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ABSTRACT
Learning in robotics typically involves choosing a simple goal
(e.g. walking) and assessing the performance of each con-
troller with regard to this task (e.g. walking speed). How-
ever, learning advanced, input-driven controllers (e.g. walk-
ing in each direction) requires testing each controller on a
large sample of the possible input signals. This costly pro-
cess makes difficult to learn useful low-level controllers in
robotics.

Here we introduce BR-Evolution, a new evolutionary learn-
ing technique that generates a behavioral repertoire by tak-
ing advantage of the candidate solutions that are usually
discarded. Instead of evolving a single, general controller,
BR-evolution thus evolves a collection of simple controllers,
one for each variant of the target behavior; to distinguish
similar controllers, it uses a performance objective that al-
lows it to produce a collection of diverse but high-performing
behaviors. We evaluated this new technique by evolving gait
controllers for a simulated hexapod robot. Results show that
a single run of the EA quickly finds a collection of controllers
that allows the robot to reach each point of the reachable
space. Overall, BR-Evolution opens a new kind of learning
algorithm that simultaneously optimizes all the achievable
behaviors of a robot.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.2.9 [Computing Methodologies]: Artificial
Intelligence—Robotics

General Terms
Algorithms

Keywords
Evolutionary Algorithm, Evolutionary Robotics, Mobile
Robotics, Behavior, Exploration, Novelty Search
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1. INTRODUCTION
Learning is one of the keys to make autonomous robots

able to cope with unforeseen situations, whether on a re-
mote planet or, more prosaically, in a house. In particu-
lar, learning low-level sensorimotor behaviors is essential to
allow robots to pursue their mission in all situations, for
instance after mechanical damage [3]. This learning is typ-
ically tackled with policy gradient methods [11, 14, 24] or
evolutionary search [9, 13, 20, 4, 15], because these algo-
rithms are well suited for reinforcement learning in continu-
ous space.

The authors of these algorithms show that new behaviors
can be learned in 20 minutes [24] to dozens of hours [9],
depending on the openness of the search space and the tech-
nique used. However, in most of these studies, they consid-
ered controllers that are learned for a single instance of the
studied behavior. For example, when investigating walking
controllers, they often designed their algorithm to make the
robot walk on a straight line and at the fastest possible speed.

This problem is much simpler than the general problem
of low-level controller learning: learning a general controller
that can accept commands issued by a higher-level system
(e.g. a planning algorithm). This problem is typically ad-
dressed by testing controllers with several different inputs
and averaging the rewards for all the tested scenarios (e.g.
[13, 20]). For instance, Mouret et al. [20] used an evolu-
tionary algorithm to design a neural network that pilots a
simulated flapping robot; they tested the ability of the neu-
ral network to drive the robot to 8 different targets and the
fitness function was essentially the sum of the distances to
the targets.

Unfortunately, this approach is very costly. First, it tests
each candidate solution in each scenario, thus increasing the
learning time by at least an order of magnitude. Second,
learning a general controller is much more challenging than
learning a specialized one. This challenge may even be out-
of-reach for many robotics applications because it requires
more advanced algorithms – which may not yet exist – and
long learning times – which may be unfeasible with a robot.

An alternative is to learn a repertoire of simple controllers
instead of a single, general controller. This method avoids
the challenge of learning a complex controller; however, it
typically involves as many learning processes as there are be-
haviors in the repertoire. When evolving a gait controller,
this means launching the evolutionary algorithm for each
possible target point, hence slowing down learning by a fac-
tor equal to the number of targets.

In the present paper, we introduce a new technique, named



Behavioral Repertoire Evolution (BR-Evolution), that allows
a robot to learn a whole repertoire of simple controllers with
a single run of an evolutionary algorithm. The proposed al-
gorithm is substantially faster than the previously described
approaches and it can be applied to any genotype (neural
networks, programs, parameters, ...) as well as most control
tasks.

Our technique is based on a simple observation: candi-
date solutions that are discarded because they have a low
fitness score could often have been used in the controller col-
lection. In the walking robot example, controllers that make
the robot move along a straight line are often explicitly re-
warded. However, controllers that make a robot turn right
are actually equally interesting – but they correspond to a
different behavior in the behavioral repertoire of the robot.
Since these controllers are discarded or badly rewarded, they
are “wasted”.

Our main insight is that these wasted controllers can be
exploited to evolve a behavioral repertoire. Nonetheless,
while interesting, the controllers that lead to different behav-
iors are not all equal. Some of them are more “degenerated”
than others. To select the best variants, we take inspira-
tion from the recently introduced “novelty search with local
competition”[17] that looks for a set of different “species”
that covers the morphological space while applying an intra-
species selective pressure. We evaluate our algorithm by
evolving a behavioral repertoire for a simulated, hexapod
robot that must be able to go forward, backward and turn
in both directions. We compare results to the separate evo-
lution of each behavior of the repertoire.

2. BACKGROUND

2.1 Learning Low Level Controllers
A low level controller (LLC) is the element that drives

the agent by sending commands to the motors. We separate
LLCs in two categories: inputs-driven LLCs and un-driven
LLCs. For instance, an un-driven LLC can command a
primitive action [22] like “stand up”, “step”, “turn right”,
“turn left” and so on. An inputs-driven LLC can execute
several primitive actions or parametrized actions like “turn
30 degrees right”, “step 10 meters forward”, according to the
received inputs. These LLCs are typically combined with
high-level controllers [22], which control the global behav-
ior of the agent using various decision and planning algo-
rithms [5, 6].

The majority of studies dealing with LLC learning pro-
poses methods for un-driven LLCs. This generates limited
behavioral repertoires because the agent is only able to do
one thing, for example straightforward walking. The meth-
ods usually employed are policy gradient methods [11, 14,
24] or evolutionary algorithms [9, 13, 20, 4, 15], which op-
timize the controller’s performances according to a desired
action. They were successfully applied to several domains,
from snake crawling [18] to bipedal walking [24].

Comparatively few works deal with inputs-driven LLCs,
for example the work from Mouret et al [20], previously men-
tioned, or the one from Kodjabachian [13] on the control of
an hexapod robot with a neural network. These methods
lead to larger behavioral repertoires, but they are still lim-
ited by the learning method: they require to test the con-
trollers on each situation [20] or to use an incremental evo-

lution process [13]. All of this significantly increases both
the learning time and the difficulty of the learning problem.

2.2 Many Un-Driven LLCs
One alternative to learning inputs-driven LLCs is to con-

sider a collection of un-driven LLCs. Thus, a high level
algorithm will select the right controller according to the de-
sired action instead of sending the appropriate instruction
to an inputs-driven LLC

In biology, some clues tend to show that the brain works
with these two principles in different areas. For example, the
Superior Colliculus controls the coordination of eye, head
and arm movements during reaching at a single visual tar-
get [2]. This complex controller is able to reach visual targets
for every head and targets positions. Conversely, it has been
shown [8] that primates use different regions of their Cortex
for different primitive actions: the excitation of different ar-
eas of a monkey’s brain makes the animal execute different
primitive actions, like grasping or hand-mouth interactions.
The set of all these regions can be seen as a collection of
un-driven LLCs.

Using a collection of controllers can be unnecessarily com-
plex. For instance, in order to change the amplitude of
a movement, it can be easier to change the reference in-
stead of learning another controller. But, in certain cases,
a collection of simple and specialized solutions can be more
efficient. For instance, in supervised learning, boosting and
experts mixtures techniques are based on this principle. In-
deed, experts mixtures [10] train several primitive experts,
each on a different problem, instead of training a complex
expert dealing with every situations.

The simplicity and efficiency of controller collections and
their possibility to merge LLCs of different types of actions–
for example moving controllers with grasping controllers–
give us the intuition that it is a promising way to endow a
large behavioral repertoire to an agent.

2.3 Novelty Search With Local Competition
A long-standing challenge of artificial life is to craft an

evolutionary process that discovers a wide diversity of in-
teresting artificial creatures. While evolutionary algorithms
are good candidates for this process, they usually converge
to a single species of creatures. To overcome this issue,
Lehman and Stanley recently proposed a new process that
compares creatures’ performances between those with sim-
ilar morphologies [17]. This process, called novelty search
with local competition, relies on a multi-objective evolution-
ary algorithm to combine novelty search [16] with perfor-
mance competitions between similar individuals.

In this variant of novelty search, two objectives are simul-
taneously optimized: (1) the novelty objective (novelty(i)),
which corresponds to the original novelty search algorithm
[16], and (2) the local competition objective (local obj(i)),
which compares the performances of each individual (perf(i))
to those that share its local niche. This second objective is
defined as the number of individuals in the local niche that i
outperforms according to the performance criterion perf(i).
The evolutionary algorithm thus favors individuals that are
new, those that are higher-performing than their neighbors
and those that are optimal trade-offs between novelty and
“local performance”.

Novelty search with local competition was successfully ap-
plied to an experiment consisting in evolving morphologies



and controllers for virtual, walking creatures. Novelty search
fosters the population to explore new types of morpholo-
gies while the local competition rewards creatures that walk
faster than morphologically similar creatures. In this case
the local competition is useful, because comparing slow be-
haviors of massive creatures with fast gaits of little ones,
could be nonsensical for many applications.

The local competition aims at generating a multitude of
functional morphologies. This is a kind of morphological
repertoire, where several types of creatures execute the same
action. This is the opposite of our goal, as we want to get one
type of creature executing a multitude of actions; but this
algorithm represents a good starting point for our method.

3. BR-EVOLUTION
Collections of un-driven LLCs seem to be a promising

way to endow a high behavioral repertoire to an agent. But
how can the agent learn all these LLCs?

A learning algorithm could be launched for each un-driven
LLC. If a collection contains 100 actions, the same number
of learning processes needs to be executed and the learning
time will be multiplied by the same factor. This relation
between the number of executions and the learning time
makes this method very time-consuming.

Another possibility consists in using multi-objectives op-
timization algorithms, where each objective corresponds to
a desired action. This technique is able to simultaneously
learn several controllers. Nevertheless, it has been proved [12]
that these algorithms can only deal with 3 or 4 objectives.
With more objectives they are equivalent to random search.
A collection of controllers with only 3 or 4 actions does not
represent a large behavioral repertoire.

Here we propose a new approach, called BR-Evolution,
to simultaneously learn a large number of un-driven LLCs.
This method is based on the novelty search with local com-
petition [17], but with a completely different goal from the
initial use of this algorithm.

The BR-Evolution uses the novelty objective, not to evolve
morphologies, but in order to explore the space of possible
actions. A controller is considered new when its behavioral
result is different from results obtained with previous con-
trollers. This objective allows the BR-Evolution to do the
exploration without the discrimination of a fitness function.

The use of the local competition is slightly different from
the original implementation. In the original algorithm, it is
used to optimize primary objective of the individual, while
in the BR-Evolution, it serves to promote a secondary ob-
jective among the controllers generating the same action (in
the local niche), for example the controller with the best
stability among controllers moving 50 cm forward.

A difference with the local competition algorithm is how
the archive is used. Originally, it only serves to log all en-
countered individuals during the evolutionary process and
their behaviors. Thanks to it, the algorithm can compute
the novelty of an individual compared to what has been
seen before. Nevertheless with the initial novelty search,
only the first encountered individual will be added in the
archive. Next individuals executing the same action will not
be saved, even if they are more efficient according to an-
other criterion. This leads to an archive figuring all kind of
achieved actions but not the best action for each kind.

In the BR-Evolution approach, the archive, in addition to
logging encountered solutions, constitutes directly the col-

Figure 1: (Left) Snapshot of the simulated robot in
our ODE-based physics simulator. The robot lies
on a horizontal plane and contacts are simulated.
(Right) Kinematic scheme of the robot. The cylin-
ders represent actuated pivot joints.

lection of controllers and thus the results of the algorithm.
Thereby it should constantly contain the best controller for
each kind of explored actions. The comparisons between
individuals are made according to the local competition cri-
terion.

During the evolutionary process, if an individual of the
population is better than the most similar individual in
the archive, the two individuals are swapped. This change
does not affect the novelty search since individuals from the
archive are only replaced by similar ones. At the end of
the evolutionary process, the archive contains all the best
encountered individuals in all the explored search space.

To summarize, BR-Evolution approach relies on three prin-
ciples:

• Two objectives are optimized simultaneously:

maximize

{
Behavioral Novelty(i)
Local Performance(i)

• Each individual with a new behavior is saved in the
archive;

• When an individual performs better than its equivalent
in the archive, they are swapped.

The pseudo-code of the algorithm is presented in Algo-
rithm 1. Our algorithm is based on the same variant of
NSGA-II [7] (a Pareto-based multi-objective evolutionary
algorithm) as the original implementation of the local com-
petition [17]: instead of using the mechanism that encour-
ages the diversity along each pareto front (crowding factor),
we use a mechanism which encourages genotypic diversity.

4. EXPERIMENTS

4.1 Evaluated Scenario
We evaluate our approach on a simulated hexapod robot

(figure 1) with a learning gait task. The aim of this experi-
ment is to obtain a collection of un-driven LLCs that allows
the robot to reach every point in its vicinity. The position
reached after running the controller during 3 seconds is con-
sidered as the endpoint of the trajectory. The controllers are
based on sinusoids. They are described with 24 parameters,
each of them having five possible values (Appendix B).

For this experiment, the novelty objective drives the popu-
lation to explore new reachable endpoints. Its value (Novelty(i),
see equation 1) is set as the average distance between the



endpoint of the current controller (Ei) and the endpoints
contained in neigh(i):

Novelty(i) =
∑

j∈neigh(i) ‖Ei−Ej‖
|neigh(i)| (1)

Where neigh(i) is the set of the 15 individuals j ∈ (popcontroller∪
archive) whose endpoints are the nearest from Ei (according
to an Euclidean distance).

To get high novelty values, individuals have to follow tra-
jectories leading to endpoints far from the rest of the popula-
tion. The population will thus explore all the area reachable
to the robot. Each time a new area is explored, a controller
able to access to it will be saved in the archive.

However, in order to sequentially execute saved behaviors,
a special attention is paid to the final orientation of the
robot. Indeed, as the endpoint of a trajectory depends on
the initial orientation of the robot, we need to know how the
robot ends its previous movement when we plan the next
one. Instead of keeping this degree of freedom, we decided
to encourage behaviors that end their movements with an
orientation aligned with their trajectory. This facilitates the
chaining of controllers.

As the type of controllers used with the robot is only com-
posed of periodic signals (see Appendix B), the robot can-
not execute arbitrary trajectories. For example, beginning
its movement by a turn and then go straight is impossible.
If we want the robot to move in different directions, its tra-
jectories would be necessary circular.

We consequently constrain the desired robot’s trajectories
to portions of circles centered on the lateral axis, with a vari-
able radius (see figure 2A). Forward (or backward) straight
trajectories are still possible with the particular case of an in-
finite radius. This kind of trajectories is suitable for motion
control as some complex trajectories could be decomposed
in a succession of these circle portions.

To encourage the population to follow these trajectories,
the local competition objective is set as the angular differ-
ence between the arrival orientation and the tangent of cir-
cular trajectory that corresponds to the endpoint (perf(i) =
|θ(i)|, see figure 2B and equation 2 ).

Local(i) = |{X1, X2, ..., Xj , ...}|
with
Xj ∈ neigh(i), perf(Xj) < perf(i)
perf(i) = |θ(i)| = |α(i)− β(i)|

(2)

We launched 40 runs of the experiment, the parameters
and source code of which are in appendix A. With this
experiment, we want to show how the robot is able to au-
tonomously :

• discover possible movements;

• cover a high proportion of the reachable space;

• generate a behavioral repertoire.

4.2 Control Experiments
To our knowledge, no work directly tackles the question

of learning simultaneously all the behaviors of a controller
collection, thus we cannot compare our approach with an
existing method. We implemented a straightforward method
where the desired endpoints are preselected. A controller
will be optimized to reach each wanted point.
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Figure 2: (A) Examples of trajectories following a
circle centered on the lateral axis with several radii.
(B) Definition of the desired orientation. θ repre-
sents the orientation error between α, the final ori-
entation of the robot, and β, the tangent of the de-
sired trajectory. These angles are defined according
to the actual endpoint of the individual, not the de-
sired one. (C) Reachable area of the robot viewed
from top. A region of interest (ROI) is defined to
facilitate post-hoc analysis (gray zone). Its bound-
aries are defined by two lines at 60 degrees on each
side of the robot. The curved frontier regroups all
reachable points with a curvi-linear abscissa lower
than 0.6 meters. All of these values were set thanks
to experimental observations of commonly reachable
points. Dots correspond to targets selected for the
control experiments.

We define 100 target points, spread thanks to a K-means
algorithm [23] over the defined ROI of the reachable area
(see figure 2C). We then execute several multi-objective evo-
lutionary algorithms (NSGA-II [7]), one for each reference
point. At the end of each execution of the algorithm, the
nearest individual to the target point in the Pareto-front is
saved in an archive. This experiment is called “nearest” vari-
ant. We also save the controller with the best orientation
within a radius of 10 cm around the target point and we
call this variant “orientation”. The objectives used for the
optimization are:

minimize

{
Distance(i) = ‖Ei − EReference‖
Orientation(i) = |α(i)− β(i)|

We launched 40 runs of both variants, the parameters and
source code of which are in appendix A. Each algorithm is
programmed in the Sferesv2 framework [19].

4.3 Results
Resulting behavioral repertoires from a typical run of BR-

Evolution and the control experiments are pictured on fig-
ures 3 and 6. The reachable space, for every experiment, is
sampled, both in front and in rear. However, for the same
number of evaluations, the area is less covered with the con-
trol experiments than with the BR-Evolution. With only
100 000 evaluations, it is about twice larger with the BR-
Evolution than with both control experiments. At the end
of the evolution (1 000 000 evaluations), the reachable space
is more dense with our approach. With the “nearest” variant
of the control experiment, all target points are reached (see
figure 2C), this is not the case for the “orientation” variant.

The orientation error is qualitatively more important in
the “nearest” control experiment during all the evolution
than with the other experiments. This error is important



Algorithm 1 BR-Evolution algorithm ( G generations)

popcontroller ← {c1, c2, . . . , cScontroller} (randomly generated)
archive← ∅

for each generations do
Execution of each controller in simulation

for each individual i ∈ popcontroller do
neigh(i) ← The 15 individuals ∈ (popcontroller ∪ archive) similar to i

Computation of the novelty objective: Novelty(i) =
∑

j∈neigh(i) ‖Ei−Ej‖
|neigh(i)|

Computation of the local competition objectives: Local(i) = card(j ∈ neigh(i), perf(j) > perf(i))
if Novelty(i) > ρ then

Add the individual in the archive
end if
if perf(i) > than the nearest individual in the archive then

Swap individual i with the nearest individual in the archive
end if

end for
Iteration of MOEA on popcontroller

end for
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Figure 3: Typical results of the BR-Evolution (A,D) and the control experiments (B,E and C,F). A,B,C
show the results after 100 000 evaluations, while D,E,F show those after 1 000 000 evaluations. Each dot
corresponds to the endpoint of a controller. Colored solid lines represent the final orientation of the robot
for each controller, while black dashed lines represent the desired orientation. The orientation error is the
angle between solid and dashed lines.
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Figure 4: (Top) Variation of the sparseness of the
controller collection. For each point of a one cen-
timeter grid inside the ROI (figure 2), the distance
from the nearest controller is computed. The sparse-
ness value is the median of these distances. This
graph plots the first three quartiles of the sparseness
computed with 40 runs of the algorithms. (Bottom)
Variation of the median of the orientation error over
all the controllers inside the reachable area. This
graph also plots the three first quartiles computed
with 40 runs of the algorithms.

at the beginning of the “orientation” variant too, but, at the
end, the error is negligible for the majority of controllers.

The BR-Evolution consistently leads to very small ori-
entation errors (Figures 3 and 6); only few points have a
significant error. We find these points in two regions, far
from the starting point and directly on its side. These re-
gions are characterized by their difficulty to be accessed,
which stems from two main causes: the large distance to
the starting point or the complexity of the required trajec-
tory, which could be not feasible with the employed con-
troller (Appendix B). For example the close lateral regions
require executing a trajectory with a very high curvature,
which can not be executed with the possible parameters of
the controller. Moreover, the behaviors obtained in these
regions are most of the time degenerated. Since accessing
these points is difficult, finding better solutions is difficult
for the evolutionary algorithm. We also observe a correla-
tion between the density of controllers, the orientation error
and the regions difficult to access (figure 6): The more a
region is difficult to access, the less we find controllers and
the less these controllers have a good orientation. For the
others regions, the algorithm produces behaviors with vari-
ous lengths and curvatures, covering all the reachable area
of the robot.

In order to get a statistical point of view, we studied the
median, over the 40 runs, of the sparseness of controllers in-
side the ROI (figure 4, Top). The BR-Evolution reaches low
sparseness value with few evaluations. After 100 000 evalua-
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Figure 5: (Left) Sparseness ability of the control ex-
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more points, the sparseness value will be better
(lower). (Right) Extrapolations of the variation of
the sparseness for the “nearest” variant of the con-
trol experiment according to different number of
targets. Each blue line is an extrapolation of the
variation of the sparseness of the “nearest variant”.
They are based on a number of points starting from
50 to 400 with 50 points step. The variation of BR-
Evolution is also plotted in red of comparison.

tions, it is able to generate behaviors covering the reachable
space with an interval distance of about 3 cm. At the end
of the process, the sparseness value is near 2 cm. With
other experiments, the variation is slower and reaches a sig-
nificantly higher level of sparseness (p-values = 1.4× 10−14

with Wilcoxon rank-sum tests). The “orientation” variant of
the control experiment presents the worst sparseness value
(> 4cm). This result is expected because this variant favors
behaviors with a good orientation even if they are far from
their reference point. This phenomenon leads to a sample
of the space less evenly distributed. The “nearest” variant
achieves every target points, thus the sparseness value is
better than with the “orientation” variant (3 cm vs 4cm, at
the end of the experiment).

From the orientation point of view, our approach needs
few evaluations to reach a low error value (< 5 degrees af-
ter 100 000 evaluations and < 1.7 degrees at the end). The
variation of the “orientation” control experiment is slower
and needs 750 000 evaluations to cross the curve of the BR-
Evolution. At the end of the experiment this variant reaches
a significantly lower error level (p-values = 3.0× 10−7 with
Wilcoxon rank-sum tests), but this corresponds to a differ-
ence of the medians of only 0.5 degrees. The “nearest” vari-
ant suffers from significantly higher orientation error (> 15
degrees, p-values = 1.4 × 10−14 with Wilcoxon rank-sum
tests). This is expected because this variant selects behav-
iors taking into account only the distance from the target
point. With this selection, the orientation aspect is ne-
glected.

With the sets of reference points, we can compute the
theoretical minimal sparseness value of the control experi-
ments (figure 5, Left). For example, changing the number
of targets from 100 to 200 will change the sparseness value
from 3.14 cm to 2.22 cm. Nonetheless, doubling the number
of points will double the required evaluations. Thanks to
these values we can extrapolate the variation of the sparse-
ness according to the number of points. For example, with
the previously given values, we can predict that the graph



will reaches the 2.22 value and then scale the variation to fit
this estimation. But we also know that this variation will
be twice longer, then we also scale the temporal axis. Then
we can trace the estimated variation of the sparseness value,
for a given number of target points.

The extrapolations (figure 5, Right) show higher sparse-
ness values compared to the BR-Evolution within the same
execution time. Better values will be achieved with more
evaluations. For instance, with 400 targets the sparseness
value reaches 1.57 cm, but only after 4 millions of evalua-
tions. This figure shows how our approach is faster than
the control experiments regardless the number of reference
points.

Figures 4 and 5 demonstrate how BR-Evolution is better
both in the sparseness and in the orientation aspects com-
pared than the proposed control experiments. Within few
evaluations, reachable points are evenly distributed around
the robot and corresponding behaviors are mainly well ori-
ented.

An illustrating video is available on:
http://youtu.be/2aTIL_c-qwA

5. CONCLUSION AND DISCUSSION
To our knowledge, the BR-Evolution is the first method

able to learn a large number of actions without testing each
of them separately. With this technique, a large behavioral
repertoire can be found with only one evolutionary process.

The BR-Evolution was evaluated on a simulated hexapod
robot. With only 100 000 evaluations (1000 generations),
it found a large controller collection that allows the robot
to move through all its reachable space. The resulting con-
trollers have high orientation accuracy, with an average er-
ror of 1.7 degrees. The BR-Evolution approach is at least 5
times faster and about 10 times more accurate than learning
the controllers one by one. With an experiment focused on
the orientation issue, our method reaches the same order of
magnitude of accuracy but covers twice better the reachable
area of the robot.

Overall, these experiments show that the BR-Evolution is
a powerful method for learning a large amount of accurate
controllers and only within few generations.

In future works, we plan to apply the algorithm to a real
robot. We are aware of the difficulty in executing it directly
on the robot, thus we project to use the transferability ap-
proach [15] to reduce the number of evaluations on the real
robot. We also consider trying other types of actions and
controllers, for example using pointing actions with a hu-
manoid or central patterns generators.

Moreover, we want to investigate the ability of the BR-
Evolution to autonomously explore and exploit the abilities
of the agent. For instance, no indications are given to the
algorithm about the ability of the robot to go backward or
its inability to move more than 80 cm within 3 seconds. This
attractive property of the BR-Evolution is similar to works
in developmental robotics about “artificial curiosity”[1, 21].
It would be interesting to study the links between these ap-
proaches, which come from different branches of artificial
intelligence.
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APPENDIX
A. ALGORITHM PARAMETERS

The source-code of our experiments can be downloaded
on: http://pages.isir.upmc.fr/evorob_db/moin.wsgi/

BehavioralRepertoireLearningInRobotics

BR-Evolution experiments:

• Population size: 100 individuals

• Number of generation: 10 000

• Mutation rate: 10% on each parameters

• Crossover: disabled

• ρ: 0.10 m

• ρ variation: none

Control experiments:

• Population size : 100 individuals

• Number of generation : 50 0000 (100 * 500)

• Mutation rate : 10% on each parameters

• Crossover : disable

B. PARAMETRIZED CONTROLLER
The simulated robot is a hexapod with 18 Degrees of Free-

dom (DOF), 3 for each leg (Fig. 1). The first servo controls
the horizontal orientation of the leg and the two others con-
trol its elevation. The kinematic scheme of the robot is
pictured on Figure 1(Right). The movement of each DOF is
governed by a periodic function that computes its angular
position as a function γ of time t, amplitude α and phase φ:

γ(t, α, φ) = α · tanh (4 · sin (2 · π · (t+ φ))) (3)

where α and φ are the parameters that define the amplitude
of the movement and the phase shift of γ, respectively. The
frequency is fixed. Angular positions are sent to the servos
every 30 ms. The main feature of this particular function
is that, thanks to the tanh function, the control signal is
constant during a large part of each cycle, thus allowing the
robot to stabilize itself. In order to keep the “tibia” of each
leg vertical, the same control signal is used for the two last
servos. Consequently, positions sent to the ith servos are:

• γ(t, αi
1, φ

i
1) for DOF 1;

• γ(t, αi
2, φ

i
2) for DOFs 2 and 3.

There are 4 parameters for each leg (αi
1, αi

2, φi
1, φi

2), there-
fore each controller is fully described by 24 parameters. Five
values are available for each paramater (0, 0.25, 0.5, 0.75, 1).
By varying these 24 parameters, numerous gaits are possi-
ble, from purely quadruped gaits to classic tripod gaits in
every directions.


