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Abstract—In the perspective of life long learning, a robot
may face different, but related situations. Being able to exploit
the knowledge acquired during a first learning phase may be
critical in order to solve more complex tasks. This is the transfer
learning problem. This problem is addressed here in the case of
direct policy search algorithms. No discrete states, nor actions
are defined a priori. A policy is described by a controller
that computes orders to be sent to the motors out of sensor
values. Both motor and sensor values can be continuous. The
proposed approach relies on population based direct policy search
algorithms, i.e. evolutionary algorithms. It exploits the numerous
behaviors that are generated during the search. When learning
on the source task, a knowledge base is built. The knowledge
base aims at identifying the most salient behaviors segments with
regards to the considered task. Afterwards, the knowledge base
is exploited on a target task, with a reward shaping approach:
besides its reward on the task, a policy is credited with a reward
computed from the knowledge base. The rationale behind this
approach is to automatically detect the stepping stones, i.e. the
behavior segments that have lead to a reward in the source task
before the policy is efficient enough to get the reward on the target
task. The approach is tested in simulation with a neuroevolution
approach and on ball collecting tasks.

I. INTRODUCTION

Exploiting the knowledge acquired one day to make the
robot more efficient another day is of critical importance for
life long learning [18]. Thanks to its experience, the robot
may learn faster or solve a task that was out of reach before.
This is the transfer learning approach [13], [19]. Whereas this
approach has drawn much attention in the machine learning
community, it remains an open question in the robotics field.

Different approaches to transfer learning have been pro-
posed based on the reinforcement learning paradigm [16]. The
value function evaluated in the source task can be a starting
point to learn the target task[17]. Another alternative consists
in developing an algorithm that chooses between the old policy
and the current policy under construction[3]. The past policy
is followed with a probability ψ while the new policy is
exploited with an ε-greedy strategy. Knowledge can also be
inserted directly in the definition of the reward function. This
leads to the reward shaping approach[6], [14], [4]. Whereas
this approach has been developed initially to include expert
knowledge in order to facilitate learning, it has also been used
in a context of transfer learning in reinforcement learning, thus
using past experience to automatically build the shaping func-
tion. Previous learning episodes can be used to train a function
estimator that predicts the value function, i.e. the expected
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Fig. 1. Overview of the proposed approach.

reward, out of a state in an agent centered space[5]. Other
work has even proposed to automatically identify the relevant
features to take into account in the shaping function[15].

All the previously mentioned work rely on the definition of
discrete states and actions. This work focuses on continuous



states and actions. The rationale of the proposed approach is
the following (figure 1):

1) learn to solve the source task from scratch;
2) extract knowledge from this learning episode by

identifying salient behavior segments;
3) use this knowledge to learn how to solve similar tasks

while rewarding the appearance of those behavior
segments;

The proposed approach consists segmenting the behaviors
into fixed length segments. The saliency of a behavior is
the average reward of the policies that exhibit it: salient
behaviors will be those that are mostly exhibited by efficient
controllers. To have an accurate estimation of elementary
behavior saliency, many different policies need to be explored,
both efficient and inefficient. Evolutionary algorithms are used
for the direct policy search. Their population based feature
makes them explore a large number of policies in parallel,
thus providing a large set of policies from which to build the
knowledge base. A reward shaping approach [6], [14], [4] is
used to exploit the knowledge acquired on the source task. A
reward is computed out of the knowledge base and taken into
account in the learning process for the target task.

Sequential tasks have been considered with a direct policy
search based on neuro-evolution.

II. METHOD

The proposed approach has two main steps: (1) a knowl-
edge base building step and (2) a knowledge exploitation step
(figure 1). Step (1) is performed on a source task and step (2)
is performed on a related target task. The approach is meant to
be used with learning algorithms that explore many different
policies, e.g. evolutionary algorithms.

A. Behavior representation

The behavior of a policy can be represented by the se-
quence of sensor and effector values, i.e. by a (ns + ne)× T
matrix, if ns is the number of sensors, ne the number of
effectors and T the number of time steps. To extract knowledge
from this matrix, it is first decomposed into segments with a
predefined width w. The sequence of these behavior segments
describes the behavior.

B. Knowledge base building process

The knowledge base is made up with behavior segments
associated with the average value of the rewards of all the
policies exhibiting this behavior segment1.

During the learning step on the source task, at a given
period, every policy ρ explored in a generation g of the
evolutionary algorithm, is involved in the knowledge base
building process. A period of 1 will build the most accurate
knowledge base, while a higher period will save computational
time2. Each behavior segment bs of ρ is compared to each
behavior segment in the knowledge base. If the knowledge

1As the average value is computed incrementally, the knowledge base
contains behavior segments together with their cumulated reward and the
number of policies in which they have been found.

2In the experiments reported here, a period of 200 has been used.
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Fig. 2. Overview of the arena and of the robot for the source task. The goal
of the experiment is to place as many balls as possible into the basket. A
robot controller is evaluated with three different initial positions. To reach the
four balls in the left room, the robot has to open the door by first pressing
the switch button. The target task uses the same arena, but with no more than
one ball at a time (the one circled with a dashed line). In this setup, the door
is always opened and the switch makes a ball appear (at the beginning, no
ball are in the arena).

base contains a behavior segment bs′ closer to bs than the
threshold δ, the cumulated reward of bs′ is increased by the
fitness of ρ and its number incremented by one. Otherwise, bs
is added to the knowledge base with a cumulated reward equal
to the reward of ρ and a number of 1. The distance used to
compare behavior segments is an euclidean distance.

At the end of the learning process, the knowledge base
contains then the set of the behavior segments encountered
with their cumulated reward and number of appearance, i.e.
with their average reward on all the explored policies. This
average reward is an estimation of the contribution of the
behavior segments to the source task resolution.

C. Exploitation of the knowledge base

On the target task, the knowledge base is used to estimate if
a particular policy contains ”salient” behaviors. Each behavior
segment of the policy is sought into the knowledge base. The
maximum reward thus obtained rmax is taken into account in
the learning process.

Two approaches have been tested to take this value into
account. The first consists in aggregating it with the reward
obtained by an policy, for instance with a sum. The second
approach consists in considering rmax as a separate objective
to be maximized by the evolutionary learning process.

III. EXPERIMENTAL SETUPS

The considered tasks are ball collecting tasks inspired from
[12] (figure 2). A two-wheeled simulated robot has to pickup



balls and put them into a basket. The reward of a policy is the
number of balls put into the basket while the robot executes
it. The robot has two wheels and twelve sensors: three wall
distance sensors, two bumpers, two ball detection sensors, two
switch sensors, two basket detection sensors and one ”carrying
ball” sensor. It has three effectors: left and right motors as well
as an ”action” effector. A nearby ball is collected or the switch
is activated if the value of the ”action” effector value is above
0.5 (the robot can carry only one ball at a time). If it is below
0.5, a carried ball is released. A released ball disappears from
the arena. If, at that time, the robot was in front of the basket
and touching it, then the ball is considered to be collected and
one reward point is given to the robot.

A. Source task

The source task is that described in [12]. The arena contains
four balls and a switch button that allows the robot to open the
door of a room containing four more balls. The robot starts
from three different initial positions as shown on figure 2. The
initial positions are always the same so that individuals are
evaluated in the same conditions.

B. Target task

The target task relies on the same arena than the source
task, but no ball is present in the arena at the beginning of
an evaluation. Activating the switch make them appear, one
at a time, at the top left ball position (see figure 2), i.e. at
the position that is the most distant to the switch. The door is
always opened in this setup.

In this task, no reward is obtained before the robot learns to
go towards the switch, activate it, navigate in the arena to find
the ball, pick it up, go towards the basket, touch it and release
the ball. This sequence allows the robot to get a reward of one.
It has to repeat it to get other reward points. The sequence to
get a reward point is then longer than for the source task,
making it more difficult to solve.

C. Neuro-evolution

The robot is controlled by a neural network with twelve
inputs and three outputs. Both structure and parameters of the
neural network are generated by an evolutionary algorithm, us-
ing the DNN encoding as described in [10]. A learning process
starts with a perceptron with no hidden neuron that directly
links input neurons to output neurons. Connection weights are
chosen randomly. No crossover is used and mutations can add
or remove neurons and connections and change connection
weights. The parameters used for these experiments are listed
in the appendix.

NSGA-II, a state-of-the-art multi-objective evolutionary
algorithm, is used for the direct policy search [1]. Several
objectives are optimized at the same time: the number of
collected balls and some other helper objectives (see text
below). The best-of-run policy is the one that has collected
the highest number of balls. The other objectives are used
to enhance the search, but are neglected when observing the
solutions generated in a run.

D. Treatments

In the source task, the objectives to optimize are the reward,
i.e. the number of collected balls and a behavioral diversity ob-
jective, used to foster exploration [10]. This objective measures
the distance, in the space of behaviors, of a policy towards
the other policies in the population at a given generation of
the evolutionary algorithm. This objective revealed to increase
the efficiency of the direct policy search algorithm in multiple
contexts [10], [2], [8], [7]. The behavior distance used to
compute the behavioral diversity objective is an edit distance
on the discretized robot trajectory, as described in [12].

The knowledge base is used with the two proposed ap-
proaches on the target task, leading to the following treatments:

• sum: the maximum average reward associated to the
behavior segments of a policy out of the knowledge
base is normalized and added to the reward of the
policy on the task3. Two objectives are maximized:

1) reward on the task (number of collected balls)
+ max behavior segment reward from the
knowledge base

2) behavioral diversity

• mo: multi-objectivization approach, the maximum av-
erage reward associated to the behavior segments of a
policy out of the knowledge base is added as a new
objective. Three objectives are maximized:

1) reward on the task (number of collected balls)
2) behavioral diversity
3) maximum behavior segment reward from the

knowledge base

For control experiments, a new knowledge base has been
created. It contains the same behavior segments than the
knowledge base used before, but associated with random
average rewards, drawn from a uniform distribution in the
interval [0, 1]. The control treatments are the following:

• sum rand: the sum treatment, but with the randomized
knowledge base

• mo rand: the mo treatment, but with the randomized
knowledge base

• no transfer: the same treatment than for the source
task, i.e. the following objectives to maximize:

1) reward on the task (number of collected balls)
2) behavioral diversity

E. Parameter settings

The main parameter of the proposed method is the δ
threshold parameter. It has been set to 1.83, that is the mean
distance between the 20 closest behaviors during 4000 time
steps of a successful behavior generated on the source task.
This has been empirically chosen to limit the size of the
knowledge base while gathering behavior segments reasonably
similar.

Segments of width 20 time steps have been considered.
To save computation time, the considered segments do not

3after normalization, a policy that has collected n balls has always a lower
fitness than a policy that has collected n+ 1 balls.
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Fig. 3. Histogram of the number of behavior segments in the knowledge base
with a particular average reward. The knowledge base comes from a single
learning experiment on the source task.

overlap. The evaluation of a policy lasts 12000 time steps
(4000 time steps for each initial position). The arena size
is 600 × 400 units and the robot can move up to 4 units
per time step. A maximum number of 4000 time steps have
been considered for the knowledge base building process or
exploitation: only the behavior of the policy when starting from
the first initial position has been taken into account.

To speedup the search of a behavior segment into the
knowledge base, a KD-tree structure is used as implemented
in the FLANN library [11]. It allows a fast approximate search
for nearest neighbors4.

The experiments have been implemented in the
SFERESv2 software framework [9], which is a framework
for evolutionary algorithms and evolutionary robotics
experiments5. The source code of the experiment is available
from http://pages.isir.upmc.fr/evorob db.

IV. RESULTS

A. Knowledge base content

The knowledge base generated after 4000 generations by
the best run out of 30 different runs has been selected. A
reward of 0.625 has been reached, i.e. 15 balls out of 24
are collected by the best policy. The knowledge base contains
32580 behavior segments. The average reward of the behavior
segments range from 0 to 0.625, i.e. the maximum reward
gathered in this run. Figure 3 shows the repartition of behavior
segments average rewards. Almost 14000 behavior segments
are associated to a 0 reward. It corresponds to behavior
segments that have been mostly found in policies that did
not get any reward. Around 1000 behavior segments have

4The source code of the library used for these experiments is available from
http://www.cs.ubc.ca/∼mariusm/index.php/FLANN/FLANN.

5The software is open-source and can be downloaded from http://sferes2.
isir.upmc.fr/.
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Fig. 4. Trajectory of the best-of-run policy on the source task. Small
circles represent the trajectory. Their color represents the average reward
of the corresponding behavior segment in the knowledge base: white if the
average reward is 0, dark blue for the highest value. The robot orientation is
periodically represented in white when the robot does not carry a ball and in
red when it carries a ball.
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Fig. 5. Behavior segment average reward of the best-of-run policy on the
source task. X-axis: time steps, Y-axis: average reward.

an average reward of 0.625. As the reward is an integer, the
average rewards follows a comb distribution.

B. Analysis of a best-of-run policy on the source task

The most efficient behavior found in this experiment can be
analyzed through the rewards of its behavior segments in the
knowledge base. It leads to the trajectory plotted on figure 4.
The corresponding behavior segments have an average reward
that mostly range from 0.4 to 0.625 (figure 5). It means that
the behavior segments are mostly found in policies that get a
significant amount of reward. The highest values are reached
after time step 2000, when the robot starts collecting the balls
in the left room.

C. Impact of the knowledge base while learning to solve the
target task

The number of successful runs along generations is shown
on figure 6. A run is considered as successful if the best-
of-run policy collects more than half of the available balls.
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Fig. 6. Number of successful runs for each treatment on the target task out
of 20 independent runs. A run is considered as successful if the best policy
on the task has a reward of 0.5, i.e. half of the balls are collected.
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Fig. 7. Performance of the different treatments on the target task. Results at
generation 3000 on 20 runs. Each symbol represents the reward of the best
policy of a run. Small random variations have been added to the X-axis in
order to make the cloud of points easier to look at.

Both sum and mo treatments exhibit a significantly better
performance (see appendix for the results of a Mann-Whitney
test at generation 3000). Efficient solutions for both tasks are
thus generated when the knowledge base is taken into account.
The average reward associated to each behavior segment in
the knowledge base seems then significant and useful as the
performance of the runs exploiting the randomized version of
the knowledge base is very low. Only a few runs of the control
experiment did succeed in collecting some balls (maximum of
0.4), while the sum and mo treatments did succeed in collecting
up to all available balls. It should be noticed that the reward
generated with sum and mo treatments shows a high variability
(figure 7): some runs have bootstrapped, and some have not
been able to collect a single ball. The success rate at generation
3000 for sum (resp. mo) is 35% (resp 30%). It is 0% for all
control experiments.
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Fig. 8. Trajectory of the best-of-run policy on the target task. Small
circles represent the trajectory. Their color represents the average reward
of the corresponding behavior segment in the knowledge base: white if the
average reward is 0, dark blue for the highest value. The robot orientation is
periodically represented in white when the robot does not carry a ball and in
red when it carries a ball. Only a part of the trajectory is shown for clarity.

D. Analysis of a best-of-run policy on the target task

A part of the trajectory of a best-of-run policy is shown
on figure 8. The robot goes from the switch to the ball and
stops at the basket to release the ball on its way back to the
switch. It repeats this cycle up to the end of the evaluation, thus
collecting all the available balls, no matter its initial position.
Only a part of the trajectory corresponds to a non null reward in
the knowledge base (blue small circles on figure 8). It actually
corresponds to some of the critical parts of the behavior:

1) the robot has activated the switch and starts going
towards the ball;

2) it crosses the basket room to go to the ball room;
3) it robot approaches the ball;
4) it approaches the basket while carrying the ball;
5) it goes back to the switch after having released the

ball.

V. DISCUSSION

The knowledge base used in a reward shaping approach
has allowed to solve the target task while no policy generated
without it did succeed. The results show anyway a large
variability. It can be hypothesized that this variability is due
to an incomplete or inaccurate knowledge base. The reward
of each behavior segments of a best-of-run policy is high all
along its trajectory (figure 5) while it may be expected that
only some parts of it are actually salient and critical to solve
the task. It means that the knowledge base may consider as
salient behaviors that are actually not important to get the
reward. While learning on the target task, the reward of such
behavior segments may be misleading and may thus explain
the low performance of some runs. Higher performances may
then be expected with a knowledge base containing better
approximations of behavior segments contribution. The knowl-
edge base should for instance be updated in every generation
while solving the source task, instead of every 200 generations



as it was done here. Likewise, the knowledge base from
different runs can be merged to make the estimation of a
behavior segment saliency more accurate. Such a knowledge
base is actually interesting per se as it allows to identify what
parts of the policies are the most significant. This knowledge
may be used to better understand what happens, but also to
progressively build a repertoire of discrete actions, if the part of
a policy responsible for the behavior segment can be isolated. It
would open the way towards the use of reinforcement learning
algorithms with actions that are automatically built and thus
significant from the point of view of the robot.

The question of the relation between the source and target
task has not been addressed here. The knowledge base takes
into account the reward on the task and tries to credit each
behavior segment with its contribution. It can then be seen as
a credit assignment approach. The source and target tasks must
have the same reward function for the transfer to be of help.

VI. CONCLUSION

This work introduces a transfer learning approach in
robotics that deals with continuous actions and states. It relies
on the population based feature of evolutionary algorithms to
build a knowledge base in which the contribution of each
observed behavior segment is progressively evaluated. The
knowledge base is exploited when solving a target task with a
reward shaping approach. The reward to be optimized by the
direct policy search algorithm includes the maximum reward
of the behavior segments out of the knowledge base, thus
identifying salient behavior segments before they lead to a
reward on the task. This approach allowed to solve a complex
sequential task while exploiting the knowledge acquired on a
simpler version of it. The analysis of the solution on the target
task reveals that the salient behaviors actually make sense from
a human expert point of view, thus showing that the knowledge
base has captured at least some of the important features of
the task.
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APPENDIX

Statistical significance of the results on the target task
(Mann-Whitney test) at generation 3000

no transfer sum rand sum mo rand mo
no transfer 1 0.3026 0.01088 0.3423 0.005414

sum rand 0.3026 1 0.005338 0.4845 0.002507
sum 0.01088 0.005338 1 0.007448 0.4091

mo rand 0.3423 0.4845 0.007448 1 0.003204
mo 0.005414 0.002507 0.4091 0.003204 1

Parameters common to all the treatments:

• MOEA: NSGA-II (pop. size : 200)

• DNN (direct encoding):
◦ number of neurons∈ [10, 30]
◦ number of connections ∈ [50, 250]
◦ prob. of changing weight/bias: 0.1
◦ prob. of adding/deleting a conn.: 0.15/0.05
◦ prob. of changing a conn.: 0.03
◦ prob. of adding/deleting a neuron: 0.05/0.05
◦ activation function for neurons:

yi = ϕ
(∑

j
wijxj

)
where ϕ(x) = 1

1+exp(b−x)


