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The neural control of movement has been described using different sets of elemental variables.
Two possible sets of elemental variables have been suggested for finger pressing tasks: the
forces of individual fingers and the finger commands (also called “finger modes”, or “central
commands”). In this study we analyze which of the two sets of the elemental variables is more
likely used in the optimization of the finger force sharing and which set is used for the stabi-
lization of performance. We used two recently developed techniques – the analytical inverse
optimization (ANIO) and the uncontrolled manifold (UCM) analysis – to evaluate each set of
elemental variables with respect to both aspects of performance. The results of the UCM analy-
sis favored the finger commands as the elemental variables used for performance stabilization,
while ANIO worked equally well on both sets of the elemental variables. A simple scheme is
suggested as to how the CNS could optimize a cost function dependent on the finger forces, but
for the sake of facilitation of the feed-forward control it substitutes the original cost function
by a cost function, which is convenient to optimize in the space of finger commands.

Introduction

The difficulty of a problem depends on the variables used
to describe it. This is the case in physics, engineering, com-
puter science, etc. The importance of the variables used
by the brain to control the movement – the elemental vari-
ables – was first emphasized by Bernstein, 1967 and then
thoroughly discussed afterwards (Gelfand & Tsetlin, 1961;
Gelfand & Latash, 1998). For instance, evidence suggests
that the brain unites muscles into groups and uses commands
to the groups that lead to parallel scaling of muscle activa-
tion (Hughlings Jackson, 1889; reviewed recently by Tresch
and Jarc, 2009). Each command defines a pattern of acti-
vation in several muscles and the overall behavior is shaped
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by the superposition of those patterns (d’Avella, Saltiel, &
Bizzi, 2003; Ivanenko, Poppele, & Lacquaniti, 2004; Krish-
namoorthy, Goodman, Zatsiorsky, & Latash, 2003). These
patterns are often subject-specific and can vary from task to
task within the same subject (Danna-Dos-Santos, Degani, &
Latash, 2008). Different sets of the elemental variables can
be involved in a hierarchical manner for any given task. For
example, in grasping, at the higher level of the control hierar-
chy the brain operates with the variables produced by thumb
and the virtual finger (the virtual finger represents the com-
bined effect of the four fingers) while at the lower level the
commands to the virtual finger are translated into the indi-
vidual finger commands (Latash, Friedman, Kim, Feldman,
& Zatsiorsky, 2010).

The abundance of the motor system gives the brain free-
dom to choose among many ways to achieve the same mo-
tor goal (Latash, 2012). The fact that the brain’s choice is
rather reproducible suggests that the brain prefers some op-
tions over others; it may be assumed that it optimizes a cer-
tain criterion – a cost function. At the same time, the move-
ments are executed in a noisy environment and hence they
inevitably deviate from the optimal performance. In order
to compensate for the deviations the brain has to implement
stabilization mechanisms, which would shape the variabil-
ity of the effectors to minimize the imprecision in important
performance variables. Consequently, for the same task and
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the same level of control hierarchy the brain has to solve at
least two problems: (1) optimize the distribution of the task
among the effectors and (2) stabilize the task-relevant perfor-
mance variables against motor variability. Though there are
no doubts that different elemental variables can be employed
by the brain for different motor tasks and at different levels of
the control hierarchy, it is not clear whether the two problems
– optimization and stabilization – are solved using the same
elemental variables.

Finger pressing

The multi-finger force production is a convenient model
problem to study the elemental variables used in optimiza-
tion and stabilization of human movements (Li, Latash, &
Zatsiorsky, 1998; Latash, Li, & Zatsiorsky, 1998). Usually
the goal of the finger force production is to ensure certain
values of total force and/or moment of force. They are called
the performance variables, as they constitute the goals of
the task (Latash, Scholz, & Schöner, 2002). Note that the
number of individual finger forces is always greater than the
number of the performance variables (Zatsiorsky & Latash,
2008) and hence there exist abundant combinations of finger
forces that solve the task. The CNS may benefit from such
abundance (Latash, 2012) by optimizing a certain cost func-
tion and shaping the variability of the individual finger forces
to reduce the variability of the performance variables. In the
current study we will use a finger pressing task to analyze the
underlying elemental variables.

The most obvious candidates for the role of the elemen-
tal variables are the finger forces themselves. Yet it is not
clear to what extent the finger forces can be produced in-
dependently. The evident fact that one cannot flex a fin-
ger while keeping other fingers perfectly immobile also has
its reflection in the force production and is called enslaving
(Zatsiorsky, Li, & Latash, 1998, 2000).

A hypothesis has been suggested (Li, Zatsiorsky, Latash,
& Bose, 2002; Zatsiorsky et al., 1998) that the central con-
troller does not operate with the individual finger forces but
instead it assigns hypothetical finger commands, or modes,
which are then distributed among the fingers. Li, Zatsiorsky,
et al., 2002 suggested an algorithm that enables determining
the relationship between the hypothetical finger commands
and the actual forces of the fingers.

Hence, there are two candidates for the role of the ele-
mental variables underlying the finger force control: the fin-
ger forces themselves and the hypothetical finger commands.
A priori it is difficult to say which of them is more likely
to be used in stabilization and/or optimization. To address
this question we will use two complementary methods –
the analytical inverse optimization (ANIO; Terekhov, Pesin,
Niu, Latash, & Zatsiorsky, 2010; Terekhov & Zatsiorsky,
2011) and uncontrolled manifold analysis (UCM; Scholz &
Schöner, 1999; Latash, Scholz, & Schöner, 2002).

The ANIO method allows for the identification of an un-
known cost function from the experimental data under the
assumption that this cost function is additive with respect to
known elemental variables, i.e. it can be represented as the
sum of individual cost function of each variable. The UCM
method evaluates coordination among the known elemental
variables by comparing two components of variance within
the space of elemental variables, one of them has no effect on
the performance (variance within the UCM), while the other
does (variance orthogonal to the UCM).

These two methods were successfully used together to de-
scribe the properties of the finger force distribution in press-
ing task (Park, Zatsiorsky, & Latash, 2010; Park, Sun, Zat-
siorsky, & Latash, 2011; Park, Singh, Zatsiorsky, & Latash,
2012), yet in all of these studies the finger forces were as-
sumed as the elemental variables. In the current study we
will use these two techniques to judge which of the two can-
didates – finger forces or finger commands – are more likely
to be the elemental variables for the optimization (ANIO)
and stabilization (UCM).

On the coordinate sensitivity of ANIO

The ANIO method enables the reconstruction of an un-
known cost function from the experimental observations
given that the function is additive with respect to certain
known elemental variables. The function J(x1, . . . , xn) is said
to be additive (also additively separable, or just separable) if
it has the form

J(x1, . . . , xn) = g1(x1) + · · · + gn(xn).

The additive cost functions have a useful feature that their
optimization represents a significantly simpler problem than
that of a function possessing no such structure (Floudas &
Pardalos, 2009). We assume that, when dealing with opti-
mization, the CNS favors the elemental variables, with re-
spect to which the cost function is additive. The ANIO
method allows us to check if the data were produced by a
cost function additive with respect to certain variables. A
brief description of the method can be found in Appendix A,
for more details see (Terekhov, Pesin, et al., 2010).

Note that not every cost function is additive with respect
to a given set of variables (see Appendix A, or Xu, Terekhov,
Latash, & Zatsiorsky, 2012, for a counterexample) and hence
the same cost function is very unlikely to be additive with re-
spect to two different sets of variables, such as finger forces
and commands. To illustrate this consider a trivial example
of a cost function additive for two finger forces:

J(F1, F2) = k1F2
1 + k2F2

2 ,

where k1 and k2 are positive coefficients.
Let us build artificial elemental variables

v1 = 0.55F1 + 0.45F2,

v2 = 0.45F1 + 0.55F2.
(1)
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The same cost function written for these variables takes
the form

J(v1, v2) = (30.25k1 + 20.25k2)v2
1+

(30.25k1 + 20.25k2)v2
2+

24.75(k1 + k2)v1v2.

The function J evidently cannot be additive with respect
to v1 and v2, because this would require that k1 = −k2, which
is impossible to satisfy for positive coefficients k1 and k2.

The ANIO method attempts to fit the experimental data
with a cost function additive with respect to the chosen ele-
mental variables and it returns an indicator of the quality of
the fit. By applying ANIO to the finger force data and using
finger forces or finger commands as elemental variables we
can check which of these two sets of variables yields better
fit.

In the previous studies (Terekhov, Pesin, et al., 2010; Park
et al., 2010) ANIO produced very high quality of fit when the
finger forces were used. As it is rather unlikely that the same
data set can be explained by a cost function additive with
respect to two different sets of variables we hypothesize that
the finger commands must yield lower quality of the fit than
the finger forces (Hypothesis 1).

On the coordinate sensitivity of UCM

The UCM analysis can be used to evaluate the degree
of coordination, or synergy, between multiple elements in-
volved in the same task. The evaluation is made by com-
paring the experimentally observed variability of the perfor-
mance variables with the variability they would have if every
element acted independently.

The resulting score depends on the selected elements
(Sternad, Park, Müller, & Hogan, 2010). As stronger co-
ordination is more likely to be observed for the elemental
variables than for any others, the UCM can be used to judge
which of two sets of variables – finger forces or finger com-
mands – are more probably used in synergies stabilizing spe-
cific performance variables.

In order to illustrate this idea consider a simple problem of
stabilization of total pressing force produced by two fingers:

F1 + F2 = Ftotal.

Let us assume that experimentally measured forces are dis-
tributed in the ellipse shown in Figure 1A. It is clear from the
figure that the forces are coordinated to minimize the vari-
ance of the performance variable, Ftotal.

The same task formulated for the variables v1 and v2 de-
fined in (1) is described as:

v1 + v2 = Ftotal.

Note that we deliberately defined the variables v1 and v2
in (1) so that the expression for the force stabilization task

A B

Figure 1. The coordinate sensitivity of the UCM analy-
sis. A: the inter-trial variance of two finger forces, F1 and
F2, in a thought experiment involving the total force stabi-
lization. The resulting ellipse is elongated along the UCM
(dashed line), which corresponds to all finger forces whose
sum equals the target value. B: the variance of the same data
set as in A, but plotted in artificially constructed coordinates,
v1 and v2 (see the text); the variance ellipse is oriented or-
thogonal to the UCM (dashed line). This example shows how
the same data can be interpreted as stabilizing or destabiliz-
ing certain performance variable depending on the choice of
the elemental variables. This property of the UCM analy-
sis provides means for testing the plausibility of certain ele-
mental variables being used by the CNS in the performance
stabilization process.

would be the same for both these variables and forces. Fig-
ure 1B shows the same data as in Figure 1A but plotted in
the coordinates of v1 and v2. Clearly, the distribution in Fig-
ure 1B shows no stabilization of Ftotal.

Thus the same data can be interpreted differently, depend-
ing on which variables are chosen as elemental. It is un-
likely that the CNS would coordinate the elemental variables
so that they would destabilize the desired performance, and
hence when the choice is to be made between F1, F2 or v1,
v2 it seems more reasonable to assume that F1 and F2 are the
elemental variables.

This example shows that the UCM method can be used
to evaluate the likelihood of certain variables being used as
elemental variables for the performance stabilization. As the
effect of enslaving provides strong evidence that the finger
forces control is mediated by the finger commands, we ex-
pect that the UCM analysis will elicit significantly higher
synergy indices for finger commands than for the finger
forces (Hypothesis 2).

Methods

Subjects

Eleven right-handed males (age: 26.7±4.1 yrs, mass:
80.5±7.8 kg, height: 182.3±7.9 cm, hand length: 19.0±1.2
cm, and hand width: 8.4±0.3 cm; mean±SD across sub-
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jects) volunteered to participate in the current study. None
of the subjects had a previous history of illness or injury that
would affect the function of their upper arm, hand, or fin-
gers. Hand length was measured from the tip of the mid-
dle finger to the distal crease at the wrist. Hand width was
measured as the distance across metacarpophalangeal (MCP)
joints of fingers 2 to 5, with the fingers in approximately neu-
tral ab/adduction. Prior to performing the experiment sub-
jects signed an informed consent form that was approved by
the Office for Research Protections of the Pennsylvania State
University.

Equipment

Pressing forces were measured using four uni-directional
piezoelectric force transducers (208C02, PCB Piezotronics,
Depew, NY). The transducers were rigidly fixed to metal rods
mounted to an aluminum plate that was securely fastened to
a table. The aluminum plate had slots so that the each of
the individual rod-transducer couplings could be adjusted in
the forward/backward direction in order to accommodate for
different finger lengths of subjects.

Analog output signals from the transducers were sent to
an AC/DC conditioner (5134B, Kistler, Amherst, NY, USA)
then digitized with a 16-bit analog-to-digital converter (CA-
1000, National Instruments, Austin, TX, USA). A Lab-
VIEW program (LabVIEW Version 8.0, National Instru-
ments, Austin, TX, USA) was written to control feedback
and data acquisition during the experiment. The force sig-
nals were collected at 100 Hz. Post-data processing was
performed using custom software written in Matlab (Matlab
7.4.0, Mathworks, Inc, Natick, MA).

Procedures

During the study, subjects were seated in a chair facing a
computer screen. The right forearm rested on a padded sup-
port and the tip of each finger was positioned in the center of
a force transducer. The distal interphalangeal (DIP), proxi-
mal interphalangeal (PIP), and MCP joints were all flexed in
a posture that subjects felt was comfortable. A wooden block
supported the palm of the hand. The block limited wrist flex-
ion and supination/pronation of the forearm. The upper arm
was positioned in approximately 45° shoulder abduction in
the frontal plane, 45° shoulder flexion in the sagittal plane,
and approximately 45° flexion of the elbow. The experiment
consisted of three sessions, all of which were performed on
the same day.

The goal of the first session was to determine the max-
imum voluntary contractions (MVCs) of the fingers to be
later used in the computation of the finger commands. The
experimental procedure is described in greater details in (Li,
Latash, & Zatsiorsky, 1998; Li, Zatsiorsky, et al., 2002). The
session required subjects to press with all one-, two-, three-
and four-finger combinations (I, M, R, L, IM, IR, IL, MR,

ML, RL, IMR, IML, IRL, MRL, and IMRL; where I stands
for the index, M for the middle, R for the ring, and L for
the little finger) to achieve their MVC. Subjects were asked
to increase force in a ramp-like manner and to avoid a quick
pulse of force production. They were required to maintain
the force for a minimum of 1 s before relaxing. Sufficient
rest was given between trials to avoid fatigue. The results
obtained in this session were used for (a) determining the
connection between finger forces and finger commands and
(b) normalizing the target finger forces in the subsequent ex-
perimental sessions.

The purpose of the second experimental session was
to collect the data necessary for the inverse optimization
(ANIO) analysis. The detailed description of the experimen-
tal procedure can be found in (Park et al., 2010). Shortly,
the session entailed producing a set of specified total force
(Ftotal) and total moment (Mtotal) combinations while press-
ing naturally with all four fingers. The total force produced
by the fingers was computed as the sum of normal forces of
the four fingers. The total moment produced by the fingers
was computed as the moment produced about an axis pass-
ing mid-way between the M- and R-fingers. Subjects were
required to produce both pronation (PR) and supination (SU)
moments. The task set consisted of twenty-five combinations
of five levels of Ftotal (20, 30, 40, 50 and 60% of individual
MVC obtained in IMRL condition) and five levels of Mtotal

(2PR, 1PR, 0, 1SU, and 2SU). In agreement with the previ-
ous study (Park et al., 2010) the moment levels were com-
puted based on the 14% of the index finger MVC measured
in its single-finger trial (MVCI):

Mtotal = 0.14s f dI MVCI

where dI stands for the moment arm of the index finger and
s f takes values –2, –1, 0, 1, and 2 corresponding to 2PR,
1PR, 0, 1SU and 2SU respectively.

The total moment produced by the fingers M was com-
puted as

M = dI FI + dMFM + dRFR + dLFL

where F j is the force of the corresponding finger and d j is
its moment arm with respect to the midline between middle
and ring fingers. These value were set constant for all ex-
periments: dI = −4.5 cm, dM = −1.5 cm, dR = 1.5 cm, and
dL = 4.5 cm.

Subjects performed five repetitions of each Ftotal and
Mtotal combination. A total of 125 trials were performed (5
Ftotal levels × 5 Mtotal levels × 5 trials) in a randomized order.
Each trial lasted for 5 s. Approximately 10 s of rest were
given between the trials. In addition, several five-minute
breaks were given during session two.

The purpose of the third session was to collect the data for
performing the uncontrolled manifold (UCM) analysis. The
session comprised additional 75 trials; 15 trials for each of
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the following conditions from the second session: 1) 20%
Ftotal & 2PR Mtotal, 2) 40% Ftotal & 2PR Mtotal, 3) 20% Ftotal

& 2SU Mtotal, 4) 40% Ftotal & 2SU Mtotal and 5) 40% Ftotal

& 0 Mtotal. These conditions were selected in order to cover
a broad range of experimental conditions while also mini-
mizing fatigue of the subjects, which is why the 60% Ftotal

condition was not included. Trials were performed exactly
the same way as in the second session. They were organized
in random blocks of the five conditions (i.e. all 15 trials of
each condition were performed in a block of trials).

The three experimental sessions took between 1.5 to 2
hours. None of the subjects complained of pain or fatigue
during or after the experimental sessions.

Data analysis

For all trials the force signals were filtered using a 4th
order low-pass Butterworth filter at 10 Hz. In the first ses-
sion, the peak force data were extracted for further analysis.
For the second and third sessions, the individual finger force
data from each trial were averaged over a 2 s time period in
the middle of each trial (2- to 4-s windows), where steady-
state values of total force and total moment were observed.
For each trial the average finger force of each finger was ex-
tracted and used in the further analyses.

Computing the finger commands. As it was shown
previously (Zatsiorsky et al., 1998; Gao, Li, Li, Latash, &
Zatsiorsky, 2003; Danion, Schöner, et al., 2003) when the
number of active (instructed) fingers is constant the depen-
dency between the finger forces and finger commands is ap-
proximately linear:

F = ΩC, (2)

where F = (FI , FM , FR, FL)T is a 4×1 vector of finger forces,
C = (CI ,CM ,CR,CL)T is a 4×1 vector of finger commands,
and Ω is a 4×4 inter-finger connection matrix.

The matrix Ω was computed from the MVC data (col-
lected in the session 1) using the method developed by Li,
Zatsiorsky, et al., 2002. Then for every vector of four finger
forces collected in sessions 2 and 3 we computed the corre-
sponding finger commands using formula (2).

Inverse optimization (ANIO). The inverse optimiza-
tion analysis was performed on the data obtained in the sec-
ond experimental session. A brief description of the method
is provided in Appendix A. A detailed description of the
ANIO approach is available in (Terekhov, Pesin, et al., 2010;
Terekhov & Zatsiorsky, 2011), a more brief description is
also provided in (Park et al., 2010; Park, Sun, et al., 2011;
Park, Zatsiorsky, & Latash, 2011; Park, Singh, et al., 2012;
Niu, Latash, & Zatsiorsky, 2012; Niu, Terekhov, Latash, &
Zatsiorsky, 2012).

The method assumes that the sought cost function is ad-
ditive with respect to the chosen elemental variables and that
the optimization is performed subject to linear constraints.
Then it allows for the cost function determination from the

experimental data. We used two sets of elemental vari-
ables: finger forces F and commands C. As it was shown
in (Terekhov, Pesin, et al., 2010) the cost function, if exists,
must be quadratic if the data distribution is close to planar,
i.e. the data were confined to a two-dimensional hyper-plane.
We estimated the planarity of the data both for forces and for
commands using principal component analysis (PCA), using
as an indicator the percentage accounted for by the two major
principal components (PCs).

Following the convention used in the previous ANIO stud-
ies (Park et al., 2010; Park, Sun, et al., 2011; Park et al.,
2011; Park, Singh, et al., 2012; Niu, Latash, & Zatsiorsky,
2012; Niu, Terekhov, et al., 2012) it was accepted that the
experimental data were distributed in a plane if the two major
PCs accounted for over 90% of the variance. This criterion
was met for all subjects for forces and commands data. The
two major components were said to define the experimental
plane.

The cost function for the finger forces had the form

JF(F) =
∑

j=I,M,R,L

(
1
2

kF
j F2

j + wF
j F j

)
with the coefficients kF

j and wF
j . This cost function was

assumed to be optimized subject to the experimental con-
straints

DF = d, (3)

where

D =

(
1 1 1 1
dI dM dR dL

)
, d =

(
Ftotal

Mtotal

)
. (4)

The rows of the matrix D correspond to the constraints on the
total force and total moment of force, respectively.

For the finger commands as elemental variables the cost
function was

JC(C) =
∑

j=I,M,R,L

(
1
2

kC
j C2

j + wC
j C j

)
. (5)

The expression for the constraints can be obtained by substi-
tuting (2) into (3):

DΩC = d. (6)

For both sets of elemental variables we normalized the co-
efficients so that (kF

I )2 + (kF
M)2 + (kF

R )2 + (kF
L )2 = 1 and

(kC
I )2 + (kC

M)2 + (kC
R )2 + (kC

L )2 = 1.
We adopted the version of the ANIO algorithm from

(Terekhov, Pesin, et al., 2010); it takes the experimental
plane – the vectors of two major principal components (PCs)
– and returns the coefficients of the cost function. In agree-
ment with (Park et al., 2010) the average finger forces for
each combination of target force and moment of force were
computed prior to the principal component analysis. Since
only few experimental planes can be fitted by an additive cost
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function, the algorithm returned coefficients correspond to
the plane, which is as close as possible to the original plane
and yet can be fitted by an additive cost function. The al-
gorithm also returns the angle between these two planes, so
called D-angle (Park et al., 2010). This angle reflects how
well the data can be explained by a cost function with the
chosen elemental variables.

Analysis of performance variability. The UCM anal-
ysis was used to describe the trial-to-trial variance quanti-
tatively in every experimental condition. The details of the
methods can be found elsewhere (Scholz & Schöner, 1999;
Latash, Scholz, & Schöner, 2002). Shortly, it splits the en-
tire trial-to-trial variance VTOT of the elemental variables
into two components by projecting it on two orthogonal sub-
spaces. The first subspace – named UCM – is the null space
of the task constraints, i.e. any variance of this subspace
does not influence the performance variables (like Ftotal and
Mtotal). The second subspace is orthogonal to the UCM, and
variance within this subspace has substantial effect upon the
performance variables. The variances within each of these
two subspaces are denoted as VUCM and VORT respectively.

The main output of the UCM analysis is the index of vari-
ability

∆V =
VUCM/(NTOT − NORT ) − VORT /NORT

VTOT /NTOT
,

where NTOT stands for the number of the elemental variables
(four in this study) and NORT stands for the number of the
performance variables (two, if both force and total moment
of force are to be stabilized).

The index of variability shows whether the elemental vari-
ables are coordinated to stabilize the performance variables.
When such coordination is present ∆V is positive; it has neg-
ative value if the elemental variables are coordinated to desta-
bilize the performance variable and ∆V = 0 if there is no
relevant coordination. The higher value of ∆V corresponds
to stronger coordination, which according to our initial as-
sumption is more likely to be present among the variables
used in the performance stabilization.

The trials from the third experimental session as well as
the five trials from the second session that matched the ex-
perimental conditions used in session three were combined
for this analysis, giving a total of twenty trials per condi-
tion. The variance index ∆V was computed for two sets of
hypothetical elemental variables: finger forces F and finger
commands C, using the combinations of total force and total
moment of force as performance variables (Ftotal&Mtotal). In
addition to that ∆V was computed when only Ftotal or Mtotal

was assumed to be the performance variable. This was done
to ensure that the elemental variables are coordinated to sta-
bilize both performance variables and not just one of them. If
the latter were true, ∆V would be negative either for Ftotal or
for Mtotal. The computational steps for the described analysis

can be found in previous papers (Park et al., 2010; Park, Sun,
et al., 2011; Park et al., 2011; Park, Singh, et al., 2012).

Statistics

In this study we investigate which of the two sets of
elemental variables – finger forces or finger commands –
is more likely to be used in optimization and stabilization
of motor performance. Repeated-measures ANOVAs (RM
ANOVAs) were used to check for which elemental vari-
ables ANIO yields a smaller D-angle and UCM yields higher
∆V . Analysis of the D-angle used one factor, ELEMEN-
TAL VARIABLES (two levels, finger forces and finger com-
mands). Analysis of ∆V used two factors: ELEMENTAL
VARIABLES and PERFORMANCE VARIABLES (three
levels, Ftotal, Mtotal and Ftotal&Mtotal). Wilcoxon’s signed-
rank test was used to check if ∆V was significantly greater
than zero.

Statistical analyses were performed using the Minitab
13.0 (Minitab, Inc., State College, PA, USA) and SPSS
(SPSS Inc., Chicago, IL, USA). All the data was tested
for sphericity and deviations were corrected using the
Greenhouse-Geisser correction. A significance level was set
at α = 0.05.

Results

Computing inter-finger connection matrices.

In the first session the MVC finger forces were collected
when subjects were instructed to press as hard as possible
with all finger combinations. These data were used to de-
termine the inter-finger connection matrices (see Methods).
The inter-finger connection matrices displayed characteris-
tics that were expected and agreed with previous results (Ta-
ble 1; Li, Zatsiorsky, et al., 2002; Zatsiorsky et al., 1998;
Zatsiorsky, Latash, et al., 2004). The mean force deficit
(±SD) of the I-, M-, R-, and L-fingers in the IMRL MVC task
compared to the single finger MVC tasks were 39.9±22.6%,
27.8±17.9%, 37.9±17.0%, and 33.7±20.4%, respectively.
Typical characteristics of enslaving were observed. In par-
ticular, the diagonal elements were positive for all subjects
and in all cases the smallest diagonal element of a given
subject’s matrix was larger than the largest off-diagonal el-
ement. Across subjects 23 of the 132 off-diagonal elements
were negative (17.4%). In most occurrences of negative off-
diagonal elements the absolute magnitude was less than 0.25
(16 of 23 occurrences).

Exemplary finger commands are shown in Figure 2 as the
functions of the target force and moment of force. The gen-
eral pattern of commands agreed with the expected results:
(1) the I-and M-finger commands were highest for the prona-
tion effort tasks, (2) the R- and L-finger commands were
highest for the supination effort tasks, and (3) for all fin-
gers the commands increased as the force level increased.
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Table 1
The inter-finger connection matrices.

Instructed finger
I M R L

I 16.16 (1.72) 1.16 (0.61) 0.28 (0.23) 0.41 (0.14)
M 1.44 (0.45) 15.34 (1.30) 1.11 (0.31) 0.00 (0.18)
R 0.47 (0.13) 1.98 (0.42) 11.32 (0.99) 1.09 (0.21)
L 0.31 (0.25) 0.57 (0.41) 1.67 (0.38) 11.36 (1.07)

Column headings are of the finger instructed to press. Mean
values and standard error (in parentheses).

The group average commands for several of the moment and
force combinations are presented in Table 2. There were in-
stances when commands were outside the 0 to 1 range. The
percentage of values less than 0 was 0.1% and the percentage
of values greater than 1 was 3.4% for the entire experimental
data set of commands from session 2 (1375 data points; 11
subjects × 125 session).

Notice that the middle finger commands were rather high
in the supination task and the ring finger commands were
high in the pronation task. The reason for such seemingly
strange behavior is that, for a given moment of force, at
high total force magnitudes using lateral fingers (I and L)
with large lever arms would result in large moment magni-
tudes produced by those forces. To keep the total moment
at a required magnitude, large moments in both pronation
and supination would be needed (agonist and antagonist mo-
ment), which is a wasteful strategy. Using the middle fingers
(M and R) with smaller moment arms allows to match the re-
quired moment of force without generating large antagonist
moments.

Inverse optimization

In the second experimental session subjects were asked to
press with their fingers in order to produce instructed combi-
nations of total force and moment of force. The finger forces
were recorded and then the finger commands were computed
using inter-finger connection matrices as described earlier.

According to the procedure of ANIO analysis at first we
had to assure that the data has planar distribution. The pla-
narity was estimated by means of principal component analy-
sis (PCA). We found that data distribution was close to planar
both for finger forces (96.2±0.6% of the total variance was
accounted for by the first two PCs) and finger commands
(94.1±0.7%). The fact that it was planar rather than linear
was supported by the non-negligible second PC accounting
for 23.8±7.3% of the total force and 27.9±8.3% of the total
command variance (see Table3 for more information). These
numbers justify the choice of the quadratic cost functions in
ANIO (for details see Terekhov, Pesin, et al., 2010). The first
two PCs also define the experimental plane used in further
ANIO analysis.

After the planarity of the data distribution had been con-
firmed, ANIO analysis was used to determine the parameters
of the cost function yielding the best fit of the experimen-
tal plane. Since not every experimental plane can be fitted
with an additive cost function with chosen elemental vari-
ables, ANIO finds the closest plane that can be produced by
an additive cost function. The closeness is measured by the
dihedral angle (D-angle), which is the main output of ANIO
used in the current study. A higher value of the D-angle sig-
nifies greater divergence between the experimental data and
the distribution that could be expected if the data were gener-
ated by an additive cost function. Additionally, ANIO returns
the coefficients of the cost function corresponding to the best-
fit plane. For a cost function to be feasible, the second-order
coefficients must be strictly positive.

For both sets of variables and in all subjects ANIO pro-
duced feasible cost functions as indicated by their strictly
positive second-order coefficients. The average values of the
coefficients are presented in Figure 3A. The first-order coef-
ficients are not presented here because they cannot be iden-
tified unambiguously (for details see Terekhov, Pesin, et al.,
2010; Terekhov & Zatsiorsky, 2011).

The D-angles were usually below 5° (Figure 3B) suggest-
ing that the experimental plane can be explained by addi-
tive cost functions both for finger forces and finger com-
mands. For four subjects the D-angle was above 5° when
computed for finger forces, and for three subjects this was
the case in the space of finger commands. The D-angle fell
out of the 5° range for the same three subjects for forces
and for commands. The only exception is the subject for
whom D-angle was 5.9° for forces and 4.4 degrees for com-
mands. The average values of the D-angles nearly coincided:
4.46±1.21° for the force-based analysis and 4.39±0.89° for
the command-based. No statistically significant difference
was found (F(1,10) = 0.16, p > 0.700) between force- and
command-based D-angles.

Uncontrolled Manifold Analysis

During the third experimental session subjects were asked
to repeat certain combinations of total force and moment
conditions so that the UCM analysis could be performed.
This analysis was performed separately for a subset of
{Ftotal; Mtotal} combinations with respect to three perfor-
mance variables, Ftotal, Mtotal and Ftotal&Mtotal combined
(see Methods). Across all subjects, conditions and analyses,
the ∆V index was positive (Wilcoxon’s signed-rank test; p
< 0.05). This can be interpreted as co-variation across trials
of finger forces (commands) that stabilized each of the three
performance variables for each of the studied {Ftotal; Mtotal}

combination. Overall, the UCM analysis produced higher
∆V indices when the analysis was performed in the space
of commands than in space of forces (see Figure 4). The ef-
fect of ELEMENTAL VARIABLE on z-transformed ∆V was
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Figure 2. Exemplary data from the data set of one subject showing experimentally measured forces (column 1) transformed to
finger commands (column 2) and the optimal finger commands (column 3) for each finger as plotted against the target force
and moment of force.

highly significant (F(1,10) = 36.7, p < 0.001). The degree of
coordination was typically the highest with respect to Mtotal,
than to Ftotal, than to Ftotal&Mtotal:

∆V(Mtotal) > ∆V(Ftotal) > ∆V(Ftotal&Mtotal).

This tendency was observed in all the experimental condi-
tions and it was confirmed statistically (F(2,20) = 48.7, p <

0.001 for PERFORMANCE VARIABLE).

Discussion

First of all, we would like to note that the results obtained
in the paper are consistent with the previous studies. The

inter-finger connection matrices (Table 1), agree well with
the previously published data (Danion, Schöner, et al., 2003;
Li, Zatsiorsky, et al., 2002; Zatsiorsky et al., 1998, 2000).
The same can be said about the ANIO and UCM results
performed for the finger forces used as elemental variables
(Park et al., 2010; Park, Sun, et al., 2011; Park et al., 2011;
Park, Singh, et al., 2012; Latash, Scholz, Danion, & Schöner,
2001). Such a consistency of the findings strengthens our be-
lief that the data obtained here for finger forces can be con-
sidered robust.

The current study aimed at answering the question of
whether the brain uses the same set of elemental variables
to optimize and to stabilize the motor behavior, or instead
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Table 2
Summary of finger commands.

Moment Force (% MVC) I M R L
2PR 20 0.33 ± 0.04 0.31 ± 0.04 0.14 ± 0.02 0.06 ± 0.03
2PR 60 0.60 ± 0.05 0.81 ± 0.09 0.77 ± 0.06 0.41 ± 0.07

0 20 0.13 ± 0.02 0.27 ± 0.03 0.32 ± 0.03 0.18 ± 0.03
0 60 0.45 ± 0.04 0.72 ± 0.06 0.85 ± 0.03 0.60 ± 0.08

2SU 20 0.07 ± 0.01 0.14 ± 0.03 0.35 ± 0.03 0.50 ± 0.06
2SU 60 0.30 ± 0.03 0.64 ± 0.07 0.97 ± 0.07 0.79 ± 0.09

Mean finger command values for the boundary force and moment level combinations. Mean ± standard errors.

Table 3
Summary of principal component analysis.

PC1 PC2 PC1+PC2
Median Range Median Range Median Range

(min, max) (min,max) (min, max)
Forces 72.63 (56.83, 80.76) 24.67 (13.57, 38.15) 96.67 (92.42, 98.26)
Commands 66.60 (53.53, 78.27) 29.13 (14.93, 39.82) 94.40 (90.47, 97.60)

Median and range of variance in PC1, PC2 and PC1 + PC2 are given.

it uses two different sets, one for optimization and another
one for the stabilization. We formulated two hypotheses: 1)
the ANIO method will fail when applied to the finger force
data using the finger commands as elemental variables and
2) the UCM will show higher degree of coordination for the
commands than for the forces. The experimental data con-
firmed the second hypothesis only. To our surprise, ANIO
worked almost equally well for the forces and the commands
as elemental variables.

In what variables are synergies created?

For both forces and commands taken as elemental vari-
ables, the UCM analysis indicated that the majority of the
variance was along the UCM (∆V > 0; Figure 4). This find-
ing supports the notion that there was a multi-element syn-
ergy stabilizing the performance variables, total force, total
moment of force and their combination. The synergy index
∆V was higher for finger commands than for the forces thus
supporting the hypothesis that the synergies were based on
the finger commands as elemental variables rather than finger
forces.

The following explanation is offered as to why the fin-
ger commands taken as elemental variables outperformed the
finger forces. Due to enslaving, finger forces display a cer-
tain degree of positive co-variation – this happens because
in most cases all coefficients of enslaving matrices are pos-
itive. Thus, in the analysis with respect to Ftotal, ∆V could
have been expected to be lower in the force space than in the
command space because positive finger force co-variation
contributes to Ftotal variance (VORT component in the UCM
analysis).

The higher ∆V values in the analysis of Mtotal stabiliza-
tion using commands are less trivial. Indeed, positive force

co-variation due to the enslaving may have different effect on
the total moment of force. The effect depends on particular
patterns of enslaving. In an earlier study (Zatsiorsky et al.,
2000), it has been shown that the enslaving patterns reduce
the magnitude of the total moment produced by the fingers
in pronation/supination. Given the importance of rotational
hand actions in everyday life it is possible that the specific
patterns of enslaving observed in healthy adults are optimal
to ensure higher stability of the total moment of force.

The fact that the variance within the UCM was higher
than the variance in the orthogonal sub-space suggests that
the across-trial variability was attenuated by the negative co-
variation within both sets of elemental variables and hence it
cannot be explained by some kind of a “neuromotor noise”
(Harris & Wolpert, 1998; Newell & Carlton, 1988; Schmidt,
Zelaznik, Hawkins, Frank, & Quinn, 1979).

The higher value of ∆V in the command space may sig-
nal that the variance is reduced in task-relevant directions
(smaller VORT ), but it could also reflect increase of variance
in task-irrelevant directions (higher VUCM). Unfortunately,
with the current analysis it is impossible to distinguish be-
tween the changes in these two potential contributors, be-
cause the variance computed in the space of forces cannot
be directly compared to the one computed in the space of
commands. Note that normalizing these values by the total
variance VTOT would not help because the resultant values
would be nothing more but linear transformations of ∆V . For
example, for normalized VORT computed for the force and
moment of force performance variables is:

VORT

VTOT
=

2 − ∆V
4
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Figure 3. The results of ANIO analysis. A: the dihedral angles (D-angles) computed for finger forces and finger commands
taken as elemental variables. The raw values are denoted with circles with thin lines showing the data belonging to same
subject. The large squares connected with a thick line denote the group averages. B: the across-subjects average second-order
coefficients of the cost functions with finger forces and finger commands taken as elemental variables. The coefficients have
been normalized. Error bars are standard errors.

and similarly
VUCM

VTOT
=

2 + ∆V
4

.

In what variables is optimization performed?

The results of the ANIO analysis are much less clear than
the UCM results: against our a priori assumptions, the ANIO
worked nearly equally well for the forces and for the com-
mands.

For both sets of elemental variables the cost functions
were quadratic. Note that the quadratic structure of the cost
function was not assumed a priori, but follows from the pla-
narity of the data distribution. Moreover, the planarity itself
does not guarantee the existence of an additive cost function
(see a counterexample in Xu et al., 2012). The possibility
of a given plane to be explained by an additive cost function
with selected elemental variables was measured by the D-
angle. The D-angles were found to be rather small (typically
<5°) and not significantly different between the command-
and the force-based analyses, suggesting that for both sets of
elemental variables the cost functions equally well capture
the general tendency of the force sharing.

This finding is rather strange because, as it is discussed in
previous papers (Terekhov, Pesin, et al., 2010; Niu, Latash,
& Zatsiorsky, 2012), only a small percentage of experimen-
tal planes can be explained by additive cost functions with
selected elemental variables. It is even more unlikely that
the same plane can be explained by two cost functions with
different sets of elemental variables. Yet this is exactly what
our results show.

Can the result of ANIO analysis be coincidental?

One cannot exclude that, by pure coincidence, the experi-
mental planes we obtained could be explained by cost func-
tions with different elemental variables. It is important to
have at least an estimate of the probability of such a coinci-
dence. To do that we ran statistical simulations, described in
Appendix B. At the first step, we estimated the probability
that a random plane in the space of forces can be explained
by an additive cost function with respect to the forces. For
each subject we generated 10,000 random planes, such that
they could explain all combinations of total force and total
moment of force used in the experiments (with non-negative
force values). We call these planes feasible. Then we com-
puted the percentage of those planes, for which the D-angle
was <5°and a hypothetical cost function corresponding to the
plane that had positive second-order coefficients. We found
that such planes constitute 10.3±6.2% of all feasible planes
(the values denote average and standard deviation across all
subjects). Hence, the probability that an arbitrary experimen-
tal plane can be explained by an additive cost function with
accuracy corresponding to D-angle <5° is about 0.10. Note
that this happened in all subjects, although the experimental
planes differed among them. It is hard to estimate the joint
probability because these events are not entirely independent,
but neither they are imperatively connected. It is clear that
the joint probability is below 0.10, so the latter can be used
as a conservative estimate.

At the next step, we checked the probability of encounter-
ing an experimental plane that can be explained at the same
time by a cost function additive with respect to the forces and
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Figure 4. Log-transformed normalized difference (∆Vz) be-
tween variance within the UCM and variance orthogonal to
the UCM with respect to: (A) total force and moment, (B)
total force, and (C) total moment. Error bars are standard
errors.

by a cost function additive with respect to the commands. We
repeated the same procedure as before, but now we computed
the percentage of planes for which the same conditions were
satisfied both for the forces and for the commands as the el-
emental variables. Such planes constituted just 5.0±1.3% of
all feasible planes. This means that an arbitrary experimen-
tally feasible plane has about 0.05 probability to be explain-
able by additive cost functions both for the forces and the

commands taken as elemental variables. The experimental
planes were different in all subjects, yet in all of them they
had this property. Though it is hard to give an estimate of
probability of such observation to occur by a pure chance, it
is definitely below 0.05 and, thus it may reflect the underly-
ing control mechanisms.

Interaction between the optimization and stabilization

The results of the current study are rather difficult to in-
terpret. On the one hand, we found that the commands out-
performed the forces in the UCM analysis and, thus are more
likely to be employed in the stabilization aspect of the task.
This assumption is also confirmed by the effect of enslaving
itself, which suggests that the CNS has limited direct con-
trol of the individual finger forces (see review in Schieber &
Santello, 2004).

Links between enslaving and synergy indices (∆V) are
not trivial. For example, healthy older persons show de-
creased indices of enslaving and lower indices of both force-
and moment-stabilizing synergies (Shinohara, Li, Kang, Zat-
siorsky, & Latash, 2003; Olafsdottir, Zhang, Zatsiorsky, &
Latash, 2007; Kapur, Zatsiorsky, & Latash, 2010). Both
an increase and a decrease of enslaving under fatigue have
been reported while multi-finger synergy indices are in-
creased (Danion, Latash, Li, & Zatsiorsky, 2000; Singh,
Varadhan, Zatsiorsky, & Latash, 2010; Singh, Zatsiorsky,
& Latash, 2012). In neurological patients with subcortical
disorders, enslaving indices are increased, while multi-finger
synergy indices are significantly lower (Park, Lewis, Huang,
& Latash, 2012; Park, Wu, Lewis, Huang, & Latash, 2012).
These results suggest that there is no one-to-one link between
enslaving and synergy indices. These observations empha-
size the fact that the higher synergy indices computed in the
space of commands to fingers, particularly those with respect
to Mtotal, are not trivial consequences of positive enslaving.

On the other hand, ANIO worked equally well for the
forces and the commands meaning that both coordinates are
equally probable as the elemental variables for the optimiza-
tion. Moreover, the probability of encountering the latter
property by pure chance in all subjects is below 0.05. Though
this observation deserves closer investigation, we can pro-
pose a simple provisional interpretation for it. Note that us-
ing additive functions is beneficial for the CNS as it simpli-
fies the optimization problem (Floudas & Pardalos, 2009).
Additive cost functions have a nice property that an increase
of the cost due to a change in one elemental variable does not
depend on the values of the other elemental variables. As a
consequence, local search algorithms, like gradient descent,
which may be employed by the CNS (Gelfand & Tsetlin,
1966; Ganesh, Haruno, Kawato, & Burdet, 2010), can be
implemented in additive cost functions in a much easier way
than in non-additive ones. So, the CNS may favor additive
cost functions, and perform optimization in the coordinates,
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with respect to which the employed cost function is additive.

The interpretation we offer here is that the CNS might pre-
fer to use the finger commands as the elemental variables
both for optimization and stabilization, but at the same time
it needs to optimize a cost function, which is additive with
respect to the finger forces. The fact that the finger forces
and patterns of their co-variation are adjusted to the expected
force and moment of force in advance (Johansson & West-
ling, 1988; Olafsdottir, Yoshida, Zatsiorsky, & Latash, 2005;
Shim, Park, Zatsiorsky, & Latash, 2006) suggests that the
CNS determines the optimal solution in a feed-forward man-
ner. While sensory information on finger forces is available
to the CNS, it comes at a delay and may be of limited use for
feed-forward optimization. So we suggest that, for a given
task, the CNS develops a cost function formulated in terms
of commands in such a way that its optimization also reduces
the cost of a function that depends of finger forces, which
may be more relevant to actual performance (cf. optimiza-
tion approaches in Crowninshield & Brand, 1981; Alexander,
1999; Pataky, 2005; Prilutsky et al., 2009). In other words,
to optimize the values additive with respect to the forces the
CNS constructs intermediate cost function additive with re-
spect to the commands, such that its minimization will at the
same time bring a minimum to the cost function of forces.
Such a two-level scheme will also allow the CNS to adopt
mechanisms responsible for stabilization of important per-
formance variables in the space of the finger commands.

A hypothetical scheme that implements the described pro-
cesses is presented in Figure 5. This scheme is a slight mod-
ification of the central back-coupling (CBC) scheme intro-
duced by Latash, Shim, Smilga, and Zatsiorsky, 2005. The
tasks – the total force and the total moment of force – are
transmitted into the performance variable stabilization neu-
rons (PV), which shape the variability of the feed-forward
commands, produced by the C neurons. The C neurons
project on PV stabilization neurons as a part of the stabiliza-
tion loop, but at the same time they project onto the optimiza-
tion neurons J′i , which in turn back-project on the C neu-
rons, implementing the gradient descent optimization of the
commands. Finally the outputs of the C neurons are mixed
through the inter-finger connection matrix to yield actual fin-
ger forces.

Note that the optimization neurons J′i are not directly in-
volved in satisfying the task constraints; they try to bring
commands to a minimum of the cost function. The action of
these neurons is partly counterbalanced by the PV neurons,
which stabilize the performance variables, by correcting the
commands in the direction orthogonal to the UCM. Due to
the combined functioning of these two mechanisms the con-
ditional minimum of the cost function is achieved. Moreover,
we can expect that the subjects will tend to deviate from the
precise satisfaction of the task constraints towards the uncon-
ditional minimum of the cost function. Experimental investi-

gation of this fact falls outside the scope of the current study.
This interpretation allows offering a likely answer to the

question posed in the title of the study. The CNS probably
uses the same elemental variables for the optimization and
stabilization of the finger forces. In our study these elemen-
tal variables are the finger commands. This finding is not
surprising for the stabilization, because the CNS has no di-
rect access to the finger forces, only to the commands. In
optimization, in turn, it seems that the CNS might minimize
a cost function which is additive with respect to the forces,
yet it substitutes that cost function with an intermediate cost
function additive with respect to the commands. The bene-
fits of such substitution are that the CNS can execute local
search optimization in the variables it has direct access to –
the commands – and the same mechanisms, which are used in
stabilization, can also be employed in optimization to ensure
the optimal values satisfy the task constraints.

Study limitations

We would like to mention a few limitations of the study.
The first is that only one trial at each MVC condition was
collected in order to avoid fatigue. Typically, several trials
at each MVC task are collected and either averaged (Zat-
siorsky, Gregory, & Latash, 2002) or the highest value taken
as the true MVC force (Li, Zatsiorsky, et al., 2002). Inac-
curate MVC forces could have a major effect on the inter-
finger connection matrix computed from the neural network
model. This would, in turn, cause the computed the finger
commands to be inaccurate.

Here we assumed that the finger commands and finger
modes are related through a linear equation when the num-
ber of actively instructed fingers is specified. There were
no comprehensive studies of the links between finger forces
and finger commands for tasks involving submaximal force
and moment of force production. As a consequence, it may
be that the relationship between the finger forces and finger
commands is not perfectly linear and hence our estimates of
the finger commands may differ from their “true values”.

Another limitation of the study is that it was assumed
that the commands were between 0 and 1. Several of the
computed finger commands were outside of this range for
a few of the trials (both negative commands and commands
greater than 1). This result is most likely in part linked to the
limitation mentioned above (see details in Martin, Terekhov,
Latash, & Zatsiorsky, 2012). It is also plausible that during
some of the conditions the subjects were able to either de-
crease enslaving by activating extensor muscles or produced
forces larger than they did in the MVC trials. The supination
tasks may have caused subjects to produce quite large forces
with their little fingers since the moment was scaled to the
MVC of the index finger. Subjects with higher index to little
finger MVC ratios may have been producing forces above the
recorded little finger MVC.
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TASK #1 TASK #2
CBC

INTER FINGER CONNECTION

Figure 5. The hypothetical scheme of feed-forward control
of the finger forces. The central controller assigns the val-
ues of two performance variables leading to signals to two
PV neurons. Their outputs are shared among the C neurons,
representing the finger commands. The stabilization of the
performance variables is ensured by the back-coupling loop
connecting the finger commands and the performance vari-
ables. At the same time another loop connects the C and J′i
neurons implementing an algorithm similar to gradient de-
cent. Without the stabilization loop, the optimization would
converge to an unconditional minimum of the cost function,
e.g. to zero finger forces. The presence of the stabiliza-
tion loop constraints the optimization so that the performance
variables remain close to their desired values. Finally the
outputs of the C neurons are combined together using inter-
finger connection matrix to yield the finger forces.

The last limitation is that the range of target force and
moment of force used, especially moments, only captured
a small subset of what subjects were capable of producing.
Using a greater range of target forces and moments could
have resulted in a more accurate cost function approximation.
However, we decided that the potential benefit of collecting a
larger range of target forces and moments was outweighed by
the extra fatigue these additional trials would have induced
on subjects. We felt it was better to limit the total number of
trials collected to obtain the most accurate set of forces over
the space of task constraints used.
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Appendix A

In this appendix we present a summary of the ANIO method
and a brief description of the main theoretical results. ANIO
is essentially based on the Uniqueness Theorem, which is
presented first, and it exploits the duality between the pla-
narity of the data and the quadratic nature of the underly-
ing cost function, whose explanation goes next. Finally we
present the method itself in the form it is used in the current
study.

Uniqueness Theorem

Uniqueness Theorem states the sufficient conditions
for a solution of the inverse optimization problem to be
unique. Here we present the Uniqueness Theorem for the
case of four variables and two constraints. The general case
can be found in (Terekhov, Pesin, et al., 2010; Terekhov &
Zatsiorsky, 2011).

Consider an additive cost function

J(x) =

4∑
i=1

gi(xi)→ min, (7)

where gi are scalar functions, x = (x1, x2, x3, x4)T . The vari-
ables x can correspond to finger forces and finger modes. For
the sake of convenience of notation here we use numerical
and not literal indeces.

The cost function J is minimized subject to linear
constraints

Dx = d, (8)

where D is a 2 × 4 matrix of constraints and d is a two-
dimensional vector. In case when the problem is formulated
for forces the matrix D is provided in (4).

We assume that every point x corresponds to a min-
imum of the cost function J under the constraints (8) for a
certain vector d. Hence, at every point x the cost function
J must satisfy the Lagrange principle, which in this case re-
quires that:

ĎJ′(x) = 0, (9)

where J′(x) = (J′x1
, J′x2

, J′x3
, J′x4

)T (prime symbol signifies
derivative over the variable) and

Ď = I − DT
(
DDT

)−1
D, (10)

I stands for a unit matrix.

Now let’s assume that there are two additive cost
functions J1(x) and J2(x) producing the same set of exper-
imental data X∗. Evidently, both functions must satisfy La-
grange principle at every point of X∗. We would like to know,
what are the constraints of the experimental data X∗, which
would guarantee that the functions J1 and J2 coincide.

The answer is given by The Uniqueness Theorem. It
states that if two nonlinear functions J1(x) and J2(x) satisfy
the Lagrange principle for every point x in the set X∗ with
the constraints matrix D and:

1. J1 and J2 are additive,
2. the data is distributed along a smooth two-

dimensional surface X∗,
3. the matrix Ď in (10) cannot be made block-

diagonal by simultaneous reordering of the rows and
columns with the same indices (such constraints are called
non-splittable; Terekhov, Pesin, et al., 2010).
then:

J1(x) = rJ2(x) + qT Dx + const (11)

for every x inside a hyper-parallelepiped surrounding the sur-
face X∗. The hyper-parallelepiped is defined as follows:

X∗0 = {x | for every j exists x̃ ∈ X∗ : x j = x̃ j},

r is a non-zero scalar value and q is an arbitrary four-
dimensional vector.

The Uniqueness Theorem states that if any solution
to the inverse optimization problem, J1(x), is found then the
true additive cost function J2(x) is equal to J1(x) up to multi-
plication by an unknown scalar r and adding unknown linear
terms qT Dx + const.

The conditions of the Uniqueness Theorem are im-
possible to satisfy exactly in real experiments, because it re-
quires that: (1) the data form a two-dimensional surface, that
implies infinite number of data points to be available, and (2)
the data are precise, while in reality it is always disturbed by
motor variability and measurement noise. Yet, as it has been
shown in (Terekhov & Zatsiorsky, 2011) the cost function
can be approximately determined even from imprecise and
limited data if all other conditions of the Uniqueness Theo-
rem are satisfied.

The link between the planarity of the data and quadratic
cost functions

In the current study we assumed that the cost func-
tions are additive quadratic polynomials. This assumption
follows from the planarity of the data distribution and the
Uniqueness Theorem. Indeed, a plane in four-dimensional
space can be represented by a matrix equation:

Ax + a = 0, (12)

where A is a 4 × 2 matrix and a is a two-dimensional vector.
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Assume that in the experiment the data were found to
be distributed along the plane (12) and that these data cor-
respond to a solution of the optimization problem with an
unknown additive cost function J and linear constraints (8).
We will show that then the cost function J must be quadratic.

Indeed, at its every point x the cost function J must
satisfy Lagrange principle (9).

On the other hand, if the cost function is quadratic,

J(x) = k1x2
1 + · · · + k4x2

4 + w1x1 + · · · + w4x4, (13)

then the equation (9) takes the form

2ĎKx + Ďw = 0, (14)

where K is a diagonal matrix with the coefficients k1, . . . , k4
on the diagonal and w is a vector of the coefficients
w1, . . . ,w4.

Note that since the matrix Ď has rank two, the equa-
tion (14) also defines a plane. If there exist such coefficients
ki and wi (ki > 0) that the equations (12) and (14) define
the same plane, then the function (13) is a possible solution
for the inverse optimization problem (7), (8), (12). Hence,
according to the Uniqueness Theorem the true cost function
is also quadratic and coincides with J up to linear terms.

Now we check if for every plane (12) there exist such
coefficients ki and wi that the plane can be represented as
(14). If such coefficients do not exist, then the plane (12)
cannot be explained by any cost function, additive with re-
spect to x1, . . . , x4. The latter does not exclude that this plane
can be explained by a non-additive cost function, or by a cost
function additive with respect to another set of variables.

There are two reasons why the coefficients may not
exist. First, it may happen that they exist, but some of ki

are negative. Second, it may happen that no coefficients at
all can fit the plane (12) with equation (14). We will give
additional explanations for the second possibility as it plays
an important role in the current algorithm of the cost function
determination. The algorithm itself will be presented in the
next subsection.

For the planes (12) and (14) to coincide, the rows of
matrix A must span the same vector subspace as the rows of
matrix ĎK. The latter means that every row orthogonal to A
must also be orthogonal to every row of ĎK, or

ǍKĎ = 0, (15)

as Ǎ is a symmetrical matrix whose rows are orthogonal to
the rows of A.

Since both matrices, Ǎ and Ď, have ranks equal to
two, the equation 15 defines four linear equations on the co-
efficients k1, . . . , k4

Ek = 0,

where k is a vector of k1, . . . , k4 and E is 4×4 matrix pro-
duced from the elements o Ǎ and Ď. For the equation 15 to

have a non-trivial solution (e.g. ki , 0) the determinant of E
must vanish.

In four-dimensional space the orientation of the plane
is defined by 5 parameters (just like it can be described by
two parameters in three-dimensional space). In order for the
plane to be explained by an additive cost function, these five
parameters must be such that

det E = 0. (16)

Hence, not every plane in four-dimensional space can
be explained by an additive cost function. Theoretical prob-
ability of getting such a plane by chance is zero. Since in
the experiments the data are noisy, the plane cannot be de-
termined precisely, and, thus, most probably it will not sat-
isfy the equation (16). However, it may happen that a plane,
which is very close to the one determined in the experiment,
will do. Hence, we must search for such a plane, which is as
close to the experimental plane as possible, and yet for which
there exist coefficients k1, . . . , k4. This idea lies behind the
ANIO algorithm described below.

ANIO algorithm

ANIO algorithm used in the current study searches
for the parameters of a quadratic additive cost function that
would fit the experimental data best. The details of the al-
gorithm can be found in (Terekhov, Pesin, et al., 2010). The
input to the algorithm is the experimental plane in the form
(12), which we defined by the two largest eigenvectors of the
data co-variation matrix and the vector of the data barycen-
ter. The algorithm searches for the coefficients ki, wi of a
cost function (13), such that the dihedral angle (D-angle) be-
tween planes (12) and (14) is minimized. The D-angle is
computed using Matlab function subspace, the minimiza-
tion is performed using fminunc function of Matlab Opti-
mization Toolbox. The parameters wi are determined form
the data barycenter. We assume that the algorithm succeed
if all coefficients ki are positive. In this case the D-angle
can be used as a measure of how likely it is that the data are
generated by a cost function additive with respect to selected
variables.

Note that according to Uniqueness Theorem the vec-
tor w cannot be determined uniquely. In the current paper we
choose the vector w which would have the minimal length
among all possible vectors. As it is shown in (Terekhov,
Pesin, et al., 2010), such vector w can be computed as:

w = −DKx̄,

where x̄ is the barycenter of the experimental data.

Appendix B

The application of ANIO to the forces and the commands
yielded unexpected results: it worked nearly equally well for
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both sets of elemental variables. To see if this could hap-
pen by pure coincidence we ran statistical tests in which we
generated random experimentally feasible planes (described
below). We tested the planes for satisfaction of each of two
conditions: 1) the D-angle is small in the space of forces, and
2) the D-angle is small both in the space of forces and in the
space of commands. A detailed description of the procedure
is explained below.

Feasible planes

The planes were originally defined in the space of the
finger forces. We call a plane feasible if it contains points, in
which the task constraints – total force and moment of force
– are satisfied by positive finger forces. This property is im-
portant because in statistical modeling we must exclude the
planes, which can never, even hypothetically, be obtained in
the experiments. For example, the plane of the UCM, which
is defined by the matrix D in (4), cannot be admitted because
at every point of this plane the values of the total force and
the total moment of force are the same, and hence they can
never satisfy the experimental constraints for different task
values.

The procedure starts with generating two random or-
thonormal four-dimensional vectors a1 and a2. Each element
of the vectors was randomly drawn from the uniform [-1, 1]
distribution and then the vectors were made orthonormal us-
ing Gram-Schmidt process. These vectors define a plane in
the four-dimensional space.

To check if the plane is feasible we searched for a
parallel shift a0 of the plane, such that the experimental con-
straints were satisfied by positive finger forces. We used
quadratic programming as a tool for that. The corresponding
problem was:

aT
0 a0 → min, such that:

Fi = a0 + a1β
i
1 + a2β

i
2, i = 1, . . . , 20,

DFi = bi,

F i
j ≥ 0, j = 1, . . . , 4,

where Fi = (F i
1, . . . , F

i
4)T is a vector of hypothetical fin-

ger forces computed for each pair of total force and total
moment of force used in the experiments; their values are
given by the vector bi. The subsidiary scalar values βi

1 and
βi

2 were used to define the vector Fi belonging to the tested
plane, which in turn was defined by the orthonormal vectors
a1, a2 and the shift a0. The last inequality above requires
that the constraints are satisfied by positive values of finger
forces. For each random plane we checked that the described
quadratic programming problem has a solution. We used
quadprog function from Optimization Toolbox of Matlab
(Matlab 7.4.0, Mathworks, Inc, Natick, MA). If the function
converged to a solution within 1,000 iterations the plane was
accepted as feasible, otherwise it was discarded. We used
this procedure to generate 10,000 feasible planes for each
subject.

Tests

The feasible planes were used to estimate the proba-
bility that a random experimental plane could be explained
by a cost function additive with respect to the forces. To
achieve this, for each feasible plane we took the vectors Fi as
experimental data points and applied ANIO to them. The D-
angle and the coefficients of the cost function corresponding
to the plane were determined. We computed the percentage
of the feasible planes for which two conditions were satis-
fied at the same time: 1) the D-angle was below 5°, 2) all
second-order coefficients were positive. The percentage was
estimated for each subject and yielded 10.3±6.2% across the
group.

The same planes were used to estimate the probabil-
ity that the same data set can be explained by a cost function
additive with respect to the forces and by a cost function ad-
ditive with respect to the commands. For that we computed
the finger commands corresponding to the forces Fi, applied
ANIO method to both data sets and computed the percentage
of the planes for which the same conditions as before were
met both for the forces and for the commands. The resultant
percentage was 5.0±1.3% across all subjects.


