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Abstract—Attitude estimation is a key component of the
avionics suite of any aerial robotic vehicle. This paper detils
theoretical and practical solutions in order to obtain a robust
nonlinear attitude estimator for flying vehicles equipped wth
low-cost sensors. The attitude estimator is based on a nongar
explicit complementary filter that has been significantly etnanced
with an effective gyro-bias compensation via the design ofreanti-
windup nonlinear integrator. A measurement decoupling stategy
is proposed in order to make roll and pitch estimation robust
to magnetic disturbances that are known to cause errors in y&
estimation. In addition, the paper discusses the fixed-potnnu-
merical implementation of the algorithm. Finally, simulation and
experimental results confirm the performance of the propose
method.

Index Terms—attitude estimation, nonlinear observer, gyro-
bias compensation, anti-windup integrator, magnetic disirbance,
unmanned aerial vehicle

I. INTRODUCTION

knowledge of the considered inertial directions can gerera
large errors in the extracted attitude. This motivates tee d
velopment of algorithms that fuse vector measurementdy suc
as those provided by magnetometers or accelerometers, with
the angular velocity measurements provided by gyrometers t
obtain a more accurate and less noisy attitude estimatipn [3
[4], [5], [6], [7]. [10], [12], [18], [20], [21], [22], [25], [26],
[28], [29], [30], [31], [36], [37], [38], [39].

Recent advances in observer theory has lead to the develop-
ment of nonlinear attitude observers that address thislgmob
[4], [20], [21], [22], [26], [30], [37], [39]. These observe
are algorithmically simple and can be implemented on low-
processing power fixed-point microprocessors in unit quate
nion form. The observers need only vector measurementsnput
from low-cost and light-weight MEMS strap-down inertial
measurement units (IMUs). Typically, the algorithms use a
measurement of angular velocity measured by a 3-axis stite o

The development of a small-scale low-cost autonomolf€ gyrometers, a vector direction estimate of the gragital
aerial vehicle system requires effective solutions to a lnem direction derived from a 3-axis suite of accelerometers| an
of key technological problems. The avionics subsystem Wihere possible, vector measurement of magnetic field, mea-
such a vehicle is arguably the technology that is most gjos&lured by a 3-axis suite of magnetometers [10], [21], [26]. Al
coupled to the autonomy of the vehicle. Within an avionid@W-cost MEMS devices are subject to significant noise éstec
system, the attitude estimator provides the primary measufyrometers and accelerometers suffer from time-varyiag bi

ment that ensures robust stability of the vehicle flight. THRNd noise due to temperature change, vibration and impacts,
development of a robust and reliable attitude estimatat tinagnetometer readings are corrupted by on-board magnetic
can run on low-cost computational hardware, and that requifields generated by motors and currents, as well as external
only measurements from low-cost and light-weight sensitgagnetic fields experienced by vehicles that manoeuvre in
systems, is a key technology enabler for the developmé}w't environments. Earlier work in development of attitud

of such systems. Theoretically, it is possible to estimhte tobservers tackled the question of bias in the gyrometer MEMS
attitude just by integrating the rigid body kinematic eqoat devices [10], [21], [26], [37], [38] by introducing an adayet

of rotation and using the angular velocity measurement ddt@s estimate in the algorithm. Decoupling of input sigrtals
provided by gyrometers. However, such a solution is n&hsure that the roll and pitch estimates are not disturbed by
viable beyond a few hundred milliseconds due to the effedgviation in the magnetometer measurements was considered
of sensor noise and bias. Several alternative solutions h& [14]. [26] and represents an important modification of the
been proposed since the early 1960s’. The surveys abBaic algorithm to improve the overall quality of the attiéu
attitude estimation methods [8], [9], [11], [21] are usefugstimate. However, onlyocal decouplingof the roll and
references to begin research on the topic. In fact, theidgit Pitch estimation from the magnetometer measurements has
can be algebraically determined by using the measuremef@en proved [14], [26], the global decoupling has remained
in the vehicle body-fixed frame, of at least two known nordnsolved. Another question that has not been considered in
collinear inertial directions (i.e. vectors) as explairied24], the literature is that of limiting wind-up in the bias estiima

[34], [40]. However, imperfect measurements and/or imigeec Of the algorithm. This is particularly important during tap
and take-off manoeuvres where the bias estimate integnal ca

“wind-up” during the period when the vehicle is still in cat
with the ground, potentially causing significant estimatio
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errors at the moment the vehicle becomes airborne. There has
also been little discussion of issues related to the fixddtpo
implementation of the algorithms on small-scale low-power
microprocessors.
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In the present paper we propose a novel nonlinear attitudeal exponential stability of the equilibriuR, b) = (Is,0),
estimation algorithm for IMUs that is almost-globally siab with R := RR", b := b — b andI; the identity element of
and locally exponentially stable, and that ensures thealols0(3).
decoupling of the dynamics of the roll and pitch estimates
from magnetic disturbances and from the dynamics of tiB Standard Implementation with IMUs

yaw estimate. Moreover, we propose an effective gyro-biaspsgyme that the IMU fixed to the body consists of a 3-axis

compensation via the design of an anti-windup ”Onl'negglrometer, a 3-axis accelerometer and a 3-axis magnetomete

mtgg;a_ttor.l Flnaltly,t_ we (:lstﬁussttlisges ret_latetql o tlhe .ft';:e « The 3-axis accelerometer measures the specific accel-
‘T’?]m llmp_tehme?]alc;n 0 f ”e ta Itude %S ima |9n atgcl)rl mlt erationasg € R® expressed in the body-fixed frame
e algorithm has been fully tested and experimental resu B. One hasaz — R (% — ges), where the vehicle’s

provided indicate the performance of the algorithm. acceleration expressed in the inertial frafheés %, and

the gravitational acceleration expressed in the franie

Il. PROBLEM FORMULATION ges, with ez = (0,0,1)".

A. The Explicit Complementary Filter for Attitude Estinuati

The attitude of a rigid body can be modeled by a rotation

between a body-fixed fram® and an inertial reference frame
7 (see, for example, [33], [35] for various attitude pararmiete
zations). A convenient representation of attitude is thation

matrix R € SO(3), with SO(3) the special orthogonal group.

The kinematic equation dR satisfies the following equation
R =RQ,, 1)

It is known that for an ideal thrust controlled aerial
vehicle, the measurement of the gravity direction cannot
be directly extracted from accelerometer measurement
data [23], [27]. In practice, aerial robotic systems are
subject to secondary aerodynamic forces that inject low
frequency information on the actual inertial gravitation
direction into the accelerometer measurements [23], [27].
It follows that the modeh ~ —gR es is an effective
model for vector attitude measurement in a wide range

with © € R? the body’s angular velocity expressed in the  of practical systems [10], [20], [21], [26].
body-fixed frameB, and (-)x the skew-symmetric matrix e The 3-axis magnetometer measures the geomagnetic field
associated with the cross produgt i.e. xyy = x Xy, vectormp € R? expressed in the body-fixed franfe If
Vx,y € R3. the magnetometer measurement data is not corrupted by
For analysis purposes, we use an Euler angle parametriza- magnetic disturbances, then one mag = R "mz, with
tion of the rotation matrices, knowing that singularitieaym mz € R? the geomagnetic field expressed in the inertial
occur for such a minimal parametrization. Let # and ¢ frameZ. One can check at [1] for the geomagnetic field
denote the Euler angles corresponding to roll, pitch and, yaw vector by using the IGRF-11 model.
commonly used in the aerospace field. Then, the attitudeStandard implementation of the explicit complementary
matrix R can be written as filter (3) consists in defining the innovation terk as (see
COCY S¢pSOCY—CpSy CpSOCY+ShSy [21] for more details)
R=|CO0S5y S¢S0Sv+CopCy» CpSOSYp—SeCy|, (2)

-S6 S¢Co CopCH
. . . with k7 , positive gains,us := —ap/g, ur := ez, mp =
with ¢ and § denoting thecos(-) andsin(-) operators. mg/|mz| and mz := mgz/|mz|. Let us call this solution

In practice, the angular velocity vectd? is typlcall_y as standard observeto distinguish it with theconditioned
measured by gyrometers. For the sake of observer design 3B§erverproposed in Section Ill

associated analysis, the measured angular velocity, el st

{2, is modeled as the sum of the_ real angula_r veloﬁit.yvnh . C. Coupling Issues with Standard Implementation with IMUs
an unknown constant (or slowly time-varying in practicegi

vectorb € R?, i.e.Q, = Q + b (see, for example, [21]). In view of Eq. (2) the roll and pitch angles and ¢ can

Let us recall and discuss thexplicit complementary filter b€ directly deduced froriR"e; which can be approximated
proposed in [10], [21]. Let{(vZ} denotes a set of (> 2) by the_accelero_met(_er measuremer. As a consequence,
known non-collinear unit vectors of coordinates expressed theoretically estimating roll and pitch can be done inde-
the inertial frameZ, and {v5} a set of measurement data ofendently from magnetometer measurements. However, the
these vectors expressed in the body-fixed fré#fneet R and stand.ard implementation of the gxpllcn compl_ementarﬁ_mlt
b denote the estimates & andb, respectively. The explicit (_3) with IMUs encounters some issues well discussed in the
complementary filter is written as literature (see, for example, [26]):
« Magnetic disturbances and bias influence the estimation

or = kjup x R'uz + kimp x R'my, (4)

R = R(Qy,—-b+or)x, R(0)e€SO3) of roll and pitch angles. In many applications especially
b = op, B(o) c R3 3) for small-size electric motorized aerial robots, significa
n . magnetic disturbances are almost unavoidable, leading to
or = Y kvl xRV, op:=—kor significant time-varying deterministic error betwerrs
i=1 andR"mz. This not only leads to large estimation errors
with k; andk;, (i = 1,--- ,n), denoting positive gains. As of the yaw angle) but also non-negligible errors in the

proved in [21], observer (3) ensures almost-global stgtaind roll and pitch estimation.
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« The dynamics of roll, pitch and yaw estimates are highly In Section Il we propose a novel observer ensuring the
coupled. This implies that the estimation of the yaw anglgobal decouplingof the roll and pitch estimations from the
strongly affects the estimation of the roll and pitch anglegaw estimation and from magnetometer measurements.
This issue can be observed when taking a close look
at the linearized s_ystem_ around the system equilibriglﬁ._ Wind-up Issues on Gyro-bias Estimation
For the sake of simplicity, let us neglect the gyro-bias
b and the dynamics of the estimated bl“ésonly in
this subsection. This supposition in association with E
(3) and (4) ensures the following dynamics of the err
attitudeR = RR™:

Additionally to the decoupling issues, one can observe some
roblems in practice when using the integral correctiomter
%’, meant to compensate for the unknown constant bias vector
. For instance, the integral terimay grow arbitrarily large
leading to slow desaturation (and slow convergence) and/or
R = —(k3es x Re; + ksmz x f{mz)xf{. (5) important overshoots of the estimation error variables R

_ and b). Various sources of this phenomenon can be identi-
Consider a first order approximation & around the fied such as large initial errors, poor gain tuning, imprecis
equilibium R = I3 as R = I3 + x,, with x = knowledge of the considered inertial vectors, and imperfec
(z1,72,23)" € R Note that locally the first, secondmeasurements of these vectors due to sensor misalignment,
and third components ot correspond, respectively, tosensor vibration, noises and biases, etc. Consequently, on
the roll, pitch and yaw error estimates. One easily Vel’ifieﬁay choose a very small value for the integral gainto
from Eq. (5) that reduce overshoots, but this in turn degrades the estimation

performance. In fact, this issue is well-known as the stedal

% = —kjes x Xxe3 — kyiz X Xx Mz “integral wind-up effects” and has been well studied in the
= (—ki(I3 — ese; ) — k3(Is — mgmyz)) x literature, particularly in the context of control systefi§],
—ki—ky(1—m3) k3 kSmms [15], [17], [32]. However, in the context of attitude estitioa
- kS —k3—ks(1—m3)  kimomsz | x design, to our knowledge, there are no standard references f
kS ms kSmams —k3(1—m3) anti-windup for observers.
— Ax ©6) In Section |1l we propose some madifications on the dynam-

ics of b so that the properties of convergence and stability of
In practice, the gravity vector and the geomagnetic fieltie filter are still ensured, and integral wind-up effects ba
vector (i.e.e3 andmz) can be “ill-conditioned” in the limited.
sense that they are very close to each other. In such a
case, the third component afi; is dominant to its first 1. OBSERVERDESIGN FORIMU S
and second ones. For example, in Franeg~ 0.9. As Let us make the approximation thai ~ —gRe; and

a consequence, in view of Eq. (6) the dynamics of thtfbmpute the following vectors (see Figure 1)
roll and pitch errors (i.ex; andz-) are strongly coupled

. . . a TurIM
with the yaw error dynamics (i.e:3). ug = _Z5 , Vg :i= % ,
« On the other hand, the strong dynamics coupling is not g ;Tufxi (8)
the sole issue. The ill-conditioning of the two vectefs uz :=es, vy o=
|7TuImZ|

and mz may also lead to the impossibility of finding
a set of “non-high” gaingk;, k3} so as to provide the with 7y := |x|2I3 — xx',Vx € R?, denoting the orthogonal
system with fast time response, bearing in mind that higirojection on the plan orthogonal o One easily verifies that
gains may excessively amplify measurement noises. For

discussion purposes and without loss of generality, let us, us =Rluz, vs=Rlvz, ©)
for instance, assume that, ~ 0 (i.e.m? +m3 ~ 1) and Denote also
m3 > m3. Under this approximation, it is straightfor- A AT A -
ward to verify that three poles of System (6) are given uz =R uz, vg:=R vz (10)
by:

X = — (kS +k3) Theorem 1:_ Consider the rotation kinematics (1) and the

3 = 1o s TR e angular velocity measurement model

3 = b (ki +k3)(1+ Lt ) @)

3(
2
Q,-Q+b (11)
s s s akiksm2 \ __  kikimi y )
X = (k)11 - g ) ~ Al

with b € R? an unknown constant bias. Consider the following
The pole)\; is associated with the pitch dynamics, and th&onditioned observer”:
polesAj and \j are associated with the coupled roll and : . A .
yaw dynamics. The less negative pol§ approximated = R(Q -b+or)x, R(0)<€SO3)
by —k{ksm?/(ki+k3), will be very close to zero if{
and k5 are not chosen sufficiently high, sinee? < 1.
This leads to slow time response of the coupled roll and | 7R
yaw dynamics. op = —ksug X Ug — kavg X Vg

o
Il

—kyb + kpsaia (b) + op, [b(0)] < A (12)

= kjug X ag + kgflgflg(vlg X \75)
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Let us prove by contradiction thab(t)| < A = A + (ks +
k4)/ky, ¥Vt > 0. Assume there exist a time instafit> 0 and

a small numbee > 0 such thatb(T)| > A, [b(T' —¢)| = A
and|b(r)| is increasing forr € [T — ¢, T]. This implies that
V(r) = 1/2|b( )|? is also increasing for € [T'— ¢, T]. This
implies thatV( —¢/2) > 0. However, smce}b( —e/2)| >
|b(T —¢)| = A, inequality (14) implies that (T —¢/2) < 0.
The resulting contrad|ct|on allows one to conclude the proo
| of Part 5 of the theorem statement.

m,, We consider the following candidate Lyapunov function

ke 1 -
L:=(1-ugag)+—1-vivs)+-——I[b?>  (15)
3 23

€3 3
and compute its time-derivative. First, one verifies fronsEq
(9), (10), (11) and (12) that
d

Ta _ T -~ T I- -~
Fig. 1. Vectors involved in attitude estimation. E(l —uglp) = —up Qx5 +us (R +b+or)xls
_ A2 T N
with k1, ko, ks, ks, k» and A denoting positive numbers, and . = —kilus x as|" = b (us x up),
sat (+) the classical saturation function defined by dat) := L v = v Vs L vE(Q LD 4 or)u
xmin(1, A/|x|). Chooseks and k4 such that dt( 5Vs) IR TB( R)x Vs
= —k 0 Vv
ka < ks, (13) us X s) (vs x95)
_ _ — ka(Gg(vp x VB))" — b (vp xVp),
Assume thaf is bounded and that the gyro-biass bounded . . - ~
in norm by A, i.e. |b| < A. Then, b= —b=—kb+ k(b - sat(b — b)) — ob.
1) The dynamics of the estimate errdi8,b), with R = From here, one straightforwardly verifies that the time-
RRT andb = b—b, have onIy four isolated equilibria derivative of £ is given by
(R,b) = (R},0), _i=0,---,3, with Ry =I3. . bk
2) The equilibrium(R,b) = (13, 0) is locally exponen- L= —ki|ug x ag|* — ]2; 4(ﬁg(vB X Vg))
tially stable. ) ) ) ek 3
3) The equilibria (R},0), (R3,0) and (Rj%,0) are _ (ug x 05)" (v X ¥5)
unstable. Thus, for almost all initial conditions k3
(R(0),b(0)) # (R;R(0),b), i = 1,2,3, the |b|2 + 2 bT ( —sata(b — B))) . (16)
trajectory (R(t¢),b(t)) converges to the trajectory
(R(t),b(t)). Then, using the mequalltt)b —sat(b—Db)| < |b|, Vb € R?,
4) The dynamics ofis does not depend omp when provided thatA > |b| by assumption (see [11, Chap.2, Sec.
consideringb as an input. - 2.8.14] for the proof), one deduces from Eq. (16) that
5) The estimated gyro-bids is bounded in norm by := ok
o A ; .o RaRg 7 NNV
A+ (k3 + k) /Ky, ie.|b(t)| < A, ¥t > 0. £ < —kilug x ap|” = ——(Ag(vs x V5))
Proof: It is straightforward to prove Parts 4 and 5 of the keyks °
theorem statement. Using (10) and the first equation of (12), - k—(uB x ag)" (vs x VB). 17)
one deduces S .
) R In the sequel, relation (17) will be further developed. From
s = —(2y —b+or)xUs the definition ofvz given in (8), one deduces that this constant
—(Q, — b+ kjug X G3)x 053 unit vector is orthogonal tes; and, consequently, belongs to
o ) ) Sparies, e2). Thus, there exists a constant angleuch that
where the last equality is obtained using
T . R Ca —-Sa 0
(k203 (VB X VB))xls = 0. vi =Cae; +Saey= |Sa Ca 0|e; =Rger.
From here, it is clear that the dynamicsiof is independent of 0 0 1
the magnetometer measurement veetos when considering —.R.cS0(3)
b as an input. (18)

The proof of Part 5 of the theorem statement is based on the . -
positive functionV = 1/2|b|?> whose time-derivative verifies I?efmeR R,R, R :=R/R, and the :ew attitude error
R = RR One verifies thaR = R, RR Consequently

_ 2 T ’

V = ~ky|b|* + b (ksats (b) + on) if R converges tals;, then so doeR. Usmg the fact that

< —ky|b)? + |b|(ksA + Sugop)) ur = e3 = Rye3 andvs = R,e;, one verifies the following
N R ke + k relations:
—ky|B|2 + Ky |B| <A+ > 4). (14) T . T T
ko us=R'e3, vg=R' e, 4z =R e3, Vg =R e;. (19)
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Let Q denote the group of unit quaternlons Denote the unithich respectively correspond to the following rotationtriaa
quaternion associated witR asq := (Go,a)" € Q, where ces:

do and q, = (Gi,G2,q3)" are its real and imaginary parts, Eg =15
respectively. Then, using the Rodrigues’ rotation formula EI — diag([1, -1, -1]) o
R = (3 — |6u[*)Ls + 200@ux + 24,4, , R, := diag[-1,1,—1))
along with Eq. (19), one verifies that E; :=diag([-1,-1,1])
R ~ T ~T . ~ ~ %
uzx g =R (R e3Xe;3) One verifies thaR} = R,R,; R, with i € {0,1,2,3}, and,
_ 2RT((_%(~1 P qT)e3 X e3) thus, RO = I3. It remains to prove thab converges to the
T : v null vector. To this end, we analyze the dynamics associated
=2R (—Goe3. Qv — G3es X Qv) with R:
AT o _ 5 . R R
:23 ( 09v — qog3€3 — gses3 Xqv)- E:EQXET _E(Q+b+O_R)XET
Similarly, one obtains . —(B + kresx Res + kgﬂegeg(ETel ><e1))xE
N ~ T . - - _ ~ ~ ~ ~
v X V5 = 2R (GoQv — dodie1 — Gi1e1 X Q). = —(b+ kie3 xRes — koRes(e]Res)) xR,  (25)
From here, one deduces that with b := Rb. SinceR converges to a constant mati, (as
lug x U5]? = 4|Goqw — Godzes — Gzes X qu? proved previously) anR is uniformly continuous, one ensures
= 4(@|qw)? — G242 + G3les x au|?) thatR converges to the null matnx WltR specified by (24)
+ + 20) oOne verifies thakes ><R ez = elR e, = 0. Therefore, one
T =45 + ) (at _ ~q2) ~ . (2 ) ensures thab and, thusb converge to the null vector.
(05 (ve x VE))* = 4(e3 (G — dodrer — Gre1 X Gv)) ~ We proceed by computing the dynamics of the new variable
= 4(qods — (1d2)°, (21) b and using the dynamics ofRR,b) to prove the stability
and properties of the equilibria. The dynamics bfare locally
given by

(uB X le)T(VB X {’B) . ~ N
. -~ - Y NT o/~ ~ o - N b RQb—-Rop
= 4(Go%v — GoG3€3 — G3€3xAv) ' (G0 — GoG1€1 — G1€1x Q)

= 4(G2G5 + qids(es x @u) (61 X Qw)) = (@)« + kses xRes + kier xRer, (26)
=4(@BGH — Gd). (22) with © := RQ. Consider a first order approximation @, b)
The substitution of Egs. (20), (21) and (22) into (17) yields%s)1 a2ng}(26) around an equilibrium poi(R; , 0), with ¢ €
. 4k2k4 o } } o b b) b 1
L<-— (Gods — 1G2)* — 4k1 (G0 + G533) R-R'(I+x.), be-y withxyeR"

ky ka4
— 4k (1 + s ) 4o — 4k (1 T ) G2G5. (23) The linearization of Eq. (25) is given by

Condition (13) and inequality (23) ensure the non-positivi Ri%. = (y — kiescR; xe3 + kaR; e3(e] Ry xxe2)) xR,
of £ and, consequently, the non-increasing &f This and

the definition (15) of{ ensure the boundedness bfand, and, thus,
thus, ofb. Then, one can easily verify from Eq. (16) thét % = kR, es R xxes + koes(e] Rixxes) + Ry
also remains bounded, which implies the uniform continafty
L. From here, the application of Barbalat's lemma (see [16]) o
ensures the convergence 6fto zero. This convergence and =A;x+R,y, (27)
inequality (23) imply the following relations:

— k1 (R es)ceax — koes(Ry e x e3) ' x + Ry

o with
Goqa — 0 Ay = dlaQ[ ki, —kq, —kz])
6062 —0 A= dlaQ[k: kl, —kQ]) (28)
6163 —0 A, = diaq[kl, kl, kQ])
Gogs — 0 As = diaQ[—kl, —kq, kz])
9093 = 142 The linearization of Eq. (26) can be written as
which ensure the convergence of the unit quatersjoasso- ' . -
ciated withR to one of the following quaternions: vy = —kzesR;xce3 — ke R;xce1 + Q,y
~ % ~ % ~ % ~ x
(+1,(0,0,0)", (0,(%1,0,0)) T, = kaesx (R, e3) xRy x + kuer (R e1) xRy x + Q2 y

(0,(0,+1,0)",  (0,(0,0,£1))", =Bx+ .y, (29)
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with _ and note that; , is non-null for allr. Let us now proceed
By := diag([—ks3, —ks — ka, —ku]) the demonstration for indek= 1. One verifies that
B, = diaq[kg,—k3+/€4,/€4]) 2 2 2 2
) 30 S1(8) = kst + (ks — kq)xs — kgxs — 0.5]y|°.
B, = diag [~ ks, ks + ki, —ka)) (30) 1(§) = ksay + (ks — ka)as — kaag |yl
B; = diag([ks, ks — ku, ka)) This indicates that for alf € U; , one has
One deduces from Egs. (27) and (29) the combined error kswi + (ks — ka)a3 > ka3 + 0.5]y[* > 0.
dynamic linearization in the primed coordinates as Using the conditionks > k, in (13) it is straightforward to
: R* verify thatBlﬂ*Al > 0 and, thus,S; (€) is positive for all
XA R X ithi=0,-,3. (B ce . '
y B; QX 5 1,r-
In order to prove the local exponential stability of the Si1(6) =x BiR;Aix
equilibrium (R, b) = (I5,0), it suffices to prove that the = ky (kax? + (k3 — ka)x3) + kokyzs
origin of linear time-varying system (LTV) (31), with= 0, > ky (ksa? + (ks — kg)a2) > 0.

is uniformly exponentially stable. The proof is based on the N ,
results derived in [19, Theorem 1] which establish sufficiedf iS seen that all the conditions of Chetaev's Theorem are
conditions for exponential stability of the LTV system hayi Satisfied. Therefore, the origin of System (31), with= 1,

the form is unstable. Finally, the proofs of instability of the origof
{x] B {A(t) %(t)T:| {x} (32) System (31), with index € {2, 3}, proceed analogously. i
y —C(t) 0 v]’ Some remarks are in order. At first glance the convergence

and stability properties of the proposed observer (i.ep@ro
ties 1, 2 and 3 of Theorem 1) are reminiscent of those of the
standard observer (see [21, Theorem 5.1]). However, some
X Ay R||x novelties can be identified. The differences of the proposed
[g,] - |:ETBO 0] {y} ) (33)  observer (12) with respect to the standard one (3)-(4) lie in
the definition of the innovation termg and the dynamics of
with A(t) = Ag, B(t) = R', C(t) = —R"By. Now we b. They allow for two intriguing properties, i.e. Propertiés
verify the two assumptions of Theorem 1 in [19]. First, thend 5 of Theorem 1;
first assumption of this theorem is satisfied siff¢ and| % . Sinceas — RTe; corresponds to the estimated roll and
remain bound_ed for all tl_m_e. Flr_lally, the last assu_mpt|0n_ of pitch angles, Property 4 of Theorem 1 implies the global
this theorem is also satisfied since the symmetric matrices gecoupling of the dynamics of these estimated angles

By settingy := R'y, one easily verifies that System (31)
with ¢ = 0, can be rewritten in the standard form (32) as

P = —Bo and Q = 2A,B, _satisfying the required relations  from the estimated yaw dynamics and from magnetome-
PB' =C" and—Q = AP + PA+ P are constant and ter measurements. This property has strong assets in
positive definite. It remains to prove th@ is uniformly per- practice as discussed in Subsection II-C, since obtaining
sistently exciting. This is also satisfied since for any tosi a good estimation of roll and pitch independently from
numbersy andT > 1 one has magnetic disturbances is especially important for robust
t+T t+T flight stability of aerial robotic vehicles.
B(r)B(r)'dr = [ R(r)"R(r)dr = TT3 > uls, « Compared to the pure integratbr = —k; [ og in (3)

¢ ¢ which can grow arbitrarily large leading to integral wind-

for all time t > 0. From here, the application of Theorem 1  up effects as discussed in Subsection 1I-D, the proposed

in [19] ensures the uniform exponential stability of thegani dynamics ofb given in (12) has certain assets. First, we
of System (33) which in turn concludes the proof of Part 2 of  haye a pure integratds = o1, as long asb(t)| < A,
the theorem statement. which allows for the compensation of the unknown con-

In orderNt(*) prove the instability of the three equilibria  gtant gyro-biad. Besides, as proved in TheoremB(t)|
(R,b) = (R;,0), with i = 1,2,3, it suffices to show that is always bounded by the design threshaldFinally, the

the origin of the linearized system (31), withe {1, 2,3}, is gain k, can be chosen for the rate of desaturatiorbof
unstable. The prOOf is based on Chetaev’'s Theorem (See [16, which can be seen, for instance’ Wh|é1'1| is |arger than
Theorem 4.3]). Consider the following continuously diféfier A andoy, = 0. The larger the value of, the faster the
tiable functions: rate of desaturation. Therefore, these properties allasv on

to effectively design the observer with limited integral
wind-up effects.

which are null at the origin, i.eS;(0,0) = 0. Note that for ~ An advantage of the proposed conditioned observer with

each indexi € {1,2,3}, the matrixB,R. has at least one '€SPect to the standard observer, especially when thetgravi
)<y 1 .7

element of the diagonal positive. For each index {1,2, 3} and the geomagnetic vectors are close to each other, cancern
and a number > 0. define o the possibility of providing the system with fast dynamics

without the use of high gains. Similarly to Subsection I1I-C,
Uip:={:=(x,y)" | Si(€) >0, |¢] <7} only for discussion purposes if one neglects the gyro-bias

1 ~ % 1 .
Si(x,y) = ixTBiEix - §|y|2, with 4 =1,2, 3,
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and the dynamics of the estimated blasthen the linearized approximation tha€2(¢) andoy, (¢) remain constant over every
error dynamics (31) can be reducedsto= Agx, with A, period of timeSy := [kT, (k + 1)T], Vk € N, is acceptable.
defined in (28). The poles of the roll/pitch and yaw errodnder this approximation, let us denote the valuékﬁf) and
dynamics are independently given By = Ao = —k; and o (t) over the periodSy, as); andoy, ;, respectively. Then,
A3 = —ko. Thus, non-high gaing; and k; can be chosen by exact integration of the first equation of (34) one obtains
to provide the system with acceptably fast dynamics. Let us, T .
as in Subsection (lI-C), consider again the example of ill- qQk+1 = €xp (—A(Qk)) k.

. i o 2
conditioning of the two vectors; andmz with my ~ 0 and
m3 > mi. Since the three poles;, A5 and A3, given in (7), Using the fact thaiA (€2;)? = —|Q|?14, with I, the identity
of the linearized error dynamics of the standard observer anatrix of R**4, one can verify from Taylor's expansions that
distinguished, it is impossible to choose the gaifisand k5 R R R R
involved in the standard observer so as to locally obtairlaim €xp (%A(Qk)) = cos (%|Qk|) L+ %sinc (%|Qk|)A(Qk)a

error dynamics with the conditioned observer. In turn, it is., . . .
, , o , with sinc(s):= sin(s)/s, Vs € R. Consequently, the following
possible to obtain the same dynamics in an axis correspgndi . .
Iscrete version of observer (34) is proposed

to the roll, pitch or yaw dynamics. For example, if one woul
like to have similar dynamics in pitch with the same gainaati { Qo1 = (COS(T\QM )I4+%SindT|?k‘ VA (S4)) d

k3 /ks = k1 ks = , it suffices to choosé? = k;x/(1 + ), . 2 . . (35)
Wlith i = 1,2, so that\{ = k§ +k35 = A\; = k1. In such a case, biy1 =T (—hubi + kysaia (by) + ob,x) + br
the third pole); is very close to zero if the gains’ and k3 In practice, for computational efficiency, the functions
are not sufficiently high (see Eq. (7)), leading to excesgivecos(Z|(,|) and Sincﬁ%mk') involved in (35) can be ap-
slow dynamics of the standard observer. On the other handpif)ximated by their first- of second-order approximation or
one would like the two observers to have similar dynamics Y, ysing a lookup table. Then, the estimated quaternion has
yaw, one should choose] , = ki1»(1+ %)/(kmi) so that 5 pe renormalized since its unit norm constraint is geheral
518,72 not preserved.
A~ _’leki"; = X3 = —ha. P
1 2
Thus, in the case where? < 1, the gains:j andk; become
much higher than the gairks andk. and excessively amplify ~Many microprocessors do not have a floating point unit
the effects of measurement noises in the attitude estimate.(FPU) integrated. This means that any floating point calcu-
lation has to be emulated in a software leading to many fixed-
IV. PRACTICAL IMPLEMENTATION ASPECTS point calculations needed for a simple operation. The fixed-
A. Quaternion and Discrete Version point arithmetic can thus reduce the computational burden.
The attitude estimation algorithm of the present paper has

It is computationally expensive to compute the proposeb%en implemented on an 8-bit microcontroller (AVR Atmel

filter (12) on the matrix representation of the attitude grou - :
SO(3) since the rotation matrix has 9 variables and 6 coATMEGA644P) withG4 kbytes of Flash memory and running

traints. Instead. th fth i ternion has the N 20 M H>. The code has been developed with the WinAVR
Zc;\?g]ntséggz-ea » the use ot the unit quaternion has thess mdevelopment suite and implemented in fixed-point arithayeti

i ) ] N ] which means that every real numbeis transformed into an
o The unit quaternion has no singularities (unlike Eu'%teger number by the transformationi = floor(r x 27),

B. Fixed-point Format Implementation

angle representations). _ _ wheren € N is the order of fixed-point format associated
« It has four variables and a single constraint. Moreovekith i. For example, infixed-point 14format, i.e.n = 14
the constraint is a simple scalar renormalization. if » = 0.314 theni = floor(0.314 x 2) = 5144. All the

« The transformation of a unit quaternion to a rotatiofansformations from real to integer numbers are done durin
matrix can be easily computed using Rodrigues’ rotatiqe code implementation, and when the code is executed, all o
formula [33], [35]. the calculations are done in fixed-point arithmetic onlytHis

Since we begin with an algorithm SO(3) and lift it to anyay, very high execution rate of the estimation filter is awhi
algorithm on the unit quaternions, there is no difficultieithw aple (for example, up t&00 Hz with the ATMEGA644P

the quaternion representation as discussed in [21], [23].  mjcrocontroller including other processes like the flighttrol
Let g € Q be a unit quaternion associated wikh The g|gorithm and data logging).

proposed observer (12) can be rewritten as Two interesting issues having attracted our attentionndyri
s Al earlier stages of code development deserve discussioner-
q=5A)q q0)€Q ical overflowand underflowissues.
= —lkyb + kysaty (b) + op,  [B(0)| < A (34) « Numerical overflowWe have opted to define the type of

Q _QT instead of “signed 32-bits integer” for computational

2 -0 efficiency reason. Lety € N denote the order of fixed-
We proceed to derive a discrete version of observer (34). point format associated witlg. Then, it is of interest

Assume that the sample timig is small enough, so that the to have ny as large as possible for maximizing the

b
the estimated quaternio§ as “signed 16-bits integer”
Q:=Q, —b+or, A(Q)::[ ]
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precision ofq. Since the first bit of a signed 16-bitsThus, one deduces
integer is reserved for the sign bit and since theoretically

_ T _ T
each component o is bounded by 1, one may choose us =R ez +n, vs=R e+, (36)
ng = 15. However, the numerical update gfgiven in  with
(35) may yield a componer; of g slightly larger than i (1] +e37] Mz + ey Ten

1. In this case, one hag2"s > 2'° and the overflow Na = ) Ny R—

issue occurs. As a consequence, we choege= 14 g e mz|

and proceed a renormalization éf after each update Proceed the linearization computations analogously agis E

according to (35). (25), (26), (27), (29) withuz and v given by (36) one can
« Numerical underflowLet ni, € N be the order of fixed- verify that in a first order approximatioR = I3 + x and

point format associated with the estimated gyro-bsas o N T

Then, in view of the second equation of (35), a small { = Aox =1 = b+ b+ k€5 + k2€38; 7y

value of gy, can affect a change in the updateﬁ)bnly

?f the termoan Is “visib]e” in the_fixgd-pointnb for_m.a_lt, with A, and By defined in (28) and (30), respectively. Let
i.e.|op,;|T2™ > 1. Equivalently, in view of the definition (®,0,T) and (é’é’@) denote the Euler angles associated

of o, in (12), the termsisu > s should be “visible” in with R andR, respectively. Using the approximations
the fixed-pointny, format. Therefore, ifay, is not chosen = = TSP y- g R PP

sufficiently high, then the numerical underflow issue mayz; ~ ® — d,29r O -0, 23=0—0,
occur. For example, if the estimation algorithm is run at ¢ ~ 0, & ~ 0y, ¥ ~ Q,

500 Hz (i.e. T ~ 279(s)), the gainksz is chosen small
(ks =~ 27%), andny, = 14, then the “visibility” of k3uz x
U5 requiresksT2™ |(ug x 0g);| ~ 2|(up x Gg);| > 1,  Omag = —UB3~ O —iyv3, Wmag = VB2 =V 41,2,
which roughly corresponds to an angle error greater thgfie deduces from (37) that

7/6 (rad). Therefore, in view of the above discussion we

: (37)
b = Box — kzezxnu — ks€1x7y

(I)acc =up2~ D+ Th,2, eacc = —-up1~ O — Tha,1,

have opted to stock the estimated variabli a “signed b = kD + k1 Poee + Q1 — by
32-plts integer” fprmat and chqosso = 28 in order to O = 10+ k1Ouee + Qs — b
avoid the numerical underflow issue. . i v .
The developed code has been successfully tested on a real U= —koW + koWinag + y,3 — b3
UAV and the experimental results are reported in Section VI. 51 = kg By + kg d
C. Gain Tuning by = —k3Oace — kaOmag + (k3 + k)0
The strategy of determining the gains for the proposed by = —k4¥ ag + kU

observer is inspired by the complementary filtering disedss
in [21, App. A]. In fact, complementary filter provide an
effective means of fusing multiple noisy measurements ef th
same signal that have complementary spectral charaatsrist
[2], [21]_. In our case, the attitude measurement provid_ed by O(s) = T&(5)Ouce + TE(5)Omag + S@(S)Qyﬂ
integration of the gyrometer measurements is predomipantl s
disturbed by a low frequency noise (and subjected to a drift U(s) = Ty(s)Prmag + g\p(s)%

due to a slowly time-varying bias) while the accelerometer S

noise is a high frequency disturbance. Note also that tiéth the complementary transfer functions satisfying
magnetometer measurements are disturbed by both low and7{.(s) + S(.)(s) = 1:

high frequency noises, and that the strategy here proposed

In the Laplace domain with the Laplace variabjene obtains

(ﬂ:%@%w+%@%§

4>

2
decouples the effects of the low frequency magnetometsenoi | Ty (s) = stk Sa(s) = 5
? 2t kst ks Y 2 ¥ ks + ks
from those of the accelerometer. § 1571 K3 s 18 T R3
For convenience, similarly to the proof of Theorem 1 we Ta(s) = ks + ks , TE(s) = ks ,
consider the new attitude state and estinfate R/ R, R = s?+kis+ks+ka s2+kis+kz+ky

RlR, with R,, defined in (18). We proceed by considering the Se(s) = 5°

linearization of the observer around the equilibriglR, b) = 8= s2+kis+ks+ky

(I5,0) for the case wheré& ~ 0, @ ~ 0 andR ~ I3. The kos + ky4 52
sensor measurements satisfy Tu(s) = - , Su(s) = :
52 4+ kas + ky 52 4+ kas + ky
Q, =Q+nq+b, In the case of proportional feedback, ile, = k4 = 0,

the crossover frequency of the complementary filters for the
roll/pitch- and yaw axes are respectively given by the prepo
tional (P-) gainsk; and k;. The P-gaink; (respectivelyks)
wherer. represents noise in the measurementstarga de- is typically chosen for the best crossover frequency in iorde
terministic perturbation dominated by low-frequency @t to trade-off between a low-pass filter of the accelerometer

ag ~ —gRTeg ~+ Na,

mp = R 'mz + npm,
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(respectively, magnetometer) measurements and a high-pasmpared to the standard implementation of the explicit-com
filter of the attitude measurement obtained by integratibn plementary filter proposed in [10], [21].
the gyrometer measurements. Simulations are carried on for the following scenario: an
The integral (I-) gainsks and k, govern the dynamics of IMU is fixed to a vertical take-off and landing (VTOL) vehicle
the gyro-bias estimates. Since the dynamics of the reagbiaghich is in stationary flight so that its attitude matrR
are slowly time-varying compared to those of the roll, pitcis I3, i.e. ¢ = 6 = ¢» = 0. The normalized geomagnetic
and yaw angles, the I-gaing and k; should be chosen atfield expressed in the inertial frang is taken asm; =
least10 times smaller thark; and ks, respectively, in order (0.4334,0.0012,0.9012)".
to ensure a good time-scale separation between the estimati The gains and parameters involved in the conditioned ob-
dynamics of the angles and the gyro biases. In practice, ®erver (12) are given by
choose the P-gaih; approximately equal td and the I-gain ks ks
ks at 16 or 32 times smaller thark;. The division by16 or ki1=1, k2=0.2,/€3=3—2,/€4=3—2, ky=16,A=0.03. (38)
32 is adopted because in a fixed-point implementation it ¢
be easily done by bit shifts. Figure 2 shows the Bode plczgl—‘
of the sensitivitySg (s) and complementary sensitivit§is (s)
for different sets of gains. In the case where the I-dajris
not sufficiently smaller thak; (for exampleks = k1/3), the
Bode plots ofSg(s) andT(s) are no longer reminiscent of
those of a first order system, whereas in the dase k;/32
similarity of the Bode plots is clearly visible.
Since for aerial robotic applications the measurement

the geomagnetic field is less reliable than that of the grav As discussed in Section IIl, it is impossible to choose

direction, we choose the gais about5 times smaller the;. . .
. . : a set of gains for the standard observer so as to provide
This also means that the complementary filter relies more on”. - . .
: . Similar dynamics in roll, pitch and yaw with those of the
the gyrometers to track the yaw dynamics. The ratigks " L .
. . .conditioned observer. However, it is possible to choossehe
and k2 /k4 is chosen equal so that the time-scale separation. T L )
. T ins so as to obtain similar dynamics in roll, pitch, or yaw
between angle and gyro-bias estimation is the same for roll . .
. with the corresponding one of the conditioned observer. Two
and yaw axes. As a consequence, the dailbecomes very

. o . . . simulations are reported.
small. In this case, the sensitivity functid@ig’ (s) is negligible, : . ] o :
and good approximationso (s) ~ Sa (s) and 4 (s) ~ T (s) Simulation 1:The gains involved in the standard observer

. are chosen as
can be obtained.

e P-gaink; is chosen larger thah, since we assume that

e measurement of the gravity direction is more reliabénth
that of the geomagnetic field. The I-gailisandk, are chosen
small compared to the P-gairks and &k, in order to avoid
coupling of attitude and bias dynamics and reduce integral
wind-up effects. The value o corresponds to an estimated
bound of each component of the gyro-bias vedioequal to
1FIeg/s. The gairk;, is chosen large in order to obtain a fast
@esaturation rate db.

S S __ — 1
B=1k5 =02,k = o,

allowing the linearized error system to have similar dyrzmi

in pitch with that of the conditioned observer whose gains

Y I S ... . and parameters are given in (38). No noise in gyrometer-

N and accelerometer measurements is introduced. By cordrast

constant gyro-bias vectds = (0.01, —0.005, —0.01) " (rad/s)

is added. Besides, each component of the magnetometer

measurement vectamg is corrupted by an additive white

Gaussian noise of variande3 —a very large value in view

of the norm equal tol of the vectormz. The initial es-

timated Euler angles associated with the initial estimated

V attitude matrixR(0) are rather large, i.g¢(0), 6(0),(0)) =

‘ (—45, 45,90)(deg), and the initial estimated gyro-bias is taken

\ asb(0) = (0,0,0)T (rad/s). The results illustrated in Figures

\ 3 and 4 show important performance differences between the

\ ‘ ,  proposed conditioned observer and the standard observer. |

particular, the latter would yield important overshootsl as-

cillations in both the estimated Euler angles and the estidcha

Fig. 2. Bode plots ofSs(s) and T (s) for the sets{k; = 1,k3 = 0}, gyro-bias components, and also a very slow convergencein th

{k1 =1,ks = k1/32} and{ks =1, k3 = k1/3}. yaw estimate. In contrast, one can observe, for the comaitio

observer, a very fast convergence of the estimated vasidble

the real values, and the quasi absence of overshoots of the

estimated attitude despite the use of the integral comecti

term b and the large initial estimation errors. It can also
In this section we illustrate through simulation resultbe seen that the magnetic disturbances do not degrade the

the improved performance of the conditioned observer (183timation performance of roll and pitch estimates and of

Bode plot of S(s) and T(s)

ko= -1 =
— — —8ik=1s"] k=0
e = -1 —
- - —Tk =151 k=0
ko= -1 —
———Sik=1 8], k=, /32

= -1 —
Tk =] koK /32

dB

e = -1 -
— — -8 Tk=11s"] k=K, /3

-20 -
22 R

10¥[rad/s]

V. SIMULATION RESULTS
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Fig. 6. Gyro-hias errob = b — b (simulation 2).

the first and second components of the gyro-bias estilaateallowing the linearized error system (as discussed in Sec-
whereas the corresponding estimated variables of theatandion Ill) to have similar dynamics in yaw with that of the
observer are effected. On the other hand, a slightly highegnditioned observer. The same constant gyro-bias vector
amplification of magnetometer noises on the yaw estimatebis magnetometer measurement noises and initial estimated
a price to pay for faster dynamics compared to the standatiitude and gyro-biagR(0),b(0)) as in Simulation 1 are

observer.

introduced. In addition, each component of the acceleremet

Simulation 2:The gain involved in the standard observefeasurement vectoss is corrupted by an additive white

are chosen as

ke = Fi(1+ k1 /k2)
kl/kgm%

ks = ka(1+ k1 /k2)
kl/kgm%

= 6.371,

1
= 1274, kr = 5,

Gaussian noise of variande Figures 5 and 6 show clearly

a better performance of the conditioned observer compared
to that of the standard observer. Whilst similar convergenc
and rather smooth behavior in the yaw estimate of the two
observers are obtained, the roll and pitch estimates and the
first and second components of the gyro-bias estiniate
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provided by the conditioned observer are much less noisy thexplained by the fact that the inertial magnetic field vector
that of the standard observer. Indeed, too high valuéjof inside the flying room of the ASL is not exactly known and
involved in the standard observer overly amplifies the éffeamight be slightly perturbed by the electrical equipmenthis t
of measurement noises in the estimated variables. area. The presence of magnetic disturbances does not preven
the estimates of the roll and pitch angles to converge tortiee t
V1. EXPERIMENTAL RESULTS value, thus confirming experimentally the discussion about

The experiments were performed on a quadrotor helicop§coupling in Section Il
which is equipped with a low-cost IMU composed of a 3-axis
accelerometer (MXR9500) and three single-axis gyrometers VII. CONCLUSIONS
(ADXRS610), and a magnetometer (HMC5883L magnetic In this paper a novel nonlinear attitude observer is propose
sensor). The attitude estimated by the algorithm of thisspapallowing for the global decoupling of the estimation of thodl r
is compared with “ground truth” measurement data acquiregd pitch angles from the estimation of the yaw angle and
by a motion capture system from Vicon. This vision-baseflom the presence of magnetic disturbances. It also allows
system is composed of 8 cameras mounted on the ceilingfof the compensation of the gyrometers’ bias of a low-cost
the flying room of the Autonomous Systems Lab (ASL) at thevU using an anti-windup integration technique. Practical
ETH Zurich, where the experiments took place. The Vicoimplementation aspects such as discrete implementation in
system provides the full pose of the flying vehicle at a rate gliaternions, gain tuning and fixed-point implementatioa ar

200 Hz. presented. Finally, simulation and experimental resudtgeh
supported the approach.
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