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Abstract—In this paper we address the problem of learning
to recognize objects by manipulation in a developmental robotics
scenario. In a life-long learning perspective, a humanoid robot
should be capable of improving its knowledge of objects with
active perception. Our approach stems from the cognitive devel-
opment of infants, exploiting active curiosity-driven manipulation
to improve perceptual learning of objects. These functionalities
are implemented as perception, control and active exploration
modules as part of the Cognitive Architecture of the MACSi
project. In this paper we integrate these functionalities into an ac-
tive perception system which learns to recognise objects through
manipulation. Our work in this paper integrates a bottom-up
vision system, a control system of a complex robot system and a
top-down interactive exploration method, which actively chooses
an exploration method to collect data and whether interacting
with humans is profitable or not. Experimental results show that
the humanoid robot iCub can learn to recognize 3D objects by
manipulation and in interaction with teachers by choosing the
adequate exploration strategy to enhance competence progress
and by focusing its efforts on the most complex tasks. Thus
the learner can learn interactively with humans by actively self-
regulating its requests for help.

I. INTRODUCTION

Motor activity plays a fundamental role in the learning pro-
cess about objects and their properties. The action-perception
coupling is particularly evident during the cognitive develop-
ment of children, who learn object representations essentially
through interaction and manipulation [1]. By means of simple
actions like pushing or throwing, infants can perceive an object
from different points of view, learn its different “appearances”,
i.e. improve their representation of the manipulated object.
In the early stages of their cognitive development, infants
mostly learn the visual properties of objects that are shown
by their caregivers. Once they become capable of controlling
their body and perform goal-directed actions, they learn to act
independently and to explore objects on their own. As children
grow, they gradually understand what actions can be associated
to objects and learn to predict the outcome of their actions on
the objects, i.e. to learn object affordances [2].

Many studies in humanoid robotics have been inspired by
such evolution of behaviors, where the quality of manipulation
relates to the knowledge about explored objects. For example,
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Fig. 1: The humanoid iCub and the experimental context.

in [3] the robot learns objects that are simply shown by
the caregiver, whereas in [4] it chooses actions which are
expected to reveal the most information about the objects in
the scene. In [5] the robot performs simple actions (grasping,
pushing, etc.) to learn the properties of objects (e.g. a ball and
a cylinder can roll). In general, coupling manipulation with
vision outperforms passive, vision-only object recognition [6].

The MACSi project1 continues in this line of research and
investigates a mechanism underlying the choice of “the next
action to perform to improve the knowledge of objects”. In [7],
the iCub recognized objects shown by a caregiver. We tested
the ability of the perceptual system to track and recognize the
object during simple manipulations, such as pushing.

Here, we limit the robot’s dependence on the caregiver,
by enabling the robot to choose whether to request for help
with interactive learning, based on curiosity and intrinsic
motivation [8]. More generally, the learner chooses actively
between several data collection strategies on a meta level. The
experimental scenario consists of a humanoid robot, minimally
assisted by a caregiver, manipulating multiple objects to learn
to recognize them better. In such a context, the choice of
an object (to explore) and the choice of the exploration
strategy (e.g. which manipulation to perform on the object that
represents a set of possible image generation rules) to adopt is
crucial. Intrinsic motivation and socially guided learning have
proved to be efficient exploration methods for autonomous
agents taking such decisions [9], [10].

In this paper, we address the problem of active object
recognition exploiting intrinsic motivation from a developmen-
tal perspective. We design a Cognitive Architecture for life-
long learning in natural environment, with multiple outcomes
to learn and with multiple strategies using Interactive Learning,
introduced in Section II. We first illustrate our problem in
Section III. We outline the perception, control and decision
making components of the Cognitive Architecture of the robot
in Section IV. We describe an object recognition experiment
with the humanoid robot iCub in Section V and show that
our Socially Guided Intrinsic Motivation with Active Choice of
Teacher and Strategy (SGIM-ACTS) algorithm can recognise
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efficiently several objects by focusing on the complex objects
in Section VI.

II. RELATED WORK

Recognising several objects belongs to the broader chal-
lenge learning mappings for various outcomes under time and
resources constraints in unstructured environments. In control
problems, outcomes are typically the end-effector positions
which have to be mapped with control policies. In a classi-
fication problem, outcomes are class objects which have to
be mapped with element features. Classical approaches to this
problem include Intrinsic Motivation, Imitation Learning and
in particular Interactive Learning.

A. Active Learning for Producing Varied Outcomes with Mul-
tiple Strategies

The learning agent has to decide in which order it should
focus on the different outcomes, how much time it can spend
on learning a specific outcome or which methods to adopt
for a given outcome, as a strategic student would do. These
questions can be formalised under the notion of strategic
learning [11] and have been addressed in several works.

One perspective is learning varied outcomes. It aims at
selecting which outcome to spend time on. A typical classifica-
tion was proposed in [12], [13] where active learning methods
improved the overall quality of the learning. In sequential
problems as in robotics, producing an outcome has been
modelled as a local predictive forward model [14], an option
[15], or a region in a parameterised goal/option space [16]. In
these works each sampling of an outcome entails a cost. The
learning agent has to decide which outcome to explore/observe
next.

Another perspective is learning how to learn, by making
explicit the choice and dependence of the learning performance
on the method. For instance, [17] selects among different
learning strategies depending on the results for different out-
comes. [18] implemented a control based on information gain
to classify categories of objects in a room. However these
studies focus only on the search of an action to perform, and
not on the object/outcome the action is performed on.

Here, we study how a learning agent can produce multiple
outcomes, and how it can learn for those various outcomes
which strategy to adopt simultaneously.

B. Interactive Learning

Imitation learning is an intuitive medium of communication
for humans, who already use demonstrations to teach other
humans. It thus offers a natural mean of teaching machines
that would be accessible to non experts. That is why several
works incorporate human input to a machine learning process,
such as in some examples of Programming by Demonstration
(PbD) [19] or learning by physical guidance [20], [21], where
the learner scarcely explores on its own. Prior works have
also given a human trainer control of a reinforcement learning
reward [22], [23], provided advice [24], or tele-operated the
agent during training [25].

Furthermore, an interactive learner which does not only
listen to the teacher, but actively requests for the information

it needs and when it needs help, has been shown to be a
fundamental aspect of social learning [26]. In the interactive
learning approach, the robot interacts with the user, combining
learning by self-exploration and social guidance. Several works
in interactive learning have considered extra reinforcement
signals [27], action requests [28], [29] or disambiguation
among actions [26]. Interactive systems for multiple outcomes
have also been presented in [27], [30].

On the one hand, adding autonomous exploration to so-
cially guided learning averts the case where learning depends
too much on the teacher, which is limited by ambiguous human
input or the correspondence problem and can quickly turn
out to be too time-consuming [10]. While self-exploration
fosters a broader outcome repertoire, exploration guided by a
human teacher tends to be more specialized, resulting in fewer
outcomes that are learnt faster. Combining both can thus bring
out a system that acquires a wide range of knowledge which is
necessary to scaffold future learning with a human teacher on
specifically needed outcomes, as proposed in [27], [21], [29].

On the other hand, adding socially guided learning to
autonomous exploration is beneficial on two different levels.
First, while a learner might explore an outcome space for
its own sake using intrinsic motivation mechanisms, social
guidance can introduce it to new outcomes it may not have
discovered otherwise. Then, given an outcome, social guidance
can introduce new means for achieving intrinsically motivated
activities by providing new examples. One might either search
in the neighborhood of the good example, or eliminate bad
examples from the search space. The structure of demonstra-
tions can also encourage exploration both in the action space
and the outcome space, in particular subspaces that are more
powerful for generalization as shown in [31].

Thus, interactive learning is an interesting example of
Strategic Learning, where the agent decides between au-
tonomous learning and socially guided learning, and uses both
strategies to bootstrap each other.

C. Intrinsic Motivation

Intrinsic motivation, a particular example of internal mech-
anism for guiding exploration, has recently drawn a lot of
attention, especially for open-ended cumulative learning of
skills in autonomous robots [32], [9]. The expression intrinsic
motivation, closely related to the concept of curiosity, was
first used in psychology to describe the spontaneous attraction
of humans toward different activities for the pleasure that
they experience intrinsically [33]. These mechanisms have
been shown crucial for humans to autonomously learn and
discover new capabilities [34]. This inspired the creation of
fully autonomous robots with meta-exploration mechanisms
monitoring the evolution of learning performances [35], [36],
[37], with heuristics defining the notion of interest used in
an active learning framework [38], [39]. We develop our
interactive system, where the learner decides whether to in-
teract with the teacher, and which exploration strategy to use,
based on intrinsic motivation, and in particular on measures of
competence progress.

Overall, it is critical for life-long learning to decide which
outcome to learn to achieve and which learning strategy to
adopt. Learning agents taking such decisions can fruitfully



profit of intrinsic motivation and socially guided learning.
Furthermore, the combination of both methods into Interac-
tive Learning algorithms has shown better accuracy and less
dependence on the human caregiver [40].

III. PROBLEM FORMALIZATION

In this section, we describe shortly our experiment, then
formalize the framework of classification with several data
sampling strategies which encapsulates our problem.

A. Description of the experiment

The robot learns to associate a camera view with an object
by episodes. At each episode, it has to decide which object
it wants to learn more, which manipulation to use as an
exploration strategy to manipulate the object. Once the object
has been manipulated, the robot acquires a new image of the
object, for which it computes its competence at recognising the
right object. This new data is used to improve the recognition
algorithm and learn to better distinguish between objects. In
this section, we focus, not on the classification algorithm
(which is described in section IV-B), but on the exploration
method: how the robot generates new images by deciding a
strategy of manipulation.

B. Mathematical Formalisation

Our agent learns a binary relation M between the space A
of camera views and the space B of the objects. We suppose
in this experiment that only one object is in the robot’s field
of vision at a time, and that M : A → B is a function. A
is the space of all possible rgb-d images. In our experimental
setting, A is of dimension 4 × 480 × 640. B is the set of
objects to be recognized, i.e. B = ∪All Objectsbi where bi is the
object i. The forward relation M is the true labelling of the
images. For an object b ∈ B, M−1({b}) is the set of all images
of the object b in its different positions and orientations. The
binary relation M is a priori very redundant as an infinity of
images correspond to the same object seen through different
angles, positions and distances. The learner estimates the true
labelling M with an estimation L. Let γL(a) be a measure
of competence at recognising the right object in image a with
the estimation L. Our goal is to recognize all objects, i.e. to
maximize with respect to L:

I =
∑
a

P (a)γL(a) (1)

where P (a) is a probability over A that a appears to the robot.
To learn to recognize different views of objects, the learner
must sample more images of each object. While classical active
learning methods choose images a ∈ A and then ask for their
objects b ∈ B, our method mainly explores the object space
B by choosing first an object, and generating images with 3
different strategies: it can push the object, lift and drop the
object, or it can ask a human to manipulate an object. These
different strategies σ have different costs κ(σ) that take into
account the time cost, energy cost, caregiver effort of each
strategy. In this study κ(σ) are set to arbitrary constant values.

To summarize, at each episode the robot has to decide
which object it wants to learn more, which manipulation to
use as a strategy to generate new sample data, and then to
learn to distinguish between objects.

Fig. 2: A functional description of the elementary modules of
the cognitive architecture.

Fig. 3: Time flow chart of SGIM-ACTS, which combines
Intrinsic Motivation and Social Guidance exploration strategies
into 2 layers: the strategy and object space exploration and the
state space exploration.

IV. METHODS

Designing complex experiments where humanoid robots
interact with caregivers, manipulate objects and take decision
in an autonomous way necessarily requires the edification of
the basic perceptual and motor primitives of the robot, the
choice of an informative representation of the robot state,
the correct interpretation of the human intent, etc. These
functionalities are implemented in several software modules,
which are integrated in the Cognitive Architecture (CA) of the
robot and executed concurrently on the robotic platform. In this
paper, our experiments are grounded on the MACSi Cognitive
Architecture [7]. The main feature of this CA is that it is
natively designed for learning experiments in a developmental
robotics context, where social guidance [41] is gradually super-
seded by autonomous behaviors driven by artificial curiosity
and motivation [42]. The CA is an integrated system which
orchestrates all the perceptive, motor and cognitive modules
(see Fig. 2).

A. Action

An action module controlling the robot exposes a set of
high level commands to the perceptive and cognitive modules.
It acts as intermediate controller for speech, emotion interfaces
and motor joints. Modules can send commands to the robot,
specifying the type of action and a variable list of parameters
(the object properties, e.g. name, location on the table, orien-
tation; the person involved in the action; the type of grasp; the



action timing, etc.). Actions can be simple (for example the
primitives grasp, touch, look, reach, lift, speak) but also more
complex (as taking an object, manipulating it and putting it on
a desired location, piling objects, etc.). Autonomous reflexes
are triggered by unpredictable events that could potentially
harm the robot or cause failures in the execution of a given
command. Primitives for basic HRI are reported in [43].

B. Scene perception

The perceptual system of the robot combines several sen-
sory sources. The primary source for object detection is a rgb-d
sensor placed over the area where object manipulation occurs.
The object recognition system is based on an incremental
online learning approach, which is bootstrapped without any
a priori knowledge about the visual scene or the objects [44].
Visual attention is focused on motion: proto-objects [45]
corresponding to regions of interest are identified in each
frame thanks to the depth image information, hence they are
tracked using KLT-tracking [46]. To suitably describe both
homogeneous and complex textured objects, SURF descriptors
and HSV colors models are used. Particularly, colors are
analyzed on the level of regularly segmented superpixels that
corresponds to regions of similar adjacent pixels [47]. Both
SURF and color descriptors are quantized into vocabularies
that build the basis of our visual system. In order to incorporate
geometry into the object model, the closest SURF points and
superpixels are grouped into pairs and triples based on their
distance in the visual space. The Bag of visual Words (BoW)
approach with incremental dictionaries is used to characterize
objects appearance through the occurrence of mid-level fea-
tures [48]. Mid-features are quantized into vocabularies and
used to encode an object appearance from different perspec-
tives called views. In order to learn an overall appearance of an
object (i.e. multiple views of the same object), we accumulate
the visual information from different viewing points into a
multi-view model. All recognized views are associated with
their objects while objects are tracked during manipulations
(the identity of the object is taught by the teacher). The
object recognition system is based on a voting method using
the TF-IDF (Term-Frequency - Inverse Document Frequency)
[49] and maximum likelihood approach. Each set of extracted
mid-features is labeled according to the maximum likelihood
of being one of already learned views. If the probability of
recognition is low, the view is stored as novel. Thus, the vision
system first uses a bottom-up approach to organize the views it
sees, then associates by supervised learning views and objects.

At each image a ∈ A seen, the iCub computes the
likelihood for each already known views, and returns the two
highest likelihood measures pm1, pm2, as well as the objects
bm1, bm2 of the objects associated with the views, and the
number nm1, nm2 of known views for each of the objects.
As through social interaction, the caregiver teaches to the
iCub the object bg of the object he is manipulating, the robot
can estimate its competence at distinguishing bg from other
objects, with the dissimilarity of likelihood measures between
the 1st object associated and the 2nd object associated, and by
estimating its gain of information about the object by collecting
new views. The competence at recognising object bg in image

a is thus defined as

γ(b, a) =nm1 × pm1 + c1 if bg = bm1 = bm2

nm1 × pm1/(1 + pm2) + c1 if bg = bm1, bg 6= bm2

nm2 × pm2/(1 + pm1) + c1 if bg 6= bm1, bg = bm2

c1 if bg 6= b1, bg 6= bm2

where c1 is a constant, set to -1 in our experiment.

C. Decision making

Several planning modules constitute the decision-making
process: a combination of social guidance, shared plans negoti-
ation, artificial curiosity and autonomous behaviors are entailed
at this level. At this stage, the choice and interconnection
of these agents is hard-coded, and basically dependent on
the experiment to perform. Differently from [7], where social
guidance was restricted to the mere execution of commands
received from the caregiver, in this paper the robot takes
its decisions autonomously based on intrinsic motivation and
curiosity. Being the novel contribution of this paper to the CA,
we hereinafter describe in detail the Socially Guided Intrinsic
Motivation with Active Choice of Teacher and Strategy (SGIM-
ACTS) algorithm. Our learner improves its estimation L of M
to maximize I =

∑
a P (a)γ(a) both by self-exploring A and

B spaces. It generates new perception samples by manipulating
the objects and by asking for help to a caregiver, who hands
the objects to the robot. When an object is placed on the table,
a rgb-d image a ∈ A is retrieved at each step. SGIM-ACTS
learns by episodes during which it actively chooses both an
object b ∈ B to learn to recognize and a learning strategy σ
between: pushing the object, taking and dropping the object or
asking the caregiver to manipulate the object. For each object b
it has decided to explore, it also decides the strategy σ which
maximizes its competence progress or interest, defined as
the local competence progress, over a sliding time window
of δ for an object b with strategy σ at cost κ(σ). If the
competence measured for object b with strategy σ constitute
the list R(b, σ) = {γ1, ...γN}:

interest(b, σ) =
1

κ(σ)

∣∣∣∣∣∣
 N− δ

2∑
j=N−δ

γj

−
 N∑
j=N− δ

2

γj

∣∣∣∣∣∣
δ

(2)

This strategy enables the learner to generate new samples
a in subspaces of A. The SGIM-ACTS learner explores
preferentially objects where it makes progress the fastest. It
samples views from the object to improve its vision system,
re-using and optimizing the recognition algorithm built through
its different exploration strategies.

This behavioral description of SGIM-ACTS is completed
in the next section by the description of its architecture.

D. SGIM-ACTS Architecture

SGIM-ACTS is an algorithm based on interactive learning
and intrinsic motivation. It learns to recognise different objects
by actively choosing which object b ∈ B to focus on, and
which learning strategy σ to adopt to learn local inverse and
forward models. Its architecture is separated into two levels as
described in Alg. IV.1:



Algorithm IV.1 SGIM-ACTS
Input: s1, s2, ... : available strategies with cost κi.
Initialization: R← singleton {B}.
Initialization: Memo← empty episodic memory.
loop
σi, bg ← Select Label and Strategy(R)
repeat

if σi is a Social Guidance learning strategy then
(ar, br, bg)← Interact with caregiver with strategy σi.

else if σi is an Auton. Exploration learning strategy then
(ar, br, bg)← Perform action with strategy σi.

end if
Update L and L−1 with (ar, br).
γ ← Competence for bg

until end of trials for the same object
R← Update Goal Interest Mapping(R,Memo, bg , γ)

end loop

Algorithm IV.2 [R] = GoalInterestMapping(R,Memo, b, γ)
input: bi: set of labels and corresponding interest(b, σ) for each strategy
σ.
input: δ : a time window used to compute the interest.
Add γ to R(b, σ), the list of competence measures for b ∈ B with strategy
σ.
Compute the new value of competence progress of b:

interest(b, σ) = 1
κ(σ)

∣∣∣∣∣∣∣∣∣


N− δ

2∑
j=N−δ

γj

−


N∑

j=N− δ
2

γj


∣∣∣∣∣∣∣∣∣

δ

return R the set of all R(b, σ)

Algorithm IV.3 [σ, bg] = SelectLabelAndStrategy(R )
input: R: set of regions Rn and corresponding interestRn (σ) for each
strategy σ.
parameters: 0 ≤ p1 ≤ : probability for random mode.
p← random value between 0 and 1.
if p < p1 then

Ensure a minimum of exploration, i.e. :
Choose σ and bg ∈ B randomly

else
Focus on areas of highest competence progress, i.e. :
∀(σ, n), Pn(σ)←

interestRn (σ)−min(interestRi )∑|Rn|
i=1 interestRi (σ)−min(interestRi )

(b, σ)← argmaxn,σPn(σ)
end if
return (b, σ)

• A Strategy and Label Space Exploration level which
decides actively which object bg to set as a goal, which
strategy σ to adopt, and which object to manipulate
(Select Label and Strategy). To motivate its choice, it
maps B in terms of interest level for each strategy
(Goal Interest Mapping) as detailed in Alg. IV.2.

• A State Space Exploration level that explores A,
according to the object bg and strategy σ chosen
by the Strategy and Label Space Exploration level.
With each chosen strategy, different samples (ar, br)
are generated to minimise γ, while improving its
estimation of M(ar) which it can use later on to reach
other goals. It finally returns the competence measure
γ(bg) to the Strategy and Label Space Exploration
level.

V. EXPERIMENTAL SCENARIO

A. Experimental Platform

Experiments are carried out with iCub, a 53 DOF full-body
humanoid robot [50]. The whole upper-body has been used

in our experiments: head, torso, arms and hands, for a total
of 41 DOF. Thanks to proximal force sensing, the main joints
(arms, torso) are compliant [51]. All software modules used in
the experiments of Section VI belong to the MACSi software
architecture [7].

B. Experimental Protocol

An experiment consists of a sequence of interactions with
an object. The robot can decide to perform the actions au-
tonomously or to ask the caregiver. Precisely, the curiosity
system chooses an object to manipulate and a strategy among
the following:

• push the object
• take the object, lift it, and let it fall on the table
• ask the human to manipulate a specified object

In an experiment, the human first presents and labels each of
the objects one by one and lets the iCub manipulate them. At
any time, the robot can ask the caregiver to switch to a specific
object. It thus knows which object b it is manipulating. During
the execution of the action, the vision processing system is
inactive. When the action is completed, and the object is
generally immobile on the table (notably, in a different pose),
the vision system is triggered. After each manipulation, the
robot tests which object it associates with the new object
image, computes a confidence measure on its capability to
recognize the object, and sends the evaluation results to the
curiosity system, before gathering new knowledge about the
object and updating its recognition model L with the known
object b. Depending on the progress, the curiosity system
decides the next action to trigger. The objects used in the
experiments are shown in Fig. 4: remarkably, some objects
are more “challenging” to recognize because their appearance
is different depending on their side (generally their color, but
also their size - in the case of cubes and bear):

• a gray dog-shaped stuffed toy. Its color and shape are
quite different from the others, and it is therefore easy
to recognize it.

• a purple and blue colored ball. The colors and shape
are quite different from the other objects, so it is quite
easy to distinguish. However, because the two sides
of the ball are of different colors, more samples are
required to associate the different views to the ball.

• a red teddy bear. Its color and shape are quite easy
to recognize, but it can be confused with the cubes
which also have red parts.

• a yellow car. This toy offers numerous views depend-
ing on its orientation and position on the table. We
expect such a toy to arouse the interest of an agent
because of its rich “perceptive affordance”. Moreover,
the toy has the same color as parts of the cubes, and
almost the same shape as some views of the cubes
(when a lateral view shows only the yellow cubes).
Thus its classification may be difficult.

• a patchwork of yellow-red-green cubes. This toy also
offers numerous views depending on its orientation
and position. This object is the most tricky to recog-
nize as it can be confused with both the car and the
teddy bear.



C. Evaluation of the Learning process

To evaluate the efficiency of our algorithm, we compare
our SGIM-ACTS with the random algorithm where the agent
would choose at each episode a random object and a random
strategy. To evaluate the efficiency of each algorithm, we
freeze the learning process after each episode and evaluate
the classification accuracy on an image database, made up of
64 images of each object in different positions and orientations
built independently from the learning process (see Fig. 5 for
a sample).

Fig. 4: The objects used during the experiments: some colored
cubes, a yellow car, a grey dog, a violet/blue ball, a red bear.
Left and right images respectively show the front/rear sides of
the objects.

Fig. 5: A portion of the database of objects views used for
evaluating the recognition performance: precisely, the images
related to the cubes.

VI. EXPERIMENTAL RESULTS

We conducted the experiments with each of the algorithms
(SGIM-ACTS and random) under two conditions: with an
unbiased teacher who shows objects to the learner under
different angles; and with a biased teacher who always shows
the same view of each object. We plot results for each case
of exploration, strategy and teacher, detailing the learning per-
formance separated by object. We plot the f-measure (i.e. the
harmonic mean of precision and recall [52]) and the number
of images correctly recognized in the evaluation database.

As shown in Fig. 6 the progress in recognition is better with
SGIM-ACTS than with random exploration, for both teachers.
At the end of the experiments, the SGIM-ACTS learner is able
to correctly recognize the objects in 57 over 64 images, against
50 in the case of the random learner.

Fig. 7 plots how well the system can distinguish objects,
and which objects it maniplulates for example experiments
under different conditions. We can see in Fig. 7a and 7b
that the random learner often switches objects, and explores
equally all objects, while the SGIM-ACTS learner focuses on
objects for longer periods of time. We note that SGIM-ACTS

Fig. 6: SGIM-ACTS vs Random: recognition performance, i.e.
the number of images of the evaluation database correctly
recognized by the two exploration strategies with two different
behaviors of the teacher (see text).

manipulates more the cubes, especially when its competence
progress increases. Indeed, as stated above, the cube is the most
complex of objects because it offers very different views due
to its various colors, but also because it can easily be confused
with other objects that bear the same colors. Manipulating
it brings every time more information about the object since
their appearance changes substantially depending on the action
(a frontal view consists of four cubes, while a lateral view
consists of two cubes only, and depending on the side it could
be yellow or red/green), and improves its discrimination from
other objects. The iCub has spent 54% and 51% of its time
learning about cubes with SGIM-ACTS for both teachers. The
system thus allocates more time for the difficulties.

Overall, the iCub focuses its attention on complex objects,
asking human intervention or manipulating autonomously to
improve its recognition capability. Fig. 7d clearly illustrates
this mechanism: the red bear (cyan line) is easily recognized,
hence the robot does not ask again to interact with the object
once it is learnt; conversely, the cubes (green line) are difficult
to recognize, hence the robot focuses more on them.

Conversely, as shown in Fig. 7b, in the “random” case
the robot does not focus on any particular object. Hence, the
recognition performance at the end of the experiment is worse,
because the “difficult” objects (such as the cubes - green line)
are not sufficiently explored. Furthermore, the SGIM-ACTS
algorithm is robust to the quality of the teaching, for the
recognition performance is high in both cases. Whether the
teacher helps by showing new views of objects and bringing
new information, the learner improves its discrimination of
objects. This is to contrast with the case of the random
algorithm which is dependent on the teacher. We can see that
the f-measures of Fig. 7a are lower than in Fig. 7b. SGIM-
ACTS is able to recognise how profitable a teacher can be,
and choose to take advantage of him or not. It is able to use
the human to perform actions on objects and generate datasets
that it can not perform by itself.



(a) SGIM-ACTS with unbiased teacher (b) SGIM-ACTS with biased teacher

(c) Random exploration with unbiased teacher (d) Random exploration with biased teacher

Fig. 7: f-measure on the evaluation database, with respect to time. The bottom part of the plot shows the manipulated object at
each timestep.

In conclusion, on the long-term SGIM-ACTS strategy
yields better performances, because it facilitates learning all
objects dedicating more time and efforts to the complicated
objects.

A. Video and code

The software for the architecture and the experiments is
available under GPL license at http://macsi.isir.upmc.fr. A
video demonstrating the experiments of the paper is available
at https://www.youtube.com/iCubParis.

VII. CONCLUSIONS

In this paper we described a method to choose actively data
collection strategy in order to learn fast how to recognize ob-
ject, which exploits curiosity to guide exploration and manipu-
lation, such that the robot can improve its knowledge of objects
in an autonomous and efficient way. The autonomous behavior
driven by intrinsic motivation has been fruitfully integrated in
the MACSi Cognitive Architecture. Experimental results show
the effectiveness of our approach: the humanoid iCub is now
capable of deciding autonomously which actions must be per-
formed on objects in order to improve its knowledge, requiring

a minimal assistance from its caregiver. This work constitutes
the base for forthcoming research in autonomous learning of
affordances. The next step in the evolution of the cognitive
architecture will be to integrate in the current framework a
high-level representation of actions, objects, features, effects,
so that the robot can gradually make progress by trying to
discover relationships among these elements, setting the base
for affordance learning.
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