) the combined error
dynamic linearization in the primed coordinates as

[
ẋ

ẏ

]

=

[

Ai R̃
?

i

Bi Ω×

] [
x

y

]

, with i = 0, · · · , 3. (31)

In order to prove the local exponential stability of the
equilibrium (R̃, b̄) = (I3,0), it suffices to prove that the
origin of linear time-varying system (LTV) (31), withi = 0,
is uniformly exponentially stable. The proof is based on the
results derived in [19, Theorem 1] which establish sufficient
conditions for exponential stability of the LTV system having
the form [

ẋ

ẏ

]

=

[
A(t) B(t)>

−C(t) 0

] [
x

y

]

. (32)

By setting ȳ := R>y, one easily verifies that System (31),
with i = 0, can be rewritten in the standard form (32) as

[
ẋ
˙̄y

]

=

[
A0 R

R>B0 0

] [
x

ȳ

]

, (33)

with A(t) = A0, B(t) = R>, C(t) = −R>B0. Now we
verify the two assumptions of Theorem 1 in [19]. First, the
first assumption of this theorem is satisfied since|B| and

∣
∣∂B

∂t

∣
∣

remain bounded for all time. Finally, the last assumption of
this theorem is also satisfied since the symmetric matrices
P = −B0 andQ = 2A0B0 satisfying the required relations
PB

> = C> and−Q = A>P + PA + Ṗ are constant and
positive definite. It remains to prove thatB is uniformly per-
sistently exciting. This is also satisfied since for any positive
numbersµ andT > µ one has

∫ t+T

t

B(τ)B(τ)>dτ =

∫ t+T

t

R(τ)>R(τ)dτ = T I3 > µI3,

for all time t ≥ 0. From here, the application of Theorem 1
in [19] ensures the uniform exponential stability of the origin
of System (33) which in turn concludes the proof of Part 2 of
the theorem statement.

In order to prove the instability of the three equilibria
(R̃, b̄) = (R̃

?

i ,0), with i = 1, 2, 3, it suffices to show that
the origin of the linearized system (31), withi ∈ {1, 2, 3}, is
unstable. The proof is based on Chetaev’s Theorem (see [16,
Theorem 4.3]). Consider the following continuously differen-
tiable functions:

Si(x,y) :=
1

2
x>BiR̃

?

ix −
1

2
|y|2, with i = 1, 2, 3,

which are null at the origin, i.e.Si(0,0) = 0. Note that for
each indexi ∈ {1, 2, 3}, the matrixBiR̃

?

i has at least one
element of the diagonal positive. For each indexi ∈ {1, 2, 3}
and a numberr > 0, define

Ui,r := {ξ := (x,y)> | Si(ξ) > 0, |ξ| < r}

and note thatUi,r is non-null for all r. Let us now proceed
the demonstration for indexi = 1. One verifies that

S1(ξ) = k3x
2
1 + (k3 − k4)x

2
2 − k4x

2
3 − 0.5|y|2.

This indicates that for allξ ∈ U1,r one has

k3x
2
1 + (k3 − k4)x

2
2 > k4x

2
3 + 0.5|y|2 ≥ 0.

Using the conditionk3 > k4 in (13) it is straightforward to
verify that B1R̃

?

1A1 > 0 and, thus,Ṡ1(ξ) is positive for all
ξ ∈ U1,r:

Ṡ1(ξ) = x>B1R̃
?

1A1x

= k1(k3x
2
1 + (k3 − k4)x

2
2) + k2k4x

2
3

≥ k1(k3x
2
1 + (k3 − k4)x

2
2) > 0.

It is seen that all the conditions of Chetaev’s Theorem are
satisfied. Therefore, the origin of System (31), withi = 1,
is unstable. Finally, the proofs of instability of the origin of
System (31), with indexi ∈ {2, 3}, proceed analogously.

Some remarks are in order. At first glance the convergence
and stability properties of the proposed observer (i.e. Proper-
ties 1, 2 and 3 of Theorem 1) are reminiscent of those of the
standard observer (see [21, Theorem 5.1]). However, some
novelties can be identified. The differences of the proposed
observer (12) with respect to the standard one (3)-(4) lie in
the definition of the innovation termσR and the dynamics of
b̂. They allow for two intriguing properties, i.e. Properties4
and 5 of Theorem 1:

• SinceâB = R̂>e3 corresponds to the estimated roll and
pitch angles, Property 4 of Theorem 1 implies the global
decoupling of the dynamics of these estimated angles
from the estimated yaw dynamics and from magnetome-
ter measurements. This property has strong assets in
practice as discussed in Subsection II-C, since obtaining
a good estimation of roll and pitch independently from
magnetic disturbances is especially important for robust
flight stability of aerial robotic vehicles.

• Compared to the pure integratorb̂ = −kI
∫
σR in (3)

which can grow arbitrarily large leading to integral wind-
up effects as discussed in Subsection II-D, the proposed
dynamics ofb̂ given in (12) has certain assets. First, we

have a pure integrator˙̂b = σb as long as|b̂(t)| ≤ ∆,
which allows for the compensation of the unknown con-
stant gyro-biasb. Besides, as proved in Theorem 1,|b̂(t)|
is always bounded by the design threshold∆̄. Finally, the
gain kb can be chosen for the rate of desaturation ofb̂

which can be seen, for instance, when|b̂| is larger than
∆ andσb = 0. The larger the value ofkb the faster the
rate of desaturation. Therefore, these properties allow one
to effectively design the observer with limited integral
wind-up effects.

An advantage of the proposed conditioned observer with
respect to the standard observer, especially when the gravity
and the geomagnetic vectors are close to each other, concerns
the possibility of providing the system with fast dynamics
without the use of high gains. Similarly to Subsection II-C,
only for discussion purposes if one neglects the gyro-biasb
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and the dynamics of the estimated biasb̂, then the linearized
error dynamics (31) can be reduced toẋ = A0x, with A0

defined in (28). The poles of the roll/pitch and yaw error
dynamics are independently given byλ1 = λ2 = −k1 and
λ3 = −k2. Thus, non-high gainsk1 and k2 can be chosen
to provide the system with acceptably fast dynamics. Let us,
as in Subsection (II-C), consider again the example of ill-
conditioning of the two vectorse3 andm̄I with m̄2 ≈ 0 and
m̄2

3 � m̄2
1. Since the three polesλs1, λs2 andλs3, given in (7),

of the linearized error dynamics of the standard observer are
distinguished, it is impossible to choose the gainsks1 andks2
involved in the standard observer so as to locally obtain similar
error dynamics with the conditioned observer. In turn, it is
possible to obtain the same dynamics in an axis corresponding
to the roll, pitch or yaw dynamics. For example, if one would
like to have similar dynamics in pitch with the same gain ratio
ks1/k

s
2 = k1/k2 = κ, it suffices to chooseksi = kiκ/(1 + κ),

with i = 1, 2, so thatλs1 = ks1 +ks2 = λ1 = k1. In such a case,
the third poleλs3 is very close to zero if the gainsks1 andks2
are not sufficiently high (see Eq. (7)), leading to excessively
slow dynamics of the standard observer. On the other hand, if
one would like the two observers to have similar dynamics in
yaw, one should chooseks1,2 = k1,2(1 + κ)/(κm̄2

1) so that

λs3 ≈ −
ks1k

s
2m̄

2
1

ks1 + ks2
= λ3 = −k2.

Thus, in the case wherēm2
1 � 1, the gainsks1 andks2 become

much higher than the gainsk1 andk2 and excessively amplify
the effects of measurement noises in the attitude estimate.

IV. PRACTICAL IMPLEMENTATION ASPECTS

A. Quaternion and Discrete Version

It is computationally expensive to compute the proposed
filter (12) on the matrix representation of the attitude group
SO(3) since the rotation matrix has 9 variables and 6 con-
straints. Instead, the use of the unit quaternion has three main
advantages:

• The unit quaternion has no singularities (unlike Euler
angle representations).

• It has four variables and a single constraint. Moreover,
the constraint is a simple scalar renormalization.

• The transformation of a unit quaternion to a rotation
matrix can be easily computed using Rodrigues’ rotation
formula [33], [35].

Since we begin with an algorithm SO(3) and lift it to an
algorithm on the unit quaternions, there is no difficulties with
the quaternion representation as discussed in [21], [23].

Let q̂ ∈ Q be a unit quaternion associated witĥR. The
proposed observer (12) can be rewritten as







˙̂q =
1

2
A(Ω̂)q̂, q(0) ∈ Q

˙̂
b = −kbb̂ + kbsat∆(b̂) + σb, |b̂(0)| < ∆

Ω̂ := Ωy − b̂ + σR, A(Ω̂) :=

[
0 −Ω̂>

Ω̂ −Ω̂×

]
(34)

We proceed to derive a discrete version of observer (34).
Assume that the sample timeT is small enough, so that the

approximation that̂Ω(t) andσb(t) remain constant over every
period of timeSk := [kT, (k + 1)T ], ∀k ∈ N, is acceptable.
Under this approximation, let us denote the value ofΩ̂(t) and
σb(t) over the periodSk asΩ̂k andσb,k, respectively. Then,
by exact integration of the first equation of (34) one obtains

q̂k+1 = exp

(
T

2
A(Ω̂k)

)

q̂k.

Using the fact thatA(Ω̂k)
2 = −|Ω̂k|

2I4, with I4 the identity
matrix of R4×4, one can verify from Taylor’s expansions that

exp
(
T
2 A(Ω̂k)

)

= cos
(
T
2 |Ω̂k|

)

I4+ T
2 sinc

(
T
2 |Ω̂k|

)

A(Ω̂k),

with sinc(s):= sin(s)/s, ∀s ∈ R. Consequently, the following
discrete version of observer (34) is proposed

{

q̂k+1 =
(

cos(T |Ω̂k|
2 )I4+ T

2 sinc(T |Ω̂k|
2 )A(Ω̂k)

)

q̂k

b̂k+1 = T (−kbb̂k + kbsat∆(b̂k) + σb,k) + b̂k
(35)

In practice, for computational efficiency, the functions
cos(T2 |Ω̂k|) and sinc

(
T
2 |Ω̂k|

)

involved in (35) can be ap-
proximated by their first- or second-order approximation or
by using a lookup table. Then, the estimated quaternion has
to be renormalized since its unit norm constraint is generally
not preserved.

B. Fixed-point Format Implementation

Many microprocessors do not have a floating point unit
(FPU) integrated. This means that any floating point calcu-
lation has to be emulated in a software leading to many fixed-
point calculations needed for a simple operation. The fixed-
point arithmetic can thus reduce the computational burden.

The attitude estimation algorithm of the present paper has
been implemented on an 8-bit microcontroller (AVR Atmel
ATMEGA644P) with64 kbytes of Flash memory and running
at 20MHz. The code has been developed with the WinAVR
development suite and implemented in fixed-point arithmetic,
which means that every real numberr is transformed into an
integer numberi by the transformationi = floor(r × 2n),
wheren ∈ N is the order of fixed-point format associated
with i. For example, infixed-point 14format, i.e.n = 14,
if r = 0.314 then i = floor(0.314 × 214) = 5144. All the
transformations from real to integer numbers are done during
the code implementation, and when the code is executed, all of
the calculations are done in fixed-point arithmetic only. Inthis
way, very high execution rate of the estimation filter is achiev-
able (for example, up to500Hz with the ATMEGA644P
microcontroller including other processes like the flight control
algorithm and data logging).

Two interesting issues having attracted our attention during
earlier stages of code development deserve discussion:numer-
ical overflowandunderflowissues.

• Numerical overflow:We have opted to define the type of
the estimated quaternion̂q as “signed 16-bits integer”
instead of “signed 32-bits integer” for computational
efficiency reason. Letnq ∈ N denote the order of fixed-
point format associated witĥq. Then, it is of interest
to have nq as large as possible for maximizing the
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precision of q̂. Since the first bit of a signed 16-bits
integer is reserved for the sign bit and since theoretically
each component of̂q is bounded by 1, one may choose
nq = 15. However, the numerical update ofq̂ given in
(35) may yield a component̂qi of q̂ slightly larger than
1. In this case, one haŝqi2nq > 215 and the overflow
issue occurs. As a consequence, we choosenq = 14
and proceed a renormalization ofq̂ after each update
according to (35).

• Numerical underflow:Let nb ∈ N be the order of fixed-
point format associated with the estimated gyro-biasb̂.
Then, in view of the second equation of (35), a small
value ofσb can affect a change in the update ofb̂ only
if the termσbT is “visible” in the fixed-pointnb format,
i.e. |σb,i|T 2nb ≥ 1. Equivalently, in view of the definition
of σb in (12), the termsk3uB×ûB should be “visible” in
the fixed-pointnb format. Therefore, ifnb is not chosen
sufficiently high, then the numerical underflow issue may
occur. For example, if the estimation algorithm is run at
500Hz (i.e. T ≈ 2−9 (s)), the gaink3 is chosen small
(k3 ≈ 2−4), andnb = 14, then the “visibility” of k3uB×
ûB requiresk3T 2nb |(uB × ûB)i| ≈ 2|(uB × ûB)i| ≥ 1,
which roughly corresponds to an angle error greater than
π/6 (rad). Therefore, in view of the above discussion we
have opted to stock the estimated variableb̂ in a “signed
32-bits integer” format and choosenb = 28 in order to
avoid the numerical underflow issue.

The developed code has been successfully tested on a real
UAV and the experimental results are reported in Section VI.

C. Gain Tuning

The strategy of determining the gains for the proposed
observer is inspired by the complementary filtering discussed
in [21, App. A]. In fact, complementary filter provide an
effective means of fusing multiple noisy measurements of the
same signal that have complementary spectral characteristics
[2], [21]. In our case, the attitude measurement provided by
integration of the gyrometer measurements is predominantly
disturbed by a low frequency noise (and subjected to a drift
due to a slowly time-varying bias) while the accelerometer
noise is a high frequency disturbance. Note also that the
magnetometer measurements are disturbed by both low and
high frequency noises, and that the strategy here proposed
decouples the effects of the low frequency magnetometer noise
from those of the accelerometer.

For convenience, similarly to the proof of Theorem 1 we
consider the new attitude state and estimateR = R>

αR, R̂ =
R>
α R̂, with Rα defined in (18). We proceed by considering the

linearization of the observer around the equilibrium(R̃, b̃) =
(I3,0) for the case wherëx ≈ 0, Ω ≈ 0 and R ≈ I3. The
sensor measurements satisfy

Ωy = Ω + ηΩ + b,

aB ≈ −gR>e3 + ηa,

mB = R>mI + ηm,

whereη(·) represents noise in the measurements andb is a de-
terministic perturbation dominated by low-frequency content.

Thus, one deduces

uB = R>e3 + ηu, vB = R>e1 + ηv, (36)

with

ηu = −
ηa
g
, ηv≈−

(ηue
>
3 +e3η

>
u )mI+πe3

ηm
|πe3

mI |
.

Proceed the linearization computations analogously as in Eqs.
(25), (26), (27), (29) withuB andvB given by (36) one can
verify that in a first order approximatioñR = I3 + x× and

{
ẋ = A0x − ηΩ − b + b̂ + k1e3×ηu + k2e3e

>
2 ηv

˙̂
b = B0x − k3e3×ηu − k4e1×ηv

(37)

with A0 and B0 defined in (28) and (30), respectively. Let
(Φ,Θ,Ψ) and (Φ̂, Θ̂, Ψ̂) denote the Euler angles associated
with R andR̂, respectively. Using the approximations

x1 ≈ Φ − Φ̂, x2 ≈ Θ − Θ̂, x3 = Ψ − Ψ̂,

Φ̇ ≈ Ω1, Θ̇ ≈ Ω2, Ψ̇ ≈ Ω3

Φacc = uB,2 ≈ Φ + ηu,2, Θacc = −uB,1 ≈ Θ − ηu,1,

Θmag = −vB,3 ≈ Θ − ηv,3, Ψmag = vB,2 ≈ Ψ + ηv,2,

one deduces from (37) that






˙̂
Φ = −k1Φ̂ + k1Φacc + Ωy,1 − b̂1
˙̂
Θ = −k1Θ̂ + k1Θacc + Ωy,2 − b̂2
˙̂
Ψ = −k2Ψ̂ + k2Ψmag + Ωy,3 − b̂3
˙̂
b1 = −k3Φacc + k3Φ̂

˙̂
b2 = −k3Θacc − k4Θmag + (k3 + k4)Θ̂

˙̂
b3 = −k4Ψmag + k4Ψ̂

In the Laplace domain with the Laplace variables, one obtains






Φ̂(s) = TΦ(s)Φacc + SΦ(s)
Ωy,1
s

Θ̂(s) = T aΘ(s)Θacc + TmΘ (s)Θmag + SΘ(s)
Ωy,2
s

Ψ̂(s) = TΨ(s)Φmag + SΨ(s)
Ωy,3
s

with the complementary transfer functions satisfying
∑

i T
i
(·)(s) + S(·)(s) = 1:







TΦ(s) =
k1s+ k3

s2 + k1s+ k3
, SΦ(s) =

s2

s2 + k1s+ k3
,

T aΘ(s) =
k1s+ k3

s2+k1s+k3+k4
, TmΘ (s) =

k4

s2+k1s+k3+k4
,

SΘ(s) =
s2

s2+k1s+k3+k4
,

TΨ(s) =
k2s+ k4

s2 + k2s+ k4
, SΨ(s) =

s2

s2 + k2s+ k4
.

In the case of proportional feedback, i.e.k3 = k4 = 0,
the crossover frequency of the complementary filters for the
roll/pitch- and yaw axes are respectively given by the propor-
tional (P-) gainsk1 and k2. The P-gaink1 (respectively,k2)
is typically chosen for the best crossover frequency in order
to trade-off between a low-pass filter of the accelerometer



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. ?, NO. ?, MONTH 2013 9

(respectively, magnetometer) measurements and a high-pass
filter of the attitude measurement obtained by integration of
the gyrometer measurements.

The integral (I-) gainsk3 and k4 govern the dynamics of
the gyro-bias estimates. Since the dynamics of the real biases
are slowly time-varying compared to those of the roll, pitch
and yaw angles, the I-gainsk3 and k4 should be chosen at
least10 times smaller thank1 and k2, respectively, in order
to ensure a good time-scale separation between the estimation
dynamics of the angles and the gyro biases. In practice, we
choose the P-gaink1 approximately equal to1 and the I-gain
k3 at 16 or 32 times smaller thank1. The division by16 or
32 is adopted because in a fixed-point implementation it can
be easily done by bit shifts. Figure 2 shows the Bode plots
of the sensitivitySΦ(s) and complementary sensitivityTΦ(s)
for different sets of gains. In the case where the I-gaink3 is
not sufficiently smaller thank1 (for example,k3 = k1/3), the
Bode plots ofSΦ(s) andTΦ(s) are no longer reminiscent of
those of a first order system, whereas in the casek3 = k1/32
similarity of the Bode plots is clearly visible.

Since for aerial robotic applications the measurement of
the geomagnetic field is less reliable than that of the gravity
direction, we choose the gaink2 about5 times smaller thek1.
This also means that the complementary filter relies more on
the gyrometers to track the yaw dynamics. The ratiok1/k3

and k2/k4 is chosen equal so that the time-scale separation
between angle and gyro-bias estimation is the same for roll
and yaw axes. As a consequence, the gaink4 becomes very
small. In this case, the sensitivity functionTmΘ (s) is negligible,
and good approximationsSΘ(s) ≈ SΦ(s) andT aΘ(s) ≈ TΦ(s)
can be obtained.

Fig. 2. Bode plots ofSΦ(s) and TΦ(s) for the sets{k1 = 1, k3 = 0},
{k1 = 1, k3 = k1/32} and{k1 = 1, k3 = k1/3}.

V. SIMULATION RESULTS

In this section we illustrate through simulation results
the improved performance of the conditioned observer (12)

compared to the standard implementation of the explicit com-
plementary filter proposed in [10], [21].

Simulations are carried on for the following scenario: an
IMU is fixed to a vertical take-off and landing (VTOL) vehicle
which is in stationary flight so that its attitude matrixR
is I3, i.e. φ = θ = ψ = 0. The normalized geomagnetic
field expressed in the inertial frameI is taken asmI =
(0.4334, 0.0012, 0.9012)>.

The gains and parameters involved in the conditioned ob-
server (12) are given by

k1 =1, k2 =0.2, k3=
k1

32
, k4 =

k2

32
, kb=16,∆=0.03. (38)

The P-gaink1 is chosen larger thank2 since we assume that
the measurement of the gravity direction is more reliable than
that of the geomagnetic field. The I-gainsk3 andk4 are chosen
small compared to the P-gainsk1 and k2 in order to avoid
coupling of attitude and bias dynamics and reduce integral
wind-up effects. The value of∆ corresponds to an estimated
bound of each component of the gyro-bias vectorb equal to
1 deg/s. The gainkb is chosen large in order to obtain a fast
desaturation rate of̂b.

As discussed in Section III, it is impossible to choose
a set of gains for the standard observer so as to provide
similar dynamics in roll, pitch and yaw with those of the
conditioned observer. However, it is possible to choose these
gains so as to obtain similar dynamics in roll, pitch, or yaw
with the corresponding one of the conditioned observer. Two
simulations are reported.

Simulation 1:The gains involved in the standard observer
are chosen as

ks1 = 1, ks2 = 0.2, kI =
1

32
,

allowing the linearized error system to have similar dynamics
in pitch with that of the conditioned observer whose gains
and parameters are given in (38). No noise in gyrometer-
and accelerometer measurements is introduced. By contrast, a
constant gyro-bias vectorb = (0.01,−0.005,−0.01)>(rad/s)
is added. Besides, each component of the magnetometer
measurement vectormB is corrupted by an additive white
Gaussian noise of variance0.3 –a very large value in view
of the norm equal to1 of the vectormI . The initial es-
timated Euler angles associated with the initial estimated
attitude matrixR(0) are rather large, i.e.(φ̂(0), θ̂(0), ψ̂(0)) =
(−45, 45, 90)(deg), and the initial estimated gyro-bias is taken
as b̂(0) = (0, 0, 0)>(rad/s). The results illustrated in Figures
3 and 4 show important performance differences between the
proposed conditioned observer and the standard observer. In
particular, the latter would yield important overshoots and os-
cillations in both the estimated Euler angles and the estimated
gyro-bias components, and also a very slow convergence in the
yaw estimate. In contrast, one can observe, for the conditioned
observer, a very fast convergence of the estimated variables to
the real values, and the quasi absence of overshoots of the
estimated attitude despite the use of the integral correction
term b̂ and the large initial estimation errors. It can also
be seen that the magnetic disturbances do not degrade the
estimation performance of roll and pitch estimates and of
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Fig. 3. Estimated and real Euler angles (simulation 1).
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Fig. 4. Gyro-bias error̃b = b − b̂ (simulation 1).

the first and second components of the gyro-bias estimateb̂,
whereas the corresponding estimated variables of the standard
observer are effected. On the other hand, a slightly higher
amplification of magnetometer noises on the yaw estimate is
a price to pay for faster dynamics compared to the standard
observer.

Simulation 2:The gain involved in the standard observer
are chosen as







ks1 =
k1(1 + k1/k2)

k1/k2m2
1

= 6.371,

ks2 =
k2(1 + k1/k2)

k1/k2m2
1

= 1.274, kI =
1

32
,
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Fig. 5. Estimated and real Euler angles (simulation 2).
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Fig. 6. Gyro-bias error̃b = b − b̂ (simulation 2).

allowing the linearized error system (as discussed in Sec-
tion III) to have similar dynamics in yaw with that of the
conditioned observer. The same constant gyro-bias vector
b, magnetometer measurement noises and initial estimated
attitude and gyro-bias(R̂(0), b̂(0)) as in Simulation 1 are
introduced. In addition, each component of the accelerometer
measurement vectoraB is corrupted by an additive white
Gaussian noise of variance1. Figures 5 and 6 show clearly
a better performance of the conditioned observer compared
to that of the standard observer. Whilst similar convergence
and rather smooth behavior in the yaw estimate of the two
observers are obtained, the roll and pitch estimates and the
first and second components of the gyro-bias estimateb̂
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provided by the conditioned observer are much less noisy than
that of the standard observer. Indeed, too high value ofks1
involved in the standard observer overly amplifies the effects
of measurement noises in the estimated variables.

VI. EXPERIMENTAL RESULTS

The experiments were performed on a quadrotor helicopter
which is equipped with a low-cost IMU composed of a 3-axis
accelerometer (MXR9500) and three single-axis gyrometers
(ADXRS610), and a magnetometer (HMC5883L magnetic
sensor). The attitude estimated by the algorithm of this paper
is compared with “ground truth” measurement data acquired
by a motion capture system from Vicon. This vision-based
system is composed of 8 cameras mounted on the ceiling of
the flying room of the Autonomous Systems Lab (ASL) at the
ETH Zurich, where the experiments took place. The Vicon
system provides the full pose of the flying vehicle at a rate of
200Hz.
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Fig. 7. Euler anglesi) estimated byi.a) the proposed conditioned observer,
i.b) simply integrating the kinematics equation of rotation using gyrometer
measurement data, andii) measured by the Vicon system.

The proposed discrete version of the attitude estimator, i.e.
observer (35), is implemented on the computer aboard the
helicopter with a sampling period of200Hz. The gains and
parameters involved in the proposed conditioned observer are
given in Section V. The experimental results are reported in
Figure 7. The estimated values for the pitch and roll angles are
very close to the ground truth, meaning that the bias has been
properly estimated and removed. Regarding the estimation of
the yaw angle, the presence of a bias is visible. This may be

explained by the fact that the inertial magnetic field vector
inside the flying room of the ASL is not exactly known and
might be slightly perturbed by the electrical equipment in this
area. The presence of magnetic disturbances does not prevent
the estimates of the roll and pitch angles to converge to the true
value, thus confirming experimentally the discussion about
decoupling in Section III.

VII. C ONCLUSIONS

In this paper a novel nonlinear attitude observer is proposed,
allowing for the global decoupling of the estimation of the roll
and pitch angles from the estimation of the yaw angle and
from the presence of magnetic disturbances. It also allows
for the compensation of the gyrometers’ bias of a low-cost
IMU using an anti-windup integration technique. Practical
implementation aspects such as discrete implementation in
quaternions, gain tuning and fixed-point implementation are
presented. Finally, simulation and experimental results have
supported the approach.
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gie of Compiègne (UTC), France, and received
his doctorate degree in Robotics from the UTC
in 1996. After two years as a research assistant
at the (UTC), he joined the Centre d’Etudes de
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