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Abstract

Implicit and explicit representations of smooth, finite-dimensional port-Hamiltonian systems are studied from the per-
spective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled
in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations.
Explicit representations are derived when generalized coordinates are used. A relationship between the phase spaces for
both system representations is derived in this article, justifying the equivalence of the representations in the sense of
preserving their Hamiltonian functions as well as their Hamiltonian symplectic forms, ultimately resulting in the same
Hamiltonian flow.

Keywords: Port-Hamiltonian systems, nonlinear implicit systems, modeling of physical systems.

1. Introduction

Hamiltonian systems form an important class of conser-
vative systems. They appear in many disciplines, includ-
ing mechanical engineering, circuit theory and astronomy.
The Hamiltonian point of view is worth particular atten-
tion because it allows to solve a great many of mechanical
problems which do not easily lend themselves to solutions.
An example is the problem of attraction by two stationary
centers [1]. Hamiltonian methods are also invaluable in
derivation of approximate methods in perturbation theory
and for clarifying the character of motion of systems in
celestial and statistical mechanics.

The class of Hamiltonian systems was extended in [2, 3]
to include open systems that can interact with the environ-
ment via a set of inputs and outputs, termed ports, giving
rise to port-Hamiltonian (PH) systems. These extended
models reveal the passivity properties of the correspond-
ing system, making them particularly well suited for the
design of passivity-based control (PBC) feedback laws.

Complex dynamic systems are preferably modeled in
terms of simpler interconnected subsystems, typically rep-
resented by systems of ordinary differential equations
(ODEs) expressed in Cartesian space coordinates. As-
sembling the subsystems amounts to imposing a set of
algebraic constraints, such that the resulting implicit
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model becomes a system of differential-algebraic equations
(DAEs).

Under reasonable assumptions, a DAE can be reformu-
lated as an equivalent ODE on a manifold [4, 5]. In the lan-
guage of analytical mechanics, the local coordinates on the
manifold in the explicit system representation are called
generalized coordinates. These coordinates automatically
satisfy the system constraints and the number of degrees
of freedom of the system is equal to the dimension of the
submanifold on which the system evolves. Since in explicit
ODE system representations the constraints and associ-
ated constraint forces no longer appear, these represen-
tations are preferred in the analysis of general mechani-
cal systems [6, 7] and in many problems of circuit theory
see [8, 9]. The main drawback of this framework is that
the resulting Hamiltonian (energy) function complicates
substantially.

Implicit DAE system representations [10, 11] are of
higher dimension and, depending on the particular appli-
cation, may require to solve for variables defined implic-
itly. On the other hand, the corresponding Hamiltonian
functions have simpler expressions. More precisely, it is
possible to split the Hamiltonian functions in two terms:
one depending on the velocities only (the kinetic energy)
and one depending on the positions only (the potential
energy), i.e., the Hamiltonians are separable. This prop-
erty has been largely exploited in the context of numerical
simulations, resulting in self-correcting numerical simula-
tion algorithms [12] and discrete-time sampled-data PH
models. When applying the interconnection and damp-
ing assignment PBC methodology [13] to a PH system,
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the resulting partial differential equations are simplified
considerably if the kinetic energy does not depend on the
positions, so there are possible advantages in using im-
plicit representations in a control context as well (other
advantages are suggested in [11]).

1.1. Motivation

For Hamiltonian systems, both DAE and ODE models
have been extensively studied [6, 10, 12], but little has
been said about the correspondence between the associ-
ated phase spaces and system flows. It has been briefly
suggested in [7, 14] that, formally, the manifold on which
the ODE is defined can be regarded as an embedded sub-
manifold of the original Euclidean configuration space,
but a detailed analysis about the mapping between phase
spaces has not been carried out. A rigorous discussion of
these relationships is presented here.

Some properties of PH systems that are important from
the control perspective (such as passivity) have been thor-
oughly addressed within the ODE framework only [13].
Passivity has been discussed within the DAE framework
from an algebraic perspective, using the notion of Dirac
structure [3], but a geometric treatment is still needed.

1.2. Contributions

We provide a map (ı, ∗) from the phase space of the
ODE system model to the phase space of the DAE system
model. The map is shown to commute with the Legen-
dre transform (Propositions 6 and 7), justifying the use
of DAE and ODE models on an equal footing. For sys-
tems with inputs, we show how the control vector fields
are mapped from one representation to the other. This is
summarized on Table 3.1.

Proposition 14 provides simple conditions for assessing
the passivity of PH systems defined implicitly. Propo-
sition 15 shows how the symplectic form changes in the
presence of external inputs (this computation is new, both
in the explicit and implicit frameworks).

1.3. Paper structure

The purpose of Section 2 is to establish a concrete rela-
tion between phase spaces. Section 2.1 presents conditions
for the configuration space to be embeddable in a higher-
dimensional ambient space. Sections 2.2 and 2.3 use this
embedding to relate the tangent and cotangent bundles
of the configuration space to their corresponding subbun-
dles of the ambient space. Sections 2.4 and 2.5 recall the
Legendre transform and Hamilton equations. Energy con-
servation and symplecticity are discussed in Section 2.6.

In Section 3 we consider systems with inputs and dis-
cuss their effect on the properties of energy conservation
and symplecticity. Special emphasis is given to implicit
representations.

Conclusions and future work are given in Section 4.

2. Hamiltonian Systems as ODEs and DAEs

2.1. System Configuration Spaces

The class of Hamiltonian systems considered here is
restricted to mechanical finite-dimensional systems with
holonomic constraints that evolve in continuous time. Sys-
tems of this type typically consist of M rigid bodies held
together as one structure by the action of constraint forces.
The position of each of the rigid bodies can be unambigu-
ously described in terms of the position of its center of
mass and its orientation in space The configuration space
of a spatial system as a whole can be thought to be a sub-
set of a Cartesian space of dimension n = 6M . In the
plane, n = 3M .

It is assumed for simplicity that the holonomic system
constraints are expressed by smooth (C∞) independent
functions g : Rn → Rk, with k ≤ n, that do not depend on
time. The configuration space of the constrained system
as a whole in the implicit DAE form is then the level set
G := g−1(0) = {r ∈ Rn | g(r) = 0}, where g−1(0) is the
inverse image of 0 ∈ Rk. Functional independence of the
constraints is expressed in terms of the rank condition.

Assumption 1. The rank of g is equal to k at all points
of the set g−1(0).

Under this assumption, the value 0 ∈ Rk is called a reg-
ular value of g. The level set g−1(0) is a regular level set
of g and g is said to be a defining map for G [15, p. 183–
184]. It follows that G is a closed embedded submanifold
of Rn [15, Cor. 8.10, p. 182]. The Constant-Rank Level
Set Theorem [15, Th. 8.8, p. 182] further specifies the di-
mension of G to be o = n−k. This motivates the following
definition.

Definition 2. The number of degrees of freedom of a
system with G as its configuration space is defined as the
dimension of G. The coordinates delivered by the charts
on G are called generalized coordinates for the system.

Since G is an embedded submanifold of Rn, there ex-
ists an inclusion map ı : G ↪→ Rn (embedding) with
rank(ı) = dimG and which is a homeomorphism onto
ı(G) ⊂ Rn in the subspace topology on Rn. Such an in-
clusion map ı(a) = a (one-to-one), sends each element a
of G to a treated as an element of Rn and has different
expressions in different coordinates on G and on Rn. In
practical situations, the geometric properties of the sys-
tem under study often suggest a selection of coordinates
on which the inclusion map ı : Ro ↪→ Rn satisfies the con-
ditions for a topological embedding and such that g◦ı ≡ 0.

Henceforward, the Cartesian coordinates on Rn will be
denoted by r = (r1, . . . , rn) and the generalized coordi-
nates of G will be denoted by q = (q1, . . . , qo). It follows
from the foregoing discussion that, in generalized coor-
dinates, r = ı(q). It is natural to ask how dynamical
system models in the alternative coordinates (r1, . . . , rn)
and (q1, . . . , qo) can be constructed and in which sense are
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these system models equivalent. The domains in which
to express the Lagrangian and Hamiltonian functions are,
respectively, the tangent and the cotangent bundles of the
configuration space. The relations of these functions in the
two representations have to be addressed first.

2.2. The Tangent Bundles and the Lagrangians

Let TqG denote the tangent space to the manifold G at
a point q ∈ G and let TG =

∐
q∈G TqG be the tangent

bundle of G. The flow of a dynamical system evolving
on the manifold TG is then determined by application of
Hamilton’s Principle, which states that the action asso-
ciated with a system trajectory over any interval of time
[t1, t2] has a stationary value that is expressed by

L̂ : TG→ R , δ

∫ t2

t1

L̂(q, q̇)dt = 0 ,

where δ denotes the variation of the action functional over
the class of smooth trajectories q(t) with fixed endpoints.
The Lagrangian L̂ represents the difference between the
kinetic and potential energies of the system, i.e. L̂ = K̂ −
V̂ , expressed in the generalized coordinates (q, q̇) on TG
induced by the coordinates on G. The tangent bundle
TG is assumed to be equipped with a Riemannian metric,
that is, a symmetric, bilinear, positive-definite form 〈〈·, ·〉〉
on TG, so that K̂ = 1

2 〈〈q̇, q̇〉〉. The potential energy is a

function V̂ : G→ R.
Now, let TrRn denote the tangent space to Rn at r

and let TRn be the tangent bundle of Rn. The con-
strained Hamilton’s Principle [16, p. 103], as stated in
the Cartesian coordinates, calls for the stationarity of the
constrained Lagrangian

L : TRn → R , δ

∫ t2

t1

(
L(r, ṙ) +

k∑

i=1

λig
i(r)

)
dt = 0 ,

where the variations are also taken over the class of paths
r(t) with fixed endpoints and where L satisfies L̂ = L ◦ ϕ
with ϕ := (ı, ı∗) a bundle map from TG to TRn. The
necessary conditions for stationarity take the usual form

d

dt

∂

∂ṙ
L(r, ṙ)− ∂

∂r
L(r, ṙ) +

k∑

i=1

λi
∂

∂r
gi(r) = 0 .

The flow of the system, being constrained, does not
evolve on the whole TRn, it rather evolves on a subbun-
dle (a collection of linear subspaces of Tı(q)Rn). We now
provide a way to characterize such subspaces. Intuitively,
these should be identifiable with TqG. More precisely, let
ı∗ : TqG→ Tı(q)Rn be the push-forward by ı. The desired
subspaces can be simply written as ı∗(TqG), but we wish
to characterize them without recourse to an explicit repre-
sentation for G. This can be done in terms of derivations
as follows. The image X̃ = ı∗(X) ∈ Tı(q)Rn of a vector

X ∈ TqG operates as X̃h = (ı∗X)h = X(h ◦ ı) = X(h|G)

on smooth functions h on Rn. Here, h|G is the restriction
of h to G. Note that the image of TqG is equal to

ı∗(TqG) = {X ∈ Tı(q)Rn |Xh = 0 , h ∈ C∞ , h|G ≡ 0} ,

see [15, Prop. 8.5, p. 178]. Since the map g = (g1, . . . , gk)
is smooth and vanishes on G, the desired subspace is

ı∗(TqG) = {X ∈ Tı(q)Rn |Xgi = 0 for i = 1, . . . , k} (1)

(note that the right-hand side only depends on the defining
map).

The following assumption about the convexity of the
Lagrangian function is standard because it guarantees ad-
equate regularity (of class at least C2) of the extremals of
the associated action functional; again see [16].

Assumption 3. The Hessian matrix

{
∂2L(r, ṙ)

∂ṙi∂ṙj

}

ij

is positive definite for all (r, ṙ) ∈ TRn so L(r, ṙ) is convex
in ṙ.

This assumption is satisfied for most mechanical systems
in view of the Riemannian form of the kinetic energy [17].

2.3. Hamiltonian Phase Spaces

The passage from the Lagrange formulation of the sta-
tionary conditions on TG to the Hamiltonian formulation
on the cotangent bundle T ∗G, referred to as the phase
space of the Hamiltonian system, is made by employing
the Legendre transformation. In what follows, we apply
the same methodology but using implicit representations.
Again, since the system is constrained, its flow does not
evolve on the whole T ∗Rn, so we devote this subsection
to the characterization of the subbundle on which the flow
evolves.

Finding the appropriate subbundle of T ∗Rn is, surpris-
ingly, more complicated than finding the appropriate sub-
bundle of TRn. There are two difficulties: The inclusion ı
does not define an injection from T ∗qG to T ∗ı(q)R

n, it rather

defines a surjection (the pull-back) from T ∗ı(q)R
n to T ∗qG.

Thus, the desired subbundle cannot be uniquely defined
as there are many subsets of T ∗ı(q)R

n with the same im-
age T ∗qG under this map. Also, recall that there is no
canonical isomorphism between a linear space and its first
dual [15, p. 127], so the subspaces (1) do not define natu-
ral subspaces of T ∗ı(q)R

n. We will show, however, that by
incorporating the knowledge of the system Lagrangian it
is possible to construct a special submanifold LG of T ∗Rn
that accounts for the system constraints. An important
part of this construction is played by the fiber derivative
map, which also takes part of the Legendre transformation,
as defined below [7].
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nonlinear
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Figure 1: Commutative diagram showing the relationship between
the phase spaces T ∗G and LG. Notice that LG is not a fiber bundle
if FL is nonlinear (i.e., if L is not quadratic in ṙ).

Definition 4. The fiber derivative of L is a map FL :
TRn → T ∗Rn defined by

〈FL(X), Y 〉 =
d

ds

∣∣∣∣
s=0

L(r,X + sY )

for all X,Y ∈ TrRn and any r ∈ Rn, where 〈·, ·〉 is the
standard pairing of a vector and a covector, i.e. the value
of a covector FL(X) as it acts on the vector Y .

The value 〈FL(X), Y 〉 is in fact equal to the variation
in L at X along the fiber TrRn in the direction of Y . It
is also easily verified that FL is fiber-preserving in the
sense that it maps the fiber TrRn into the fiber T ∗r Rn.
Hereafter, the notation {ri, ṙi} and {ri, pi} will be used to
denote global coordinates on TRn and T ∗Rn, respectively,
while {qi, q̇i} and {qi, p̂i} denote local coordinates on TG
and T ∗G. In charts, the fiber derivative takes the familiar
form, FL : (r, ṙ) 7→ (r, p) : pi = ∂L(r, ṙ)/∂ṙi (i.e., it is a
gradient mapping). We propose the following definition.

Definition 5. The Legendre manifold LG is defined as
the submanifold of T ∗Rn given by LqG := FL ◦ ı∗(TqG)
and LG =

∐
q∈G LqG ⊂ T ∗Rn.

Note that, by virtue of Assumption 3, the fiber map FL
is a Cs−1-diffeomorphism of ı∗(TqG) onto LG; see [18, Lem.
1]. This fact allows us to define the desired subbundle
using the defining functions and the Lagrangian alone, as
illustrated in Fig. 1.

Proposition 6. Let FL̂ denote the fiber derivative of the
Lagrangian function L̂ : TG→ R, L̂ = L ◦ ϕ, expressed in
local coordinates on TG. Let ı∗ denote the pull-back of ı.
Then, the diagram of Fig. 1 commutes. Moreover, FL̂ is
a Cs−1-diffeomorphism of TG onto T ∗G.

Proof. First it will be shown that FL̂ = ı∗◦FL◦ı∗. Apply-
ing Definition 4 to L̂ gives 〈FL̂(ξ), η〉 = d

ds

∣∣
s=0

L̂(q, ξ+sη),

where ξ, η ∈ TqG. Using L̂ = L ◦ ϕ in the right hand side

〈FL̂(ξ), η〉 = 〈FL ◦ ı∗(ξ), ı∗(η)〉, for ξ, η ∈ TqG. Employ-
ing the definition of the pull-back map, this pairing can

be written as 〈FL̂(ξ), η〉 = 〈ı∗ ◦FL ◦ ı∗(ξ), η〉, which must
hold for all ξ and η, so FL̂ = ı∗ ◦ FL ◦ ı∗.

In view of the smoothness of ı∗, the restricted mapping
L̂|TqG is of class Cs(TqG). To ascertain that FL̂ is a dif-

feomorphism, it must be shown that the Hessian of L̂ is
positive definite [18, Lem. 1]. Applying the chain rule to
L ◦ ϕ = L ◦ (ı, ı∗) gives

∂L̂

∂q̇j
=
∂ıl∗
∂q̇j

∂L

∂ṙl
◦ (ı, ı∗),

where Einstein’s summation convention was used to sim-
plify notation. Application of the same rule yields the
second derivatives,

∂2L̂

∂q̇i∂q̇j
=
∂ık∗
∂q̇i

∂ıl∗
∂q̇j

∂2L

∂ṙk∂ṙl
◦ (ı, ı∗).

Since the Jacobian
{
∂ıl∗/∂q̇

j
}
lj

is full-rank, the Hessian is

positive definite for all (q, q̇) belonging to the same coordi-
nate neighborhood. Each fiber TqG can be covered using a

single coordinate chart and FL̂ is fiber preserving, so FL̂
is a Cs−1-diffeomorphism of TG onto T ∗G.

2.4. The Legendre transform

Once the invertibility of FL is insured by the validity
of Assumption 3, it is correct to define the Hamiltonian
function H : T ∗Rn → R as the Legendre transformation
of L [18, 19], with L viewed as function of ṙ only, i.e.,

H(r, p) =
(
ṙipi − L(r, ṙ)

)∣∣
ṙ=FL−1(p)

. (2)

The function H is equal to the total energy of the system,
expressed using the redundant coordinates {ri, pi}. An
interesting property of the Legendre transform is that it is
its own inverse if L is convex [18, 19]. More precisely, the
fiber derivative of H, FH : T ∗Rn → TRn, defined as

〈W,FH(Z)〉 =
d

ds

∣∣∣∣
s=0

H(r, Z + sW ) ,

where Z,W ∈ T ∗r Rn, is the inverse of FL. In coordi-
nates, FH : (r, p) 7→ (r, ṙ) : ṙi = ∂H(r, p)/∂pi. Also,
the Lagrangian can be recovered by setting L(r, ṙ) =(
ṙipi −H(r, p)

)∣∣
p=FH−1(ṙ)

. Likewise, the Hamiltonian

function Ĥ : T ∗G→ R is defined as

Ĥ(q, p̂) =
(
q̇ip̂i − L̂(q, q̇)

)∣∣∣
q̇=FL̂−1(p̂)

. (3)

The invertibility of FL, together with Definition 5 and (1),

implies that LqG =
{
Z ∈ T ∗ı(q)R

n | FL−1(Z)(gi) = 0
}

.

Since FH is the inverse of FL, in local coordinates,

LqG =

{
p ∈ T ∗ı(q)R

n | ∂H(r, p)

∂pj

∂gi(r)

∂rj
= 0

}
. (4)

The commutative diagram of Fig. 1 suggests that ∗ :=
FL ◦ i∗ ◦ FL̂−1 is a right inverse for ı∗. Indeed, ı∗ ◦ ∗ =
ı∗ ◦ FL ◦ ı∗ ◦ FL̂−1 = FL̂ ◦ FL̂−1 = Id. Additionally,
∗ (T ∗G) = LG. The Hamiltonian functions in global and
local coordinates are then related as follows.
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Proposition 7. The Hamiltonians in implicit and explicit
system representations are related by Ĥ = H ◦ (ı, ∗).

Thus, Ĥ corresponds to the total energy as well, but
expressed using the local coordinates {qi, p̂i}. This is a
consequence of the fact that our map (ı, ∗) : (q, p̂) 7→ (r, p)
commutes with the Legendre transform.

Proof. It follows from (2) that

H ◦ (ı(q), ∗(p̂)) =
(
ṙi∗i (p̂)− L(ı(q), ṙ)

)∣∣
ṙ=FL−1◦∗(p̂) .

Since FL−1 ◦ ∗ = ı∗ ◦ FL̂−1 and ṙ = ı∗(q̇),

H ◦ (ı(q), ∗(p̂)) =
(
ıi∗(q̇)

∗
i (p̂)− L(ı(q), ı∗(q̇))

)∣∣
q̇=FL̂−1(p̂)

.

Finally, the Hamiltonian (3) is recovered by recalling that
L̂ = L ◦ (ı, ı∗) and noting that ıi∗(q̇)

∗
i (p̂) = q̇ip̂i.

2.5. Hamilton’s equations

Consider again the local coordinates {qi, p̂i} on the man-
ifold T ∗G. A system is named Hamiltonian if its trajec-
tories are integral curves of the Hamiltonian vector field

DĤ : T ∗G→ T (T ∗G), where DĤ = ∂Ĥ
∂p̂i

∂
∂qi −

∂Ĥ
∂qi

∂
∂p̂i

.
The Hamiltonian vector field unfolds into a more famil-

iar ODE system:

q̇ = +∇p̂ Ĥ(q, p̂) , ˙̂p = −∇q Ĥ(q, p̂) . (5)

See [6] for more details and a coordinate-free definition of
the Hamiltonian vector field.

The implicit model for Hamiltonian systems is defined
as follows. In global coordinates {ri, pi} on T ∗Rn, the
implicit Hamiltonian vector field XH,g : LG → T (LG),
takes the form,

XH,g = DH − λj
∂gj

∂ri
∂

∂pi
, g = 0 , (6)

with DH = ∂H
∂pi

∂
∂ri −

∂H
∂ri

∂
∂pi

. See [12] for details on the
derivation of this expression. The Lagrange multipliers λj
are defined implicitly by (6) and the restriction that the in-
tegral curve must lie on LG. More concretely, by applying
XH,g to both sides of the constraint equations gj = 0, one

obtains the hidden constraints f j := XH,g(g
j) = ∂H

∂pi

∂gj

∂ri =
0. Application of XH,g to the hidden constraints makes the
λj appear,

XH,g(f
l) = DH(f l)− λj

∂gj

∂ri
∂f l

∂pi
= 0 . (7)

Thus, if the matrix

{
∂gj

∂ri
∂f l

∂pi

}

jl

=

{
∂gj

∂ri
∂2H

∂pi∂pm

∂gl

∂rm

}

jl

(8)

is non-singular on LG, then there are unique λj satis-
fying (7) and ensuring that the integral curve stays on
LG. In mechanical systems, λ is the covector of constraint
forces that ensure that the constraints are being enforced.

Remark 8. Since the Hessian of L is positive definite,
the Hessian of H is positive definite as well [18] (convexity
is preserved by the Legendre transform). The matrix (8)
is thus positive definite (hence invertible) on account of
Assumptions 1 and 3.

Remark 9. The statements (r, p) ∈ LG and g(r) = 0,
f(r, p) = 0 are equivalent (cf. (4)).

The implicit vector field develops into the semi-explicit
DAE

ṙ = ∇pH(r, p) , ṗ = −∇rH(r, p)−G(r)>λ , 0 = g(r) ,
(9)

where G(r) is the Jacobian of g(r).

Example: A double planar pendulum

Consider the model of a double planar pendulum (Fig. 2)
that comprises a pair of point masses ma and mb whose
coordinate positions are ra = (rax , ray ) and rb = (rbx , rby ),
respectively. The massless bars are of fixed lengths la and
lb, which gives rise to the two holonomic constraints:

g1(r) = ‖ra‖2 − l2a = 0 , g2(r) = ‖rδ‖2 − l2b = 0 , (10)

where r := (ra, rb) ∈ Rn, n = 4, k = 2, rδ := rb − ra. The
rank of the constraint Jacobian is full since

rankG(r) = rank

(
rax ray 0 0
−rδx −rδy rδx rδy

)
= k (11)

for all r ∈ G. Therefore, 0 is a regular value of g and
G is an embedded submanifold of R4. The kinetic and
potential energies of the system are

K(ṙ) =
1

2
ṙ>Mṙ, M :=

(
maI 0
0 mbI

)
, (12)

V (r) = ḡ(mar
ay +mbr

by ) , (13)

where 0 and I are the null and identity elements in R2×2

and where ḡ is the acceleration of gravity. The Lagrangian
is L = K − V . The momentum is pi = ∂L/∂ṙi, i.e., p =
Mṙ. It follows from (12) and (13) that the total energy,
K + V , is

H(r, p) =
1

2
p>M−1p+ ḡ(mar

ay +mar
ay ) . (14)

Substituting (10) and (14) in (9) gives

ṙa = m−1a pa , ṙb = m−1b pb ,


ṗax
ṗay
ṗbx
ṗby


 = −




0
ḡma

0
ḡmb


− 2




rax −rδx
ray −rδy
0 rδx

0 rδy



(
λ1
λ2

)
,

(15)

which, together with (10), constitutes a set of DAEs de-
scribing the motion of the double pendulum. The multi-
pliers λ1 and λ2 are the magnitudes of the internal forces
along the two bars.
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y

x

mb

ma

lb

la

q2

q1

rδ =

(
lb cos(q

1 + q2)
lb sin(q

1 + q2)

)

ra =

(
la cos q

1

la sin q
1

)

rb = ra + rδ

Figure 2: A double planar pendulum, a simple Hamiltonian system.

An explicit model for the double pendulum as an ODE
is derived as follows. The dimension of G is o = n−k = 2.
Motivated by Fig. 2, choose q1 ∈ (−π, π) and q2 ∈ (−π, π)
as local coordinates for G. Eq. (11) insures the existence
of an embedding satisfying g ◦ ı ≡ 0. It can be readily
verified that such embedding is




rax

ray

rbx

rby


 =




la cos q1

la sin q1

la cos q1 + lb cos qt

la sin q1 + lb sin qt


 , qt := q1 + q2. (16)

Direct differentiation of the two sides of (16) yields the
following mapping between velocities,

ṙ =




−la sin q1 0
la cos q1 0

−la sin q1 − lb sin qt −lb sin qt

la cos q1 + lb cos qt lb cos qt


 q̇ , q =

(
q1

q2

)
.

(17)
The expression for the kinetic energy in terms of the gen-
eralized positions and velocities, is obtained by substitut-
ing (17) into (12), with K ◦ ı∗(q̇) = 1

2 q̇
>M̂(q)q̇,

M̂(q) =
(
mtl

2
a +mbl

2
b + 2mblalb cos q2 mbl

2
b +mblalb cos q2

mbl
2
b +mblalb cos q2 mbl

2
b

)

and mt = ma + mb. The expression for the potential
energy V ◦ ı(q) = ḡmala sin q1 + ḡmb(la sin q1 + lb sin qt)
is obtained by substituting (16) in (13). The vector of
momenta is p̂ = M̂(q)q̇ and the total energy is

Ĥ(q, p̂) =
1

2
p̂>M̂(q)−1p̂+ ḡ

(
mtla sin q1 +mblb sin qt

)
.

(18)
Finally, Eq. (5) states that the motion of the system is
described by

q̇ = M̂(q)−1p̂ , ˙̂p = −∇qV (q)−∇q
(

1

2
p̂>M̂(q)−1p̂

)
.

(19)
Two representations for the same system were derived, one
in the form of an ODE (19) and the other as a DAE (15).
The main point of this example can be summarized in the
following remark.

Remark 10. For the DAE, the Hamiltonian function (14)
is separable, i.e., the kinetic energy does not depend on
r. The inertia matrix M is a constant diagonal matrix.
Moreover, the potential energy (13) is linear, which results
in a constant gradient. On the other hand, the Hamilto-
nian (18) that appears in the ODE is not separable (the
inertia matrix depends on q) and it is composed of tran-
scendental functions.

The cost of a simpler Hamiltonian function is clear if
one compares the dimensions of q and p̂ that describe
the system using the vector field (19) versus the dimen-
sions of r and p in (15), and if one takes into account the
need for computing the Lagrange multipliers. Despite this
problems, implicit representations are particularly advan-
tageous for the purposes of system discretization, accurate
simulation and design of control laws.

2.6. Energy conservation and symplecticity

It is well known that the flow generated by DĤ pre-
serves the Hamiltonian function [10, 13]. In other words,
Hamiltonian systems conserve energy, a property that is
easily shown by computing LDĤ

Ĥ, the Lie derivative of

Ĥ along the flow generated by DĤ . The implicit vector
field (6), on the other hand, represents the same system as
DĤ , so the flow generated by it must surely preserve the
Hamiltonian function too [12]. Indeed,

LXH,g
H = XH,g(H) = DH(H)−λj

∂gj

∂ri
∂H

∂pi
= λjf

j . (20)

Eq. (20) shows that (LXH,g
H)(r, p) = 0 for all (r, p) ∈ LG

(cf. Remark 9), so H remains constant along the system
trajectories.

It is also well known that, besides the 0-form Ĥ, Hamil-
tonian flows preserve the 2-form ω̂ := dqi ∧ dp̂i, which
acts on vectors of T (T ∗G) (See [6] for a coordinate-free
definition). The invariance of ω̂ with respect to DĤ can
be established by showing that the Lie derivative LDĤ

ω̂ is
equal to zero, the demonstration being similar to that of
the conservation of Ĥ.

Definition 11. A differentiable mapping φ̂ : T ∗G→ T ∗G
is called symplectic if φ̂∗ω̂ = ω̂.

Employing the definition of the pull-back map, Defi-
nition 11 can be alternatively written as ω̂(φ̂∗ξ, φ̂∗η) =

ω̂(ξ, η) for all ξ, η ∈ Tx(T ∗G). Remarkably, the flow φ̂t
that is generated by the Hamiltonian vector field DĤ is
symplectic.

Again, since the implicit Hamiltonian vector field XH,g

refers to the same physical system as DĤ , one might rea-
sonably expect XH,g to generate a symplectic flow. Simi-
larly to ω̂, we define ω := dri ∧ dpi, which acts on vectors
of T (T ∗Rn).

Theorem 12. [12, 14] Let H be twice continuously dif-
ferentiable. The flow φt : LG → LG of XH,g (6) is a
symplectic transformation on LG, i.e., φ∗tω = ω for every
t for which φt is defined.
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Remark 13. The converse statement, that every sym-
plectic flow φt solves Hamilton’s equations for some H, is
also true, so symplecticity is a characteristic property of
Hamiltonian systems [6]. This does not translate to the
case of energy conservation, i.e., while every Hamiltonian
system conserves energy, not every energy-conserving sys-
tem is Hamiltonian.

3. Adding ports

In the presence of external forces and dissipation it is
convenient to represent DĤ as an input–output system
equipped with a pair of port variables (u, y), giving rise to
a PH system [10, 13, 20] that is described by the vector
field, XĤ,u : T ∗G× (Rm)∗ → T (T ∗G),

XĤ,u = DĤ + ulÛ
l
i

∂

∂p̂i
. (21)

Here, u ∈ (Rm)∗ is the controlled or input variable. The
dependent or output variable, y ∈ Rm, is such that yl =

Û l
i
∂Ĥ
∂p̂i

, where Û l
i are maps from G to R. Applying this

idea to the implicit Hamiltonian system (6) gives the im-
plicit control vector field XH,u,g : LG× (Rm)∗ → T (LG),

XH,u,g = DH +

(
ulU

l
i − λj

∂gj

∂ri

)
∂

∂pi
, g = 0 , (22)

with the output defined by yl = U l
i
∂H
∂pi

. A system de-

scribed by (22) is called an implicit port-Hamiltonian sys-
tem [10]

The vector field (22) and the output unravel to become,

ṙ = +∇pH(r, p) , ṗ = −∇rH(r, p)−G(r)>λ+ U(r)u ,

y = U(r)>∇pH(r, p) , 0 = g(r) .

By analogy with the results described in Sec. 2.5, one
can determine the Lagrange multipliers λ explicitly. The
constraints fa = 0 imply that

XH,u,g(f
a) = DH(fa)+ulU

l
i

∂fa

∂pi
−λj

∂gj

∂ri
∂fa

∂pi
= 0 , (23)

from which it follows that, as long as (8) is non-singular,
there are unique λj (in general dependent on u as well as
on r and p) such that XH,u,g(f

a) = 0 and such that the
integral curve stays on LG.

It follows from Proposition 7 and yl = Û l
i
∂Ĥ
∂p̂i

= U l
i
∂H
∂pi

that
Û l
i = ı j∗ i · (U ◦ ı)

l
j . (24)

3.1. Passivity

It can be readily seen that an implicit PH system de-
scribed by (22) no longer preserves H. The Lie derivative
of H is now LXH,u,g

(H) = uly
l−λjf j . Recall that f j = 0

for all j and all (r, p) ∈ LG, so one has the power balance
LXH,u,g

H = uly
l. Since the product uly

l is equal to the

rate of change in energy, we say that (u, y) is a power-
conjugated pair of port variables. If, in addition, the re-
striction of H to LG is bounded from below, i.e., if the
image of LG under H is bounded from below, then (22) is
called passive, or more precisely, lossless. Boundedness of
H can be easily assessed using the following proposition,
which is a consequence of Weierstrass’ Theorem.

Proposition 14. Suppose that the potential energy V is
lower semi-continuous and G is compact in the topology
of Rn. Then, H(LG) is bounded from below (hence, the
vector field (22) describes a lossless system).

Example: A double planar pendulum (continued)

Suppose that the double pendulum (Fig. 2) is actuated
by application of torques u1 and u2 to the joints that cor-
respond to the angles q1 and q2, respectively. The re-
sulting linear forces U1u1 and U2u2 (U1 := {U 1

i }i and
U2 := {U 2

i }i) can be computed using (24), that is,

U1 =




−ray
rax

0
0




1

l2a
and U2 =




rδy

−rδx
−rδy
rδx




1

l2b
− U1 .

The manifold defined by (10) is compact and the poten-
tial energy (13) is continuous, which confirms that the
double pendulum is passive with passive outputs yl =
U l
i ∂H/∂pi = U l

i ṙ
i. From (16), (17) and (24), we have

Û 1
1 = 1, Û 1

2 = 0, Û 2
1 = 0 and Û 2

2 = 1, so that in local
coordinates the passive outputs correspond to the angular
velocities y1 = Û 1

i q̇
i = q̇1 and y2 = Û 2

i q̇
i = q̇2.

3.2. The evolution of the symplectic form

With the inclusion of the control variable u, it can no
longer be expected that the flow of (22) be symplectic.

Proposition 15. The Lie derivative of ω = dri ∧ dpi
restricted to LG satisfies

LXH,u,g
ω
∣∣
LG = dri ∧ d(ulU

l
i ) . (25)

Proof. Recall first that the Lie derivative of a general l-
form α along a vector field X can be computed using Car-
tan’s formula [21] as LXα = d (iXα)+iXdα. That is, LXα
is the sum of two l-forms: d (iXα), the exterior derivative
of iXα (the contraction of α on X), and the contraction
of dα on X. Thus,

LXH,u,g
ω = d

(
iXH,u,g

(dri ∧ dpi)
)

+ iXH,u,g
d(dri ∧ dpi)

= d
(

(iXH,u,g
dri) ∧ dpi − dri ∧ (iXH,u,g

dpi)
)
.

The second equality follows from the anti-derivation prop-
erty of the contraction and the wedge product [21, p. 152]
and the fact that d2β = 0 for any differential form β. Per-
forming the contraction of dri and dpi on XH,u,g gives,

LXH,u,g
ω = d

(
∂H

∂pi
dpi + dri

(
∂H

∂ri
− ulU l

i + λj
∂gj

∂ri

))
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Explicit model Implicit model Corresponding map

Positions q r r = ı(q)
Velocities q̇ ṙ ṙ = ı∗(q̇)
Momenta p̂ p p = ∗(p̂)

Control vector fields Û l
i ∂/∂p̂i U l

i ∂/∂pi Û l
i (q) = ı j

∗ i(q) · U l
j (ı(q))

Lagrangian L̂(q, q̇) L(r, ṙ) L̂(q, q̇) = L(ı(q), ı∗(q))

Hamiltonian Ĥ(q, p̂) H(r, p) Ĥ(q, p̂) = H(ı(q), ∗(p̂))
Symplectic form ω̂ = dqi ∧ dp̂i ω = dri ∧ dpi

Table 1: Relationship between the implicit and explicit representations of a PH system.

or
LXH,u,g

ω = dri ∧ d(ulU
l
i ) + dλj ∧ dgj (26)

(see [21, Ch. 11] or [14] for a list of rules for the ex-
terior derivative, contraction and wedge product). The
constraint g = 0 implies the restrictions dgj = 0, i.e.,
dgj(ξ) = 0 for all ξ ∈ Tx(LG), so (26) reduces to (25).

Remark 16. Equation (25) shows that, when u ≡ 0, the
Lie derivative of ω is equal to zero, so ω remains constant
and in consequence the flow is symplectic.

There is another particular case in which the flow can be
made symplectic: Suppose that ul are functions on G such
that ulU

l
i = ∂Va/∂r

i for some artificial potential function
Va : G → R. Then, LXH,u,g

ω
∣∣
LG = dri ∧ d(ulU

l
i ) =

dri ∧ ∂2Va

∂rj∂ri drj = 0. Equation ulU
l
i = ∂Va/∂r

i appears,
e.g., in the context of passivity based control, when per-
forming potential energy shaping [22]. In general, however,
u destroys symplecticity.

4. Conclusions and Future Work

The complete geometric relation between implicit and
explicit port-Hamiltonian systems is summarized in Ta-
ble 1. This material can be useful when comparing or
developing different integration or controller design meth-
ods. It is also possible to design a controller using one
representation and to implement it using the other.

As a starting point, we have applied a modified (im-
plicit) version of energy shaping PBC in order to stabilize
the upward equilibrium of the double pendulum. The con-
trol problem is trivial but it is interesting to note that, in
the implicit framework, simple algebraic equations appear
in place of the usual partial differential equations. When
proper damping is applied, asymptotic stability can be
proved using Proposition 15 instead of the usual LaSalle
argument. Details will be reported elsewhere.

The authors are currently using this material to de-
velop numerical integration schemes for Hamiltonian sys-
tems with inputs (the autonomous case is well developed,
but the non autonomous is new).
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