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Résumé

The paper concerns the control of Vertical Take Off and Landing (VTOL) Underactuated
Aerial Vehicles (UAVs) in hover flight, based on measurements provided by an on-board video
camera. The objective is to stabilize the vehicle to the equilibrium pose associated with an
image of a planar target, using a minimal sensor suite and poor knowledge of the environment.
By using the homography matrix computed from the camera measurements of the target, sta-
bilizing feedback laws are derived based on the visual data and gyrometer measurements only.
Explicit stability conditions on the control parameters are provided, showing that a proper
tuning of the control parameters ensures a large robustness margin with only planar target
and visibility assumptions, while the target size and orientation, the UAV position, linear
velocity and orientation are unknown. Additional issues, such as the use of accelerometers in
order to improve the UAV’s positioning in the case of unmodeled dynamics (like wind), are
also considered.

1 Introduction

Unmaned Aerial Vehicles (UAVs) can be used for many surveillance and monitoring appli-
cations, both indoor and outdoor environment. Their effectiveness relies in the first place on
the use of embarked sensors that can provide information on the vehicule’s pose (i.e. position
and orientation). In teleoperated modes, the human operator can compensate for the lack of
some pose information (like, e.g., the vehicule’s position). For fully autonomous control modes,
however, information on both position and orientation is necessary. It is well known that pose
estimation is a challenging problem for UAVs, and especially for VTOLs (Vertical Take-Off and
Landing vehicles). This is due to several reasons, among which, i) the absence of sensors that can
provide a direct measure of the 3D-orientation, ii) the difficulty to obtain precise and high-rate
position measurements via GPS sensors, iii) the impossibility to use these sensors in some en-
vironments (like, e.g., urban canyons). Thus, while interesting results have been obtained with
Inertial Measurement Unit (IMU) [18], or GPS-aided IMU (see, e.g., [21, 13] for recent results),
other sensors are needed to improve UAV’s effectiveness, especially those providing information
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about UAV’s local environment. One of the most promising alternatives is vision sensors. Cameras
provide a rich information about the environment. They have been used extensively for ground
robotics applications. Over the last ten years, vision-based control solutions have been developed
for aerial vehicles. Regulation of a mechanical system based on visual features for feedback is
known as Visual Servo Control [9]. There are two main approaches in visual servo control [5, 6] :
Image-Based Visual Servoing (IBVS), and Position-Based Visual Servoing (PBVS), depending
upon whether the controller is designed to directly act on the visual information (IBVS) or whe-
ther the visual information is first used in the pose reconstruction (PBVS). The latter has been
successfully implemented on a number of aerial vehicles [25, 26, 1, 23]. It requires, however, an
accurate geometric model of the visual target along with good calibration of the camera. An IBVS
scheme was first presented in [12] for underactuated systems. The dynamics of features in image
space were formulated in terms of their spherical projections to preserve the dynamic structure
of the system and used as direct inputs to the control algorithm. The controller was designed to
stabilize the dynamics of the image features. Extensions of this work have been recently proposed
and successfully implemented, especially to improve the conditioning of the Jacobian matrix [11]
or to overcome the need for a velocity sensor, using the measurement of the optical flow [16].
These approaches do not require accurate geometric target models or well calibrated cameras, but
they lead to complex nonlinear control problems due to the appearance of the image depth as an
unknown scale factor into the system dynamics. A comparison of different IBVS control schemes
for VTOL UAVs can be found in [4]. When the target is planar, an alternative approach is the
Homography-Based Visual Servoing (HBVS), originally developed for robot manipulators or more
general fully-actuated systems [20, 3]. HBVS uses the homography matrix as feedback input. This
matrix relates the coordinates of the target’s points in camera frame as seen from two configu-
rations of the camera. It can be computed from two images of the same planar scene. Several
efficient computer vision algorithms have been proposed to this purpose (see e.g. [3]). While the
homography matrix can be expressed in term of geometric parameters : camera displacement, nor-
mal to the target plane, and distance from the target to the camera, its decomposition in term of
these parameters is ill-posed due to the existence of multiple solutions. Consequently, prior works
on HBVS of underactuated vehicles exploit additional information on the camera displacement
from other sensors (e.g. orientation from IMU). Examples are given in [27] (and subsequently in
[24], [7]) in a 2D1

2 visual servoing formulation, in [26] for a landing manoeuver of helicopter on a
fixed target, or more recently used for landing of fixed wing aircrafts [15, 10]. In all these cases,
the use of additional information on the pose makes HBVS strongly related to PBVS solutions.
To the authors knowledge, there is no stabilisation results for underactuated systems relying on
the homography matrix only.

The main contribution of this paper is to show that the stabilisation of VTOL UAVs in hover
flight can be achieved based on measurements provided by a single camera and gyrometers only.
Two control laws are proposed to address the case of a non-vertical and non-horizontal target
respectively, with the natural assumption that the target is in the camera field of view at the
equilibrium pose. Each of these controllers is thus applicable for a ±90o range of target orientation,
knowing that the control expression does not make use of the value of the target’s normal. The
control approach proposed in this paper exploits directly the homography matrix that encodes
the pose information of the camera with respect to the target. It is assumed, however, that this
matrix is available for control computation, e.g. using computer vision algorithms mentionned
above. It is also assumed that the target is visible and remains inside the camera’s field. This is a
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reasonable assumption since the stabilization discussed here is local. There are several challenges
associated with this problem. First, since the target’s orientation is not known, the vehicle’s
pose cannot be extracted from the homography measure. In addition, unlike many works on the
subject, we do not assume that the vehicle’s orientation can be reconstructed. In fact, such a
reconstruction is difficult in practice and in particular, the use of accelerometers to recover the
system’s attitude remains controversial [22]. Then, we do not have any sensor that provides linear
velocity measurements either. Finally, the systems here considered are underactuated (i.e. the
number of independent force and torque controls is strictly smaller than the number of degrees of
freedom). The approach builds on a previous result by Benhimane and Malis [3] for the control of
robotic manipulators, based on a kinematic and holonomic model. The fact that dynamical models
of underactuated vehicles are considered here makes the problem significantly harder. Note that
a preliminary version of this paper was presented in [8]. With respect to that work, the present
paper contains several extensions. First, the solution proposed in [8] did not address the case of a
vertical target. That result is here extended in order to include this case. Then, the assumption
according to which the camera’s optical axis is aligned with the vehicle’s thrust direction is
relaxed : no assumption on the camera’s orientation (except for the natural visibility assumption
of the target) is needed anymore. We also investigate the use of accelerometer measurements to
improve the UAV’s positioning in the presence of unmodeled dynamics (like wind). Finally, proofs
of the proposed results are provided.

The paper is organized as follows. Section 2 reviews some technical background and provides
a precise description of the addressed problem. Section 3 contains the main results of the paper :
stabilizing control laws computed from homography measurements are proposed, together with
explicit stability conditions. These results are complemented in Section 4 in two ways. Firstly,
the use of accelerometers to improve the positionning in the presence of unmodeled dynamics is
addressed. Secondly, a gain-tuning strategy that allows to obtain good performance in a large
operating domain is proposed. Simulation results validating the control approach are presented
in Section 5. The paper ends with concluding remarks.

2 Preliminary background

2.1 Problem statement

The problem addressed in this paper (see Fig. 1 and 2 below for illustration and notation)
corresponds to a typical scenario for UAVs. The vehicle is equipped with a camera. A reference
image of a planar target T is taken at some desired pose (i.e. location), represented by the reference
frame <∗. Based on this reference image and the current image, the objective is to design feedback
laws that stabilize the vehicle at the desired pose.

Except for the planarity assumption no other information on the target, like geometry or
orientation, is available. In particular, the target’s normal is unknown. The distance to the target
at the desired pose is also unknown, although a (very rough) lowerbound on this distance is
needed to guarantee stability. We shall assume, however, that the target remains in the field of
view of the camera along the trajectory. This assumption is reasonable in the present case since
the addressed stabilization problem (and stabilization result) is essentially local.

Since the systems here considered are underactuated, we have to assume that the desired pose is
an equilibrium of the vehicle. Otherwise the problem of asymptotic stabilization cannot be solved.
For example, in the case of an helicopter, neglecting the lateral force due to the anti-torque rotor,
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Figure 1 – Problem scheme : stabilization w.r.t. a ground target
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Figure 2 – Problem scheme : stabilization w.r.t. a frontal target

stabilization of a desired pose requires that the rotor thrust direction is vertical at this pose (in
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the absence of wind), so as to compensate gravity without inducing lateral motion. This fixes two
rotational degrees of freedom.

2.2 Dynamics of thrust-propelled underactuated vehicles

The proposed approach applies to the class of underactuated "thrust-propelled" VTOL ve-
hicles [14]. More precisely, we consider rigid bodies with one force control in a body-fixed direction
and full torque actuation. Typical examples are given by helicopters, ducted fans, quadrotors, etc.
To comply with the assumption that the reference pose is an equilibrium for the vehicle, it is
assumed that the thrust direction at the reference pose is aligned with the vertical basis vector of
the reference frame <∗. The dynamical equations are then given by

ṗ = Rv

Ṙ = RS(ω)
mv̇ = −mS(ω)v − Tb3 +mγ
Jω̇ = −S(ω)Jω + Γ

(1)

with p the position vector of the vehicle’s center of mass, expressed in the reference frame, R the
rotation matrix from the current (i.e. body) frame to the reference frame, v the linear velocity
vector with respect to (w.r.t.) the reference frame expressed in the current frame, ω the angular
velocity vector expressed in the current frame, S(.) the matrix-valued function associated with
the cross product, i.e. S(x)y = x× y , ∀x, y ∈ R3, m the mass, T the thrust input, b3 = (0, 0, 1)T ,
J the inertia matrix, Γ the torque vector, and γ = gRT b3 the projection of the gravity vector in
the current frame with g the gravity constant.

The first and second equations of System (1) correspond to the kinematics, while the third
and fourth account for the dynamics. The objective is to asymptotically stabilize the origin p =
0, R = I3, v = 0, ω = 0, with I3 the 3×3 identity matrix, from visual measurements of a reference
image I∗ (taken at <∗) and the current image I (taken at <) of the planar target T . Note in
particular that neither p nor R are directly measured. Visual measurements only provide a partial
and coupled measurement of these quantities (see subsection below). The linear velocity vector v
is not measured either. On the other hand, we assume that the angular velocity ω is measured
via gyrometers. We review below some well known facts about visual sensors and homography
matrices.

2.3 Visual observation of planar scenes and homography matrices

Let us first assume that the camera and UAV frame coincide (this assumption is relaxed in
the next section). The following notation applies to the planar scene T (see Fig.1 and 2)

– χ∗, χ are the coordinates of a point of interest P lying on the planar target, expressed in
the reference and current frames respectively.

– n∗ is the unit vector defining the normal to the planar object, expressed in the reference
frame ; d∗ is the distance between this plane and the camera optical center. Z∗ is the third
coordinate of point P in the reference frame.

A useful tool in visual servoing is the so-called homography matrix H which embeds all
information regarding the transformation between two images of the same planar object of interest
(see, e.g., [3, 17] for more details). An important feature of this matrix is that it can be estimated
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from these images without any assumption on the camera pose. H is defined as :

H , K

(
RT − 1

d∗
RT pn∗T

)
K−1 (2)

with K the camera intrinsic parameters matrix. The matrix H relates the normalized coordinates
of a point as seen from the reference and current pose. Indeed, the following relationship holds :

χ = RTχ∗ −RT p (3)

Defining the pixel coordinates —which embed the camera calibration error— µ = K
(

1
Zχ
)
and

µ∗ = K
(

1
Z∗χ∗

)
and noticing that n∗Tχ∗ = d∗, one gets :

Z

Z∗
µ = K

(
RT

χ∗

Z∗
−RT p

Z∗
1

d∗
n∗Tχ∗

)
= K

(
RT − 1

d∗
RT pn∗T

)
K−1µ∗ = Hµ∗

(4)

The scalar Z
Z∗ is the —unknown— ratio of the third coordinates in both frames. This relationship

suggests that H can be estimated only up to an unknown scalar factor. Several algorithms have
been proposed for the estimation of the Homography matrix (see, e.g., [3, 17]). Assuming that K
is known, one can compute an estimate of the matrix

Hη = η

(
RT − 1

d∗
RT pn∗T

)
with η some scalar factor. One can show (see, e.g., [17, Pg. 135]) that η corresponds to the mean
singular value of Hη. Furthermore, an explicit formula for the calculation of η is proposed in [19,
App. B]. Therefore, we assume from now on the knowledge of

H = RT − 1

d∗
RT pn∗T (5)

The time-derivative of H is easily deduced from (1) :

Ḣ = −S(ω)H − 1

d∗
vn∗T

In [3], H was used to define an error vector and an associated feedback law, based on a
kinematic control model. More precisely, the following result was shown.

Proposition 2.1 [3, Sec. 4] Assume that the camera optical axis corresponds to the z-axis of the
body frame. Let χ∗ denote the coordinates of a point P ∈ T , expressed in the reference frame <∗,
and m∗ = 1

Z∗χ∗ the associated normalized coordinates. Let e ∈ R6 denote the error vector defined
by

e =

(
ep
eΘ

)
, ep = (I −H)m∗ , eΘ = vex(HT −H) (6)

with vex the inverse operator of any valued skew matrix : vex(S(x)) = x for any x ∈ R3. Then,
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1. (p,R) 7−→ e defines a local diffeormorphism around (p,R) = (0, I3). In particular, e = 0 if
and only if (p,R) = (0, I3).

2. The kinematic control law
v = −λpep , ω = −λΘeΘ (7)

with λp, λΘ > 0 makes (p,R) = (0, I3) locally asymptotically stable. 4

Remark 2.2 1) In [3], ep and eΘ are defined with an opposite sign, i.e. ep = (H − I)m∗ , eΘ =
vex(H−HT ). The present choice is better adapted to the definition of v and ω in (1). 2) There is
no constraint on m∗ except that it must be a projective vector, i.e., m∗3 = 1. Note, however, that
there is an implicit constraint on the target’s orientation, i.e. n∗3 > 0, corresponding to the fact
that the optical (semi)-axis of the camera intersects the planar target. 4

2.4 General camera configuration

When the camera and body frames do not coincide, the expression of the homography matrix
in terms of p and R is different. Let us denote by χ∗c (resp. χc) the coordinates of P in the reference
(resp. current) camera frame. One has{

χc = Rcχ+ pc
χ∗c = Rcχ

∗ + pc
(8)

with Rc and pc the rotation matrix and translation vector from body to camera frames. In ac-
cordance with a standard convention in visual servoing, we assume througout the paper that the
optical axis of the camera corresponds to the z-axis of the camera frame. It follows from (8) that

χc = Rcχ+ pc

= Rc
[
RTχ∗ −RT p

]
+ pc

= Rc
[
RT
(
RTc χ

∗
c −RTc pc

)
−RT p

]
+ pc

= RcR
TRTc χ

∗
c −

[
RcR

T p+ (RcR
TRTc − I3)pc

] (9)

The homography matrix is thus given by (compare with (5))

Hc = RcR
TRTc −

1

d∗
[
RcR

T p+ (RcR
TRTc − I3)pc

]
n∗Tc (10)

with n∗c = Rcn
∗ the expression of the normal to the target in the reference camera frame. Ap-

proximation of Hc around the identity matrix yields

Hc = I − S(RcΘ)− 1

d∗
Rc(p+ S(RTc pc)Θ)n∗Tc +O2(p,Θ) (11)

with Θ any parametrization of the rotation matrix R such that R ≈ I3 + S(Θ) around R = I3

(e.g., Euler angles).
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3 Main results

The results proposed in this section can be viewed as an extension of Proposition 2.1 to System
(1). This extension raises several difficulties. First, the control input is no longer the 6d-vector
of velocity variables (v, ω). It is the 4d-vector composed of the force input T and torque vector
Γ. Then, one has to account for the system’s underactuation, and for the fact that the system’s
dynamics is not symmetric in all dimensions of the state space : both underactuation and gravity
induce differences between vertical versus horizontal dynamics. Such differences are not present
when the control design is based on a (holonomic) kinematic model. Finally, we do not assume
that measurements of the linear velocity vector v are available.

First, a new error vector which is instrumental in the design of stabilizing feedback laws is
defined.

Proposition 3.1 Let b1, b2, b3 be the canonical vectors of R3, and m∗c,k = Rcbk for some k ∈
{1, 2, 3}. Let n∗ = (n∗1, n

∗
2, n
∗
3)T and I3 the identity matrix of size 3× 3. Let (compare with (6))

ek =

(
ekp
ekΘ

)
, ekp = (I −Hc)m

∗
c,k , e

k
Θ = vex(HT

c −Hc)

and

ēk = AMek, A =

(
RTc 03

03 RTc

)
, M =

(
2I3 S(m∗c,k)

−S(m∗c,k) I3

)
(12)

Let Θ ∈ R3 denote any parametrization of the rotation matrix R such that R ≈ I3 +S(Θ) around
R = I3 (e.g., Euler angles). Then,

1. In a neighborhood of (p,R) = (0, I3),

ēk = L

(
p+ S(RTc pc)Θ

Θ

)
+O2(p,Θ), L =

(
Lp 03

LΘp LΘ

)
(13)

with
Lp =

1

d∗
(n∗kI3 + n∗bTk ), LΘ = 2I3 + S(bk)

2, LΘp =
1

d∗
S(n∗ − n∗kbk) (14)

and O2 denoting terms of order two at least.

2. If n∗k 6= 0, then (p,R) 7−→ ēk defines a local diffeomorphism around (p,R) = (0, I3). In
particular, ēk = 0 if and only if (p,R) = (0, I3). 4

The proof is given in Appendix.

Remark 3.2 1) Since the projective vector m∗c,k is user-defined, the choice m∗c,k = Rcbk can
always be made. If m∗c,k is interpreted as a pointing direction in the camera reference frame, then
this direction corresponds to the bk direction in the inertial frame : it is thus an invariant whatever
the camera orientation in body frame. 2) Note that L can be viewed as the linear approximation
at the origin of the interaction matrix associated with ēk. 4
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Assume that pc = 0. Then, Eq. (13) shows the rationale behind the definition of ēk : at first
order, components ēk1, ēk2, ēk3 contain information on the translation vector p only, while components
ēk4, ē

k
5, ē

k
6 contain decoupled information on the orientation (i.e. LΘ is diagonal), corrupted by

components of the translation vector. This cascade structure is instrumental in the forthcoming
control design and analysis. Ensuring that pc = 0 is not realistic in practice, but fixing the camera
close to the center of mass is often possible. The design of exponentially stabilizing feedback laws
for pc = 0 then ensures exponential stability provided that pc is small enough. Therefore, we
assume from now on the following.

Assumption : pc = 0.

The control approach relies on the local diffeomorphism property between ēk and the pose vector.
As shown by Proposition 3.1, however, this property is ensured only if n∗k 6= 0. For example, when
k = 3 the property is ensured provided that the target is not vertical. Thus, the choice of the value
of k has to be made from a priori information on the target. Such information is usually clear
from the application context and the camera orientation in body frame. For example, having the
camera pointing downward (in body frame) essentially rules out the stabilization w.r.t. a vertical
target, while having the camera pointing forward rules out the case of a horizontal target. For
completeness, we address below the two main cases of interest.

3.1 The case of a ground target

The following result is obtained.

Theorem 3.3 Assume that n∗3 > 0 and (Rcn
∗)3 > 0. Let ēp ∈ R3 (resp. ēΘ ∈ R3) the first (resp.

last) three components of ē, i.e. ē = ē3 = (ēTp , ē
T
Θ)T . Let ē = ē3 and define the control law{

T = m (g + k1ēp3 + k2ν3)

Γ = −JK3

(
ω − ωd

) (15)

with {
ωd = −K4

g

(
gēΘ + b3 × γd

)
γd = −K5(ēp +K6ν)

(16)

ν the variable defined by the dynamic equation

ν̇ = −K7ν − ēp (17)

Then,

1. Given any c∗M > 0, there exist diagonal gain matrices Ki = Diag(kji ) i = 3, . . . , 7; j = 1, 2, 3
and scalar gains k1, k2, such that the control law (15) makes the equilibrium (p,R, v, ω, ν) =
(0, I3, 0, 0, 0) of the closed-loop System (1), (15)-(17) locally exponentially stable provided
that

n∗3
d∗
∈ (0, c∗M ] (18)

2. If the diagonal gain matrices Ki and scalar gains k1, k2 make the closed-loop system locally
exponentially stable for n∗

3
d∗ = c∗M , then local exponential stability is guaranteed for any value

of n∗
3
d∗ ∈ (0, c∗M ].
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4

The proof is given in the Appendix.

Let us comment on this result.

1. The assumption n∗3 > 0 means that the target is not vertical and that it is located "below"
the UAV (see Figure 1 for illustration), with the camera thus pointing downwards. Since
the camera optical axis may differ from the z-axis of the body frame, we further impose the
visibility assumption of the target at the reference pose : (Rcn

∗)3 > 0. The case of a ground
target located above the UAV, with a camera thus pointing upwards (i.e., n∗3 < 0), can be
addressed similarly, by applying the above control law with m∗c,k = m∗c,3 replaced by −m∗c,k
in the definition of ē = ē3. This is also equivalent to multiplying the first three components
of ē by −1.

2. The variable ν copes with the lack of measurements of ˙̄ep.

3. Since n∗3 ≤ 1, (18) is satisfied if d∗ ≥ 1/c∗M . Thus, Property 1) ensures that stabilizing control
gains can be found given any lower bound on the distance between the reference pose and
the observed planar target. This is a weak requirement from an application point of view,
all the more that this sufficient condition does not involve the (unknown) normal vector n∗.
As for Property 2), it implies that finding stabilizing control gains for any n∗

3
d∗ ∈ (0, c∗M ] boils

down to finding stabilizing control gains for n∗
3
d∗ = c∗M . This latter task can be easily achieved

with classical linear control tools. In particular, by using the Routh-Hurwitz criterion, local
exponential stability for n∗

3
d∗ = c∗M is ensured when the following inequalities are satisfied

(see the proof of Theorem 3.3 for details) :

k1, k2, k
j
i > 0 , ∀(i, j) /∈ {(5, 3), (6, 3)} (19)

and
k2 < k1k

3
7 (20)

and 
0 < a1

0

c∗Ma
1
1a

1
4(a1

4 − a1
0) < a1

2D
1
2

c∗Ma
1
1(a1

4 − a1
0)2 < (a1

2 − a1
0a

1
3)D1

2

(21)

and 
0 < a2

0

c∗Ma
2
1a

2
4(a2

4 − a2
0) < a2

2D
2
2

c∗Ma
2
1(a2

4 − a2
0)2 < (a2

2 − a2
0a

2
3)D2

2

(22)

with
a1

0 = k1
7 − k1

6, a
1
1 = k2

3k
2
4k

1
5, a

1
2 = k2

3k
2
4k

1
7,

a1
3 = k2

3(k2
4 + k1

7), a1
4 = k2

3 + k1
7, D

1
2 = a1

4a
1
3 − a1

2
(23)

and
a2

0 = k2
7 − k2

6, a
2
1 = k1

3k
1
4k

2
5, a

2
2 = k1

3k
1
4k

2
7,

a2
3 = k1

3(k1
4 + k2

7), a2
4 = k1

3 + k2
7, D

2
2 = a2

4a
2
3 − a2

2
(24)

Let us show the existence of control gains that satisfy the above conditions. First, note that
there is no condition on k3

5 and k3
6. This is due to the fact that, by (16), these gains do
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not affect ωd. Condition (19) is readily satisfied. Control gains k1, k2, k
3
7 are only involved

in (20), so that they can be chosen so as to satisfy this inequality. Let us consider (21).
First, this set of conditions involves the control gains k2

3, k
2
4, k

1
5, k

1
6 and k1

7 only. There are
different ways to find values of these gains ensuring (21). We propose next a possibility.
Choose any k1

5 > 0 and any k1
6, k

1
7 > 0 such that the first inequality in (21) is satisfied. Now

set k2
3 = k2

4 = s. Consider the second inequality in (21). The left-hand side is a polynomial
in s with c∗Mk

1
5s

4 as monomial of highest degree. The right-hand side is also a polynomial
in s with k1

7s
5 as monomial of highest degree. Choosing s large enough ensures that this

inequality is satisfied. The same argument ensures that the last inequality in (21) is satisfied
for s large enough. Choosing k1

3, k
1
4, k

2
5, k

2
6 and k2

7 in order to satisfy (22) follows the same
procedure.

4. Let us finally remark that, given a family of control gains, Conditions (19)–(22) allow to
determine the maximum value of c∗M for which exponential stability is obtained.

3.2 The case of a frontal target

The previous result does not address the case of a vertical target (i.e. n∗3 = 0). This case is
addressed by the following result, which is potentially applicable to any non-horizontal target. The
control design uses another error function ē. Without loss of generality we assume that n∗1 > 0 (
e.g., the camera is pointing in a direction close to the b1 inertial axis at the reference location).

Theorem 3.4 Assume that n∗1 > 0 and (Rcn
∗)3 > 0. Consider the control law (15) –(17) with

ē = ē1 and ēp ∈ R3 (resp. ēΘ ∈ R3) denoting the first (resp. last) three components of ē, i.e.
ē = ē1 = (ēTp , ē

T
Θ)T . Then,

1. Given any c∗M > 0, δ ≥ 0, there exist diagonal gain matrices Ki = Diag(kji ) i = 3, . . . , 7; j =
1, 2, 3 and scalar gains k1, k2, such that the control law (15) makes the equilibrium (p,R, v, ω, ν) =
(0, I3, 0, 0, 0) of the closed-loop System (1), (15)-(17) locally exponentially stable provided that

1

d∗
∈ (0, c∗M ] and

|n∗3|
|n∗1|
≤ δ (25)

2. If the diagonal gain matrices Ki and scalar gains k1, k2 make the closed-loop system locally
exponentially stable for 1

d∗ = c∗M and any n∗ satisfying (25), then local exponential stability
is guaranteed for any value of 1

d∗ ∈ (0, c∗M ].
4

The proof is given in the Appendix.

Let us comment on this result.
1. As in the case of Theorem 3.3, extension to the case n∗1 < 0 can be addressed by applying

the control law with m∗c,k = m∗c,1 replaced by −m∗c,k in the definition of ē = ē1. This is also
equivalent to multiplying the first three components of ē by −1.

2. The main difference between Theorems 3.3 and 3.4 lies in conditions (18) and (25). Clearly,
the latter is more demanding than the former since it cannot be reduced to a condition on
d∗ only. When n∗3 = 0 (purely vertical target), however, these conditions are essentially the
same.
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3. Stability conditions on the control gains are similar to those of Theorem 3.3. More precisely,
sufficient conditions of stability for c∗ = c∗M are still given by (19)–(22) with

a1
0 = k1

7 −
k16

1−g
n∗
3

2k15n
∗
1

, a1
1 = 2k2

3k
2
4k

1
5

(
1− g n∗

3

2k15n
∗
1

)
, a1

2 = k2
3k

2
4k

1
7,

a1
3 = k2

3(k2
4 + k1

7), a1
4 = k2

3 + k1
7, D

1
2 = a1

4a
1
3 − a1

2

(26)

and
a2

0 = k2
7 − k2

6, a
2
1 = 2k1

3k
1
4k

2
5, a

2
2 = 4k1

3k
1
4k

2
7,

a2
3 = 4k1

3(k1
4 + k2

7), a2
4 = 4k1

3 + k2
7, D

2
2 = a2

4a
2
3 − a2

2
(27)

Existence of control gains that satisfy the above conditions for any n∗ satisfying (25) can
be proved as in the case of Theorem 3.3. Note in particular that given the upper-bound in
(25) on the ratio n∗3/n∗1, the gain k1

5 can be chosen so that 0 < τ1 ≤ 1 − g n∗
3

2k15n
∗
1
≤ τ2 for

some constant scalars τ1, τ2. Then, k1
6, k

1
7 can be chosen so that the first inequality in (21)

holds. The rest of the gain selection follows as in the case of Theorem 3.3.

4 Refinements

Theorem 3.3 provides the theoretical background to stabilize an underactuated VTOL UAV
based on videocamera and gyroscope measurements. In practice, however, other issues need to be
addressed in the perspective of experiments. One of these issues concerns unmodeled dynamics
(like wind). Also, considering stability requirement only is not realistic, since very poor perfor-
mance would lead to unacceptable behaviour, including possible escape from the stability domain.
Thus, gain tuning must be achieved in order to include performance considerations. These two
issues are considered next.

4.1 Unmodeled dynamics rejection

We consider in this section the presence of unmodeled dynamics acting on the system (like,
e.g., wind). Different solutions can be proposed to address this issue, starting with the use of
integral correction terms (see, e.g., [14] for more details in a similar context). Due to the simple
relation between ēp given by (12) and p, including integral correction terms in the control law
of Theorem 3.3 is relatively straightforward. Tuning of the control gains in order to obtain good
performance is more difficult, especially for the horizontal dynamics because the distance and
normal to the target are unknown. For these dynamics we propose below another approach using
accelerometers. We do not provide a complete stability analysis of the proposed solution but
simulation results presented further illustrate the approach.

Consider the following model (compare with eq. (1)) :
ṗ = Rv

Ṙ = RS(ω)
mv̇ = −mS(ω)v − Tb3 +mγ +RTFw
Jω̇ = −S(ω)Jω + Γ + τwb3

(28)

where Fw corresponds to unmodeled translation dynamics, and τw to unmodeled yaw dynamics.
Both quantities are assumed to be constant. For convenience, we introduce aw = Fw

m . Recall that

12



accelerometers measure the following quantity ([22]) :

yacc = RT p̈− γ = −ub3 +RTaw (29)

When aw,1 6= 0 or aw,2 6= 0, R = I3 is no longer the equilibrium orientation matrix. We do
assume, however, that the new equilibrium orientation matrix is close to the identity matrix so
that the approximation RTaw ≈ aw is valid. We are aware that this approximation is restrictive
but it is justified in the case of "moderate" perturbations. In the case of strong wind, i.e. if the
equilibrium orientation is far from the vertical axis, then the attitude angles take large values so
that the linear assumption itself is questionable. Also, strong perturbations introduce couplings
in the system dynamics which remain to be properly analyzed. For instance, through the term
RTaw the horizontal dynamics impacts the vertical one via the term yacc3 . Closed-loop system
analysis in such cases is beyond the objective of this paper.

The following modification of the control law (15)–(16) is proposed :{
T = m (g + k0Ie3 + k1ē3 + k2ν3)

Γ = −JK3

(
ω − ωd

) (30)

with 
ωd = −K4

g

(
gēΘ + b3 ∧

(
γd − yacc

)
+ k8Ie6b3

)
γd = −K5(ēp +K6ν)

İe3 = ē3

İe6 = ē6

(31)

The idea is to counteract the vertical and yaw unmodelled dynamics by integral terms (Ie3 and
Ie6), and the horizontal unmodeled dynamics by the accelerometers measurements. Let us briefly
analyze the linearized closed-loop dynamics for the control law of Theorem 3.3. For the vertical
dynamics one obtains : 

¨̄e3 = 2c∗ (g + aw3 − g − k0Ie3 − k1ē3 − k2ν3)

= −2c∗
(
k0Ie3 + k1ē3 + k2ν3 −

(
RTaw

)
3

)
ν̇3 = −k3

7ν3 − ē3

(32)

with c∗ =
n∗
3
d∗ . This dynamics is almost the same as in the case of the original control law (see

Eq. (43) in the appendix), except for the presence of the projection (RTaw)3 and the integral
correction term. Also, the characteristic polynomial –under the simplification RTaw = aw and aw
constant – is given by :

λ4 + k3
7λ

3 + 2c∗
[
k1λ

2 +
(
k0 + k1k

3
7 − k2

)
λ+ k0k

3
7

]
(33)

Contrary to the original vertical dynamics, this polynomial can go unstable for some values of
c∗, whatever the choice of the gains. More precisely, the Routh-Hurwitz criterion ensures stability
if ki > 0, k0 + k1k

3
7 − k2 > 0 and 2c∗k2

0 +
[
(k3

7)3 + 2c∗
(
k1k

3
7 − k2

)]
k0 − 2c∗k2

(
k1k

3
7 − k2

)
< 0.

Now, it is always possible to define gains such that this system is stable for some values of c∗ ;
for instance, chose k1, k

3
7, k2 > 0 such that k1k

3
7 − k2 > 0 (which is the main stability condition

for the original dynamics). Then, one can find k0 > 0 such that the third condition is obtained

13



for some c∗ since, for c∗ fixed, −2c∗k2

(
k1k

3
7 − k2

)
< 0 so that, as k0 decreases towards zero, the

condition will be satisfied.
Similarly, upon convergence of ē3 to zero, the horizontal dynamics is given by (compare with

(45)) : 

¨̄e1 = c∗ (−gē5 + yacc1)
¨̄e2 = c∗ (gē4 + yacc2)
¨̄e4 = ω̇1 = −k1

3( ˙̄e4 − ωd1)

= −k1
3( ˙̄e4 +

k14
g (gē4 + yacc2 + k2

5 ē2 + k2
5k

2
6ν2))

¨̄e5 = ω̇2 = −k2
3( ˙̄e5 − ωd2)

= −k2
3( ˙̄e5 +

k24
g (gē5 − yacc1 − k1

5 ē1 − k1
5k

1
6ν1))

(34)

with yacci ≈ awi for i = 1, 2. As a result, the same characteristic polynomials as in the case without
perturbation are recovered. Under the same stability conditions on the control gains then, these
variables converge asymptotically to zero.

Finally, the yaw dynamics is given by (compare with (52)) :

¨̄e6 = 2ω̇3 = −2k3
3(ω3 − ωd3) = −2k3

3(
˙̄e6

2
+ k3

4 ē6 + k8Ie6) + ‖Γw‖b3 (35)

Assuming constant perturbation ‖Γw‖, the integral term ensures that the yaw error tends to
zero if k8 < k3

3k
3
4.

4.2 Gain tuning

While stability is a prerequisite for a closed-loop system, performance cannot be neglected in
practice. In particular, it matters to ensure good damping properties. This issue is very important
here since we have to cope with a large range of unknown parameters. In this section we propose
gain tuning heuristics so as to obtain good performance. These heuristics do not guarantee per-
formance levels, but they have proved effective to obtain good results in simulation. Futhermore,
having tuned the gains as proposed, the Barmish theorem [2] can be used to verify performance
afterwards. These heuristics are based on the cascade structure of the closed-loop linearized sys-
tem which allows to address separately the yaw, vertical, and horizontal dynamics (see the proofs
of Theorems 3.3 and 3.4 for details). This is similar to the case when full measurement of position,
orientation, and velocities is available. We first propose heuristics for the ground target, and then
briefly comment on the frontal target case.

4.2.1 Yaw dynamics gain tuning :

The caracteristic polynomial associated with the (linearized) yaw dynamics is P (λ) = λ2 +
k3

3λ+ 2k3
3k

3
4. Thus, any given set of closed-loop poles (λ1, λ2) can be assigned by setting

k3
3 = − (λ1 + λ2) , k3

4 = − λ1λ2

2 (λ1 + λ2)

4.2.2 Vertical dynamics gain tuning :

The caracteristic polynomial associated with the vertical dynamics is P (λ) = λ2
(
λ+ k3

7

)
+

C∗ (λ+ k) with C∗ = 2c∗k1 and k = k3
7 − k2

k1
. Recall that c∗ =

n∗
3
d∗ . The following heuristic is

proposed :
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1. Define the gain k3
7 and a number k 6= k3

7 knowing that, as c∗ grows from 0 to ∞, the closed
loop gains will move from 0 and −k3

7 to −k and k−k37
2 .

2. The slowest poles’ real parts will start from 0 and head to k−k37
2 : define the scaling factor

k1 so as to define c∗min for which a given real part is reached. Note that k2 is then given by :
k2 = k1

(
k3

7 − k
)
.

3. Use [2] to assess the performance of the obtained closed-loop system as c∗ varies in its
allowed range.

Justification : The root locus theory shows that the poles will start from
(
−k3

7, 0, 0
)
as c∗ = 0

and head to −k and the two asymptotic directions k−k37
2 ± j∞ as c∗ → ∞. One can also verify

that, whatever the gains such that k 6= k3
7, there is no root on the imaginary axis.

Numerical example : With k1 = 5, k2 = 10, k3
7 = 2.4, the root locus shows that :

1. ∀c∗ > 0,< (λi) < 0

2. ∀c∗ ∈ [0.175; +∞] ,−1 ≤ < (λi) ≤ −0.4

3. ∀c∗ ∈ [0.175; 2.34] , ξ ≥ 0.2 (ξ is the damping ratio)

4.2.3 Horizontal dynamics gain tuning :

The horizontal dynamics is composed of two fifth-order linear systems (47)-(48). Since the
structure of these systems is the same we only address gain tuning for the first one. The associated
characteristic polynomial is :

λ2
(
λ+ k1

7

) (
λ2 + k2

3λ+ k2
3k

2
4

)
+ C∗ [λ+K]

where C = c∗k2
3k

2
4k

1
5,K = k1

7 − k1
6. The following heuristics is proposed :

1. Select k2
3 and k2

4 such that the roots of λ2 + k2
3λ+ k2

3k
2
4 are as fast as possible ;

2. Define a much slower dynamics for the "inside system " defined by : k2
3k

2
4λ

2
(
λ+ k1

7

)
+

C∗ [λ+K], and select suitable k1
5, k

1
6, k

1
7 so that for c∗ ∈ (0; c∗M ], all poles are slower than

the above defined maximum inside dynamics ;
3. Use [2] to assess the performance of the obtained closed-loop system as c∗ varies in its

allowed range.

Justification : From the root locus theory there are poles at 0 (double), −k1
7 and at the roots

of λ2 + k2
3λ+ k2

3k
2
4. The only zero is at −

(
k1

7 − k1
6

)
(zero of the inside dynamics). The two poles

placed by k2
3 and k2

4 will go to infinity as c∗ grows. The poles at 0 and −k1
7 will behave similarly

to the vertical dynamics for small c∗, since they are close to zero and separated from the first
two ; for c∗ large, two of these poles will escape to infinity with positive real part.

Numerical Example : With gains defined as k2
3 = 10, k2

4 = 12, k1
5 = 5, k1

6 = 2, k1
7 = 2.4 (inside

dynamics being slower than -1, which is must slower than the roots of λ2 + k2
3λ + k2

3k
2
4), the

caracteristic polynomial is given by : λ5 +12.4λ4 +144λ3 +288λ2 +600c∗λ+240c∗, which is stable
for c∗ ∈ (0; c∗M ] with c∗M ≈ 4, and such that the roots real parts < (λ) ≤ −0.2 for c∗ ∈ [c∗1; c∗2] with
c∗1 ≈ 0.2 and c∗2 ≈ 3.25.
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For the simulations results reported next, the gain values were obtained through this procedure.

Remark on the frontal target case : For the control law of Theorem 3.4, almost the same
heuristics can be used since the equations are similar. Stability conditions, however, involve the
unknown ratio n∗3/n∗1 (see (26)). As already mentionned in Section 3.2, choosing k1

5 large makes
the root-locus less sensitive to this ratio. Then, k2

3 and k2
4 must also be chosen large enough so

as to satisfy the stability condition (21). For instance, satisfactory results have been obtained
by changing as follows the three gains k1

5, k
2
3, k

2
4 from their values designed for the ground target

case : k1
5 multiplied by 5, k2

3, k
2
4 multiplied by 4. For this choice, expressing n3

n1
as the tangent of

an angle α representing the verticality of the target, one obtains the following results :
– with α = 0o, c∗M = 1.8 and the root locus is similar to the ground target case except for the
k2

3, k
2
4 dynamics, which is much faster ;

– with α = −30o, c∗M = 1.3 ;
– with α = +30o, c∗M = 2.1 but the slow dynamics is quite different, so that there is, for any

value of c∗ a slow dynamics around the new zero defined by −a1
0.

5 Simulation results

We present simulation results for the basic control law (Theorems 3.3 and 3.4) and for its
modified version proposed in Section 4.1. These results have been obtained for a dynamical model
of an helicopter defined by (1) with m = 10 and J = I3 the identity matrix. Simulations are
presented for different values of the distance to the target at the reference pose, with initial
position errors equal to : p0 = (1.5,−1, 0.5)T , and the other initial conditions (orientation error,
linear and angular velocity) null. φ, θ, ψ are respectively the roll, pitch and yaw angles.

5.1 Control law (15)–(17) of Section 3

Case of a ground target : Simulation results with the control law of Theorem 3.3 are reported
on Fig. 3–4. The normal vector n∗ which defines the target orientation was chosen as n∗ =
(−0.28, 0.28, 0.92)T . Simulations results with d∗ = 2 and d∗ = 10 are reported. This corresponds
to a very large range of nominal distances to the target. The rotation matrix Rc which defines
the camera orientation in body frame was randomly generated, under the constraint that the
associated rotation angle is equal to 15o. To test the robustness of the approach, a position offset
pc of the camera frame w.r.t. the body frame was also introduced. The values of Rc and pc are
the following :

Rc =

 0.97 0.20 0.16
−0.19 0.98 −0.06
−0.17 0.03 0.99

 pc = (0.30,−0.20, 0.10)T

The control gains in (15)-(16) have been chosen as follows, according to the gain tuning heuristics
described above :

k1 = 5, k2 = 10, K3 = Diag(10, 10,
√

2
2 ), K4 = Diag(12, 12, 4)

K5 = Diag(5, 5, 0), K6 = Diag(2, 2, 0), K7 = Diag(2.05, 2.05, 2.5)
(36)

From (21)-(22), this yields the stability upper-bound c∗M < 3.99. Since n∗3 = 0.92, this yields
d∗M > 0.23, which is consistent with the simulation values d∗ = 2 and d∗ = 10. Fig. 3–4 illustrate
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the capacity of the controller to perform well in all this range, without any depth or target’s
orientation information.
Case of a frontal target : Simulation results with the control law of Theorem 3.4 are reported
on Fig. 5–6. The normal vector n∗ is now given by n∗ = (0.93, 0.16,−0.34)T . Results for d∗ = 2
and d∗ = 10 are reported, with the following choice of Rc and pc :

Rc =

−0.21 0.97 −0.15
−0.07 0.13 0.99
0.98 0.22 0.04

 pc = (0.50, 0.30,−0.05)T

The control gains are still given by (36). Performances are similar to those obtained for the
previous set of simulations.

5.2 Control law (30)–(31) of Section 4.1 for unmodeled dynamics rejection

In this section we compare the performances of the original control law (15)–(17) and the
modified control law (30)–(31) in the presence of wind, with the same simulation parameters as for
Fig. 3–4. For both controllers the control gains (36) have been used. For the control law (30)–(31),
the integral gain on the vertical dynamics is defined as k0 = 1. From the expression of the vertical
dynamics’ characteristic polynomial, this value ensures stability as long as c∗ > 0.36, or d∗ < 2.53
in this case. The wind effect has been modeled as a drag force (no lift). More precisely, a constant
or slowly-time varying wind velocity ṗw has been used to compute the relative wind velocity :
δṗ = ṗw − ṗ, with ṗw the wind velocity. The drag force is then given by Fw = −1

2CxρΣ‖δṗ‖δṗ
where the total drag coefficient kw = 1

2CxρΣ has been chosen equal to 0.1. This is a realistic value
given the mass and inertia of the system. Fig. 7 and 8 have been obtained with the control laws
(15)–(17) and (30)–(31) respectively, with the constant wind velocity vw = [−2.50, 3.00, 1.50]m/s
and the distance to the target at the reference pose d∗ = 2 (i.e. c∗ = 0.46). The efficiency of the
modified controller for wind effect rejection is clearly illustrated.

The case of a slowly varying wind has also been considered, according to the following random
walk model : p̈w = kwξ with ṗw(0) = [−2.50, 3.00, 1.50]m/s, kw = 0.3 and ξ a centered white noise
with spectrum one. Again, Fig. 9 and 10 clearly show that the modified controller outperforms
the original one.

6 Conclusion

Feedback laws have been proposed for the vision-based stabilization of VTOL UAVs w.r.t.
a planar target. The main contribution of this work is to show that such a stabilization can
be achieved with a minimal sensor suite (a mono-camera and gyrometers), and with very poor
knowledge about the environment. In particular, precise knowledge of the target’s orientation or
distance from the UAV to the target at the reference pose are not necessary. Knowledge of the
UAV’s attitude is not necessary either. Explicit stability conditions derived in this paper can be
used to guarantee stability of the proposed controllers for a range of operational conditions. The
approach, motivated by [3], relies on the definition of a new homography-based error vector. By
using this vector, the classical (local) decoupling of vertical, roll, pitch, and yaw dynamics can
be extended to the vision-based control framework. In addition to the control design and stabi-
lity analysis, several practical issues have also been addressed like the influence of the camera’s
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orientation in the control law definition, unmodeled dynamics rejection, and gain tuning. The ap-
proach has been validated in simulation. Extensions of this work include experimental validations
on mini-drones, and nonlinear control design in order to possibly extend the stability domain and
allow more aggressive manoeuvers.

Appendix

Proof of Proposition 3.1 : Recall from (11) that

Hc = I − S(RcΘ)− 1

d∗
Rcp̄n

∗T
c +O2(p,Θ) (37)

with p̄ = p+S(RTc pc)Θ. Using the fact that n∗c = Rcn
∗ and m∗c,k = Rcbk, we deduce from (6) and

(37) that
ep = 1

d∗ 〈n
∗
c ,m

∗
c,k〉Rcp̄+ S(RcΘ)m∗c,k +O2(p,Θ)

= Rc

(
n∗
k
d∗ p̄− S(bk)Θ

)
+O2(p,Θ)

eΘ = 2RcΘ + 1
d∗S(n∗c)Rcp̄+O2(p,Θ)

= Rc
(
2Θ + 1

d∗S(n∗)p̄
)

+O2(p,Θ)

(38)

where we have used the fact that xyT − yxT = S(S(y)x) , ∀x, y ∈ R3. We deduce from (38) that

2RTc ep +RTc S(m∗c,k)eΘ = 2RTc ep + S(bk)R
T
c eΘ

= 1
d∗ (2n∗kI3 + S(bk)S(n∗)) p̄+O2(p,Θ)

= 1
d∗

(
n∗kI3 + n∗bTk

)
p̄+O2(p,Θ)

(39)

where the last equality comes from the fact that x× (y × z) = y(xT z)− z(xT y). We also deduce
from (38) that

RTc eΘ −RTc S(m∗c,k)ep = RTc eΘ − S(bk)R
T
c ep +O2(p,Θ)

= 1
d∗S(n∗ − n∗kbk)p̄+ (2I3 + S(bk)

2)Θ +O2(p,Θ)
(40)

Relation (13) follows from (39) and (40).
Finally, the second property in Proposition 3.1 follows directly form the block-triangular struc-

ture of L, and the (easily verified) fact that Lp is invertible when n∗k 6= 0 and LΘ is always
invertible. /

Proof of Theorem 3.3 : By definition, R ≈ I3 + S(Θ) around R = I3. Therefore, γ = gRT b3 ≈
gb3 + gS(b3)Θ around R = I3 and it follows from (1) and (15)– (17) that the linearized controlled
system around (p,R, v, ω, ν) = (0, I3, 0, 0, 0) is given by

p̈ = gS(b3)Θ + (g − T
m)b3

Θ̈ = J−1Γ
ν̇ = −K7ν − ēp

(41)

Note that in the above (and forthcoming) equations, only the first-order linear approximations
of T,Γ, and ēp should be considered (i.e., the expressions obtained by omitting in (13) the term
O2(p,Θ). To lighten the notation these linear approximations are still denoted as T,Γ, and ēp.
Finally, we denote c∗ =

n∗
3
d∗ .
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We now study the stability of the equilibrium (p,Θ, ṗ, Θ̇, ν) = 0. It follows from (13) and (14)
that the linearized controlled system in the coordinates (ē, ˙̄e, ν) is given by ¨̄e = L

(
p̈

Θ̈

)
= L

(
gS(b3)Θ + (g − T

m)b3
J−1Γ

)
ν̇ = −K7ν − ēp

(42)

wth the components of L given by

Lp = c∗

1 0
n∗
1
n∗
3

0 1
n∗
2
n∗
3

0 0 2

 , LΘ = Diag(1, 1, 2), LΘp =
1

d∗

 0 0 n∗2
0 0 −n∗1
−n∗2 n∗1 0


There remains to determine conditions under which (ē, ˙̄e, ν) = 0 is an asymptotically stable
equilibrium of this system. We proceed in three steps, in which the convergence to zero of the
vertical, horizontal, and yaw variables are successively studied.

Step 1 : It follows from the above relations and (15)-(17) that{
¨̄e3 = 2c∗(g − T/m) = −2c∗(k1ē3 + k2ν3)
ν̇3 = −k3

7ν3 − ē3
(43)

Thus the dynamics of ē3, ˙̄e3, ν3 is independent of the other variables and the origin of the above
system is asymptotically stable provided that the characteristic polynomial of the system’s state
matrix is Hurwitz-Stable. This polynomial is given by

P (λ) = λ3 + k3
7λ

2 + 2c∗k1λ+ 2c∗(k1k
3
7 − k2)

Considering that c∗ > 0, application of the Routh-Hurwitz criterion yields that P is Hurwitz-
Stable if and only if

k1, k2, k
3
7 > 0, k1k

3
7 > k2 (44)

Note that this condition is independent of c∗(> 0).

Step 2 : Under the condition that ē3, ˙̄e3, and ν3 converge asymptotically to zero, we can concen-
trate on the zero-dynamics (ē3, ˙̄e3, ν3) = 0. From (13), ē3 = 0 implies that p3 = 0 for the linearized
equations so that, (

ē1

ē2

)
= c∗

(
p1

p2

)
,

(
ē4

ē5

)
=

(
Θ1

Θ2

)
This implies, using (41) and the expression (15) of Γ , that

¨̄e1 = −c∗gē5

¨̄e2 = c∗gē4

¨̄e4 = ω̇1 = −k1
3( ˙̄e4 − ωd1)

= −k1
3( ˙̄e4 +

k14
g (gē4 + k2

5 ē2 + k2
5k

2
6ν2))

¨̄e5 = ω̇2 = −k2
3( ˙̄e5 − ωd2)

= −k2
3( ˙̄e5 +

k24
g (gē5 − k1

5 ē1 − k1
5k

1
6ν1))

(45)
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From (17), {
ν̇1 = −k1

7ν1 − ē1

ν̇2 = −k2
7ν2 − ē2

(46)

System (45)-(46) can be decomposed into two independent 5-th order linear systems :
¨̄e1 = −c∗gē5

¨̄e5 = −k2
3( ˙̄e5 +

k24
g (gē5 − k1

5 ē1 − k1
5k

1
6ν1))

ν̇1 = −k1
7ν1 − ē1

(47)

and 
¨̄e2 = c∗gē4

¨̄e4 = −k1
3( ˙̄e4 +

k14
g (gē4 + k2

5 ē2 + k2
5k

2
6ν2))

ν̇2 = −k2
7ν2 − ē2

(48)

Let us analyze the stability of these systems. The characteristic polynomial of System (47) is

P 1
c∗ (λ) = λ2

(
λ+ k1

7

) (
λ2 + k2

3λ+ k2
3k

2
4

)
+ c∗a1

1

[
λ+ a1

0

]
= λ5 + a1

4λ
4 + a1

3λ
3 + a1

2λ
2 + c∗a1

1λ+ c∗a1
1a

1
0

(49)

with the a1
i ’s defined by (23). Similarly, the characteristic polynomial of System (48) is

P 2
c∗ (λ) = λ5 + a2

4λ
4 + a2

3λ
3 + a2

2λ
2 + c∗a2

1λ+ c∗a2
1a

2
0 (50)

with the a2
i ’s defined by (24). Both polynomials are of the form

P jc∗ (λ) = λ5 + aj4λ
4 + aj3λ

3 + aj2λ
2 + c∗aj1λ+ c∗aj1a

j
0

Let us determine necessary and sufficient conditions for the Hurwitz-stability of such polynomials.
It is well known (and easy to verify) that a necessary stability condition is that all coefficients are
strictly positive. Since c∗ > 0, this implies that all aji must be strictly positive. By application
of the Routh-Hurwitz criterion, we obtain the following necessary and sufficient condition for
stability of P jc∗ : 

aji > 0 , ∀i,
Dj

2 = aj4a
j
3 − a

j
2 > 0

Dj
3 = aj2D

j
2 − c∗a

j
4a
j
1(aj4 − a

j
0) > 0

Dj
4 = c∗aj1[Dj

3 − a
j
0(aj3D

j
2 − c∗a

j
1(aj4 − a

j
0))] > 0

This set of inequalities is equivalent to :
aji > 0 , ∀i,
Dj

2 = aj4a
j
3 − a

j
2 > 0

c∗aj4a
j
1(aj4 − a

j
0) < aj2D

j
2

c∗aj1(aj4 − a
j
0)2 < (aj2 − a

j
0a
j
3)Dj

2

(51)

Since aj1 must be strictly positive, the last inequality in (51) is satisfied for any c∗ ∈ (0, c∗M ] if
and only if it is satisfied for the maximum value c∗M . Let us consider the last but one inequality.
If aj4 − a

j
0 > 0, by a similar argument as above, this inequality is satisfied for any c∗ ∈ (0, c∗M ]
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if and only if it is satisfied for c∗M . If aj4 − aj0 ≤ 0, it is satisfied for any c∗ > 0 due to the
fact that aj4, a

j
1, a

j
2, D

j
2 > 0. To summarize, we have shown that the polynomials P jc∗ , j = 1, 2

are Hurwitz-stable for any c∗ ∈ (0, c∗M ] if and only if they are Hurwitz-stable for c∗M , with the
stability conditions given by (51) for c∗ = c∗M .

Step 3 : Assuming the convergence to zero of ē1, . . . , ē5, ˙̄e1, . . . , ˙̄e5, and ν, let us consider the
variables ē6, ˙̄e6. It follows from (13) and (42) that on the zero-dynamics ē1 = . . . = ē5 = 0,

¨̄e6 = 2ω̇3 = −2k3
3(ω3 − ωd3) = −2k3

3(
˙̄e6

2
+ k3

4 ē6) (52)

The dynamics of this second-order linear system is asymptotically stable if and only if

k3
3, k

3
4 > 0 (53)

To summarize, we have shown that the subsystems (43), (47), (48), and (52) are asymptotically
stable for any c∗ ∈ (0, c∗M ] if and only if they are asymptotically stable for c∗ = c∗M . In view of
the cascade structure of the linearized system (42), it is easy to verify that asymptotic stability of
these subsystems is necessary and sufficient for the asymptotic stability of (42), and thus for the
local exponential stability of the original nonlinear system. This concludes the proof of Property
2) of the Theorem.

As for Property 1), one observes that Conditions (19), (21), (22) imply the stability conditions
(44), (51) for j = 1, 2 and c∗ = c∗M , and (53). Existence of control gains satisfying (19), (21), (22)
has been shown in Section 3. /

Proof of Theorem 3.4 : The expression (41) of the linearized system is still valid in this case
but the components of L are now given by (see (14) with k = 1)

Lp = c∗

 2 0 0
n∗
2
n∗
1

1 0
n∗
3
n∗
1

0 1

 , LΘ = Diag(2, 1, 1), LΘp =
1

d∗

 0 −n∗3 n∗2
n∗3 0 0
−n∗2 0 0


where c∗ =

n∗
1
d∗ .

Step 1 : It follows from the above expression and (15)–(17), (41) that

ē1 = 2c∗p1

¨̄e1 = −2c∗gΘ2

Θ̈2 = −k2
3(Θ̇2 − ωd2)

ωd2 = −k24
g (gē5 − k1

5 ē1 − k1
5k

1
6ν1)

ν̇1 = −k1
7ν1 − ē1

We deduce from these expressions, after a few calculations, that the characteristic polynomial
associated with the dynamics of ē1 is given by (49) with the a1

i ’s defined by (26). Following the
proof of Theorem 3.3, and using the fact that c∗ = n∗1/d

∗ and d∗ is not involved in the definition
of the aji ’s, this polynomial is Hurwitz-stable for 1/d∗ ∈ (0, c∗M ] if and only if it is Hurwitz-stable
for 1/d∗ = c∗M , with the stability condition given by (51) for j = 2.

Step 2 : Under the condition that ē1, ē5(= Θ2 +
n∗
2

2n∗
1
ē1), and ν1 converge to zero, one has on the

zero-dynamics ē3 = c∗p3. It follows from this relation and (15)–(17) that (compare with (43))
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{
¨̄e3 = c∗(g − T/m) = −c∗(k1ē3 + k2ν3)
ν̇3 = −k3

7ν3 − ē3
(54)

The characteristic polynomial associated with this linear system is

P (λ) = λ3 + k3
7λ

2 + c∗k1λ+ 2c∗(k1k
3
7 − k2)

Considering that c∗ > 0, application of the Routh-Hurwitz criterion yields that P is Hurwitz-
Stable if and only if Condition (44) is satisfied.

Step 3 : Under the condition that ē1, ē3, ē5, ν1, and ν3 converge to zero, one has on the zero
dynamics ē2 = c∗p2 and ē4 = 2Θ1. The following dynamics for ē2, ē4 is obtained (compare with
(48)) : 

¨̄e2 = c∗gē4/2

¨̄e4 = −2k1
3( ˙̄e4 +

k14
g (gē4 + k2

5 ē2 + k2
5k

2
6ν2))

ν̇2 = −k2
7ν2 − ē2

(55)

The characteristic polynomial associated with this system is given by (50) with the a2
i ’s defined

by (27). Using the same arguments as above, we deduce that this polynomial is Hurwitz-stable for
1/d∗ ∈ (0, c∗M ] if and only if it is asymptotically stable for 1/d∗ = c∗M , with the stability condition
given by (51) for j = 1.

Step 4 : Finally, on the zero-dynamics ē1 = 0, we also have ē6 = Θ3 so that (compare with (52)),

¨̄e6 = ω̇3 = −k3
3(ω3 − ωd3) = −k3

3( ˙̄e6 + k3
4 ē6)

The dynamics of this second-order linear system is asymptotically stable if and only if k3
3, k

3
4 > 0.

From this point, the proof is similar to the proof of Theorem 3.3. /
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Figure 3 – Simulation result for a ground target, d∗ = 2
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Figure 4 – Simulation result for a ground target, d∗ = 10
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Figure 5 – Simulation result for a frontal target, d∗ = 2
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Figure 6 – Simulation result for a frontal target, d∗ = 10
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Figure 7 – Simulation result with constant wind, without wind rejection action, d∗ = 1
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Figure 8 – Simulation result with constant wind, with wind rejection action, d∗ = 1
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Figure 9 – Simulation result with varying wind, without wind rejection action, d∗ = 1
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Figure 10 – Simulation result with varying wind, with wind rejection action, d∗ = 1
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