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Abstract— The paper concerns visuo-inertial filtering and
estimation based on homography and angular velocity measure-
ments, i.e. data obtained from a mono-camera/IMU sensor. We
extend recently developed nonlinear filters on the special linear
group of homographies to the estimation of scene parameters
and velocity of the sensor. A validation of the proposed solution
and a comparative evaluation based on real data is presented.

I. INTRODUCTION

Many robotic applications rely on the real-time estimation
of the homography matrix that relates two images of the
same planar scene. Among such applications, let us mention
several recent results on homography-based visual servoing
for ground [2], [8], [10], aerial [4], [17], or underwater
robotics [5], [18]. SLAM in locally planar environments
also makes use of homography matrices extensively [3],
[16]. Several vision algorithms have been developed to
compute the homography matrix from two image data sets.
One can distinguish feature-based techniques, which rely
on the extraction and matching of characteristic features in
the image [1], [11] from direct methods, which process a
dense pixel data set [16]. All these methods are computa-
tionally expensive. This can be a major issue for real-time
onboard applications, e.g. in aerial robotics. Furthermore,
many methods based on optimization algorithms (e.g. direct
methods) only yield a small domain of convergence. This
is another issue since the algorithm may fail in case of
”large” displacements between consecutive images. Loss of
local convergence, which is independent of the computational
power, is often encountered in practice. Fusing the visual
information with other sensory data can help to reduce these
difficulties.

This paper concerns the fusion of visual and inertial
data in the context of homography estimation. Many re-
sults have been reported recently on visuo-inertial fusion
based on cartesian pose (i.e. position and orientation)
measurements([14],[9],[15]). Indeed, data provided by an
IMU (Inertial Measurement Unit) are directly related to the
time-derivatives of the cartesian pose. Using inertial data
in the context of homography estimation is much more
challenging because the relation between the homography
matrix and the cartesian pose is complex and depends on
unknown quantities (reference plane normal and distance to
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the scene). A possibility would consist in first decomposing
the homography matrix so as to recover cartesian pose (up
to a scale factor) and then using existing fusion techniques
for cartesian measurements. Multiple solutions to the de-
composition problem [13], however, make such an approach
difficult to implement when no a priori information on the
visual environment is available [3].

In this paper, we build on a recently published article [12]
in which nonlinear filters have been proposed to fuse ho-
mography data with inertial measurements. The contribution
is twofold. Firstly, we extend the solution proposed in [12]
in order to estimate additional variables, namely the normal
to the scene and linear velocity (up to the scale factor) in
body frame. This information can be exploited at different
levels, e.g. for scene reconstruction, feedback control, or
initialization of the vision algorithm. Secondly, we validate
the results, including the filters proposed in [12], with real-
data and compare the performance obtained with different
solutions. This comparison shows the strong benefit resulting
from the use of inertial data.

The present paper is related to SLAM results concerning
motion and structure estimation based on mono-camera and
inertial data (see, e.g. [6], [16]). With respect to those
works, the objective of this paper is more limited since
we essentially focus on the homography estimation without
trying to recover the cartesian pose. The fusion methods
proposed in this paper differ from those typically used in
the SLAM context (nonlinear complementary filters versus
the EKF). Complementary filters are of interest for their
computational simplicity, large stability domains and explicit
stability conditions, and consistence of the estimates with
the geometry of the observation space (i.e., group of homo-
graphies, etc). We believe that the results we present have
significance for the more general SLAM problem.

The paper is organized as follows. Section II provides
technical background, including a brief review of the main
results in [12]. Section III presents the extension of the
results in [12] for normal and velocity estimation. Section
IV concerns the validation and comparative evaluation of
the proposed filters. The paper ends with some concluding
remarks and perspective for future work.

II. TECHNICAL BACKGROUND

A. Notation

• S(x) is the antisymmetric matrix associated with the
cross product by x, i.e. S(x)y = x × y with × the
cross product.

• In is the n×n identity matrix and 0n ∈ Rn is the null
vector.



• tr(M) is the trace of the matrix M and det(M) its
determinant.

• The Special Linear Group SL(3) and its Lie algebra
sl(3) are :

SL(3) =
{
H ∈ R3×3 | det(H) = 1 }

sl(3) =
{
A ∈ R3×3 | tr(A) = 0 }

• The adjoint operator Ad : SL(3) × sl(3) −→ sl(3) is
defined by

AdGX = GXG−1 , G ∈ SL(3), X ∈ sl(3)

• P : R3×3 −→ sl(3) is the orthogonal projector defined
by

P(M) = M − tr(M)

3
I3 , M ∈ R3×3

B. Homographies

We recall below well known facts about homography
matrices (see, e.g., [11] for details). Consider two images
IA and IB of the same planar scene taken by a monocular
camera. Each image I∗ (∗ ∈ {A,B}) is taken from a specific
pose of the camera and we denote by F∗(∗ ∈ {A,B}) an
associated camera frame with origin corresponding to the
optical center of the camera and third basis vector aligned
with the optical axis. Furthermore, we denote by d∗ and n∗
respectively the distance from the origin of F∗ to the planar
scene and the normal to the scene expressed in F∗.

Let R denote the rotation matrix from FB to FA and
p ∈ R3 the coordinate vector of the origin of FB expressed
in FA. Then, the following classical relations hold:

dB = dA − nTBRT p , nB = RTnA

The raw homography matrix

G = γK(R+
pnTB
dB

)K−1 (1)

with K the calibration matrix of the camera and γ a scale
factor, maps pixel coordinates from IB to IA. Without loss
of generality, γ can be chosen to scale the determinant of
G to ensure that det(G) = 1 and G is in SL(3). Note that
the scale factor γ can be computed as the second singular
value of G (see [11],[13]). After calibration of the camera,
the (Euclidean) homography matrix

H = K−1GK = γ(R+
pnTB
dB

)

is obtained. Note that H and G have the same singular values
and hence if G is scaled to lie in SL(3) then H ∈ SL(3).
This matrix maps Euclidean coordinates of the scene’s points
from FB to FA and that γ is related to the distances from
the scene to each camera frame: γ3 = dB

dA
.

C. Complementary filters on SL(3)

Several nonlinear observers have been proposed in [12]
depending on availability of inertial information. We are
interested here by two cases.

The first observer considered is based on the general form
of the kinematics on SL(3):

Ḣ = HX (2)

with H ∈ SL(3) and X ∈ sl(3). The observer is given by
˙̂
H = Ĥ AdH̃

(
X̂ − k1P

(
H̃(I3 − H̃)

))
˙̂
X = −k2P

(
H̃(I3 − H̃)

) (3)

with Ĥ ∈ SL(3), X ∈ sl(3), H̃ = Ĥ−1H . It is shown
in [12] that this observer ensures almost global asymp-
totic stability of (I3, 0) for the estimation error (H̃, X̃) =
(Ĥ−1H,X − X̂) (i.e., asymptotic convergence of the esti-
mates to the original variables) provided that X is constant
(see [12, Th. 3.2] for details). Although this condition is
seldom satisfied in practice, this observer provides a simple
solution to the problem of filtering homography measure-
ments. Finally, note that this observer uses homography
measurements only.

A second observer, that explicitly takes into account the
rigid body kinematics of the camera motion, is proposed in
[12]. The kinematics of the camera frame of reference is
given by {

Ṙ = RS(ω)

ṗ = RV
(4)

with ω the angular velocity of FB w.r.t. FA expressed in FA

and V the linear velocity of FB w.r.t. FA expressed in FB .
With this notation, one can show that the group velocity X
in (2) is given by

X = S(ω) +
V nT

B

dB
− V nT

B

3dB
I3

= S(ω) +
1

γ3
P(M)

with
M =

V

dA
nTB (5)

The following observer of H and M is proposed in [12]:
˙̂
H = Ĥ AdH̃

(
S(ω) +

1

γ3
P
(
M̂
)
− k1P

(
H̃(I3 − H̃)

))
˙̂
M = M̂S(ω)− k2

γ3
P
(
H̃(I3 − H̃)

)
(6)

with Ĥ ∈ SL(3), M̂ ∈ R3×3 and H̃ = Ĥ−1H .
First, let us remark that this observer relies on measure-

ments of H and ω. Thus, it can be implemented with a mono-
camera/IMU sensor since ω can be given by the IMU’s rate
gyro. Conditions under which the estimates (Ĥ, M̂) almost
globally converge to (H,M) are given in [12, Cor. 5.5].
These conditions essentially reduce to the following: i) ω is
persistently exciting, and ii) V is constant. The hypothesis
of persistent excitation on the angular velocity is used to
demonstrate the convergence of M̂ to M . In the case of
lack of persistent excitation, M̂ converges only to M+a(t)I3
with a(t) ∈ R but the convergence of Ĥ to H still holds. The



hypothesis of V constant is a strong assumption. Asymptotic
stability of the observer for V constant, however, guarantees
that the observer can provide accurate estimates when V
is slowly time varying with respect to the filter dynamics.
This will be illustrated later in the paper and experimentally
verified.

III. NORMAL AND VELOCITY ESTIMATION

Observer (6) provides estimates of the matrix M in (5).
The objective of this section is to show how to exploit these
estimates in order to estimate the normal nB and the velocity
V up to a scale factor. Two difficulties must be overcome.
First, as explained above, M̂ is only guaranteed to converge
to M + a(t)I3 where a is unknown. It is evident from (5)
then, that M contains no information on nB when V = 0.
This is a well known unobservability problem of the scene
structure when the camera is motionless. Thus, one can only
expect to obtain an accurate estimate of nB in the presence
of linear motion.

A. Estimation of the normal from M̂

In order to simplify the notation, let v = V
dA

. Upon
convergence of M̂ to M + aI3, it follows from (5) that{

tr(M̂) = 3a+ vTnB

det(M̂) = a3 + a2vTnB
(7)

Thus, a is solution of the third-order polynomial equation:

2a3 − tr(M̂)a2 + det(M̂) = 0 (8)

the roots of which can be computed explicitly. For each root
ak of this equation, one can compute M̄k := M̂ − akI3.
Observe that, upon convergence of M̂ to M +aI3 and when
ak = a,

M̄k = M̂ − akI3 =

v1n
T
B

v2n
T
B

v3n
T
B

 (9)

Since the last coordinate of the homography’s normal is
positive and ‖nB‖ = 1, this implies that

vi = sign(M̄k,(i,3))‖M̄k,i‖ and nTB =
M̄k,i

vi
(10)

with M̄k,i denoting the i-th row vector of M̄k. Equation
(10) suggests to compute for each k an estimate vk of v as
follows:

vk,i = sign(M̄k,(i,3))‖M̄k,i‖

with M̄k,(i,j) the (i, j) element of M̄k. Using (10) again, we
propose to compute for each k a first estimate nB,k of nB
by solving a weighted linear least square problem:

min
nB,k

∑
i∈Lk

‖M̄i,k‖2‖nB,k −
M̄T

k,i

vk,i
‖2 (11)

where Lk = {i ∈ 1, 2, 3/‖M̄k,i‖ > δ1} with δ1 positive. The
idea is to limit the effect of measurement noise by weighting
the pseudo-measurements M̄k,i

vk,i
by ‖M̄k,i‖ and discarding

these measurements when ‖M̄k,i‖ = |vk,i| is smaller than

δ1, knowing that nB is not observable when v = 0. The
solution to this optimization problem is given by

nB,k =

∑
i∈Lk

sign(M̄k,(i,3))‖M̄k,i‖M̄T
k,i∑

i∈Lk

‖M̄k,i‖2
(12)

Furthermore, nB,k is normalized to avoid numerical drift.
Using the fact that M(I −nBnTB) = 0, one can associate to
each nB,k thus obtained the following score(ρ):

ρk = ‖(M̂ − akI3)(I − nB,kn
T
B,k)‖

The value of k with the lowest score provides a first estimate
n∗B of nB , an associated score ρ∗, and a candidate root value
a∗. If Lk = ∅ for each k (i.e. ‖M̄k,i‖ ≤ δ1 for each k and
i = 1, 2, 3), meaning that there is not enough motion to
deduce from M̂ a reliable estimate of nB , we set n∗B = e3

and ρ∗ = 1. We will see further that this relatively arbitrary
choice is unimportant.

B. Complementary filtering on the normal

The second step of the method is a complementary filter
using the previously extracted normal and score (n∗B , ρ

∗)
and the angular velocity measurement provided by the IMU.
First, recall that nB = RTnA and Ṙ = RS(ω), so that

ṅB = −S(ω)nB = S(nB)ω

Then the filter is built as a complementary filter on the unit
sphere:

˙̂nB = S(n̂B)[ω − k(ρ∗)(n̂B × n∗B)]

with k(ρ) = k3(1+exp(−100(ρ−δ2)))−1 and δ2, k3 positive
scalars. Since k(x) tends to zero when x is large, the role of
the varying gain k(ρ∗) is to use innovation in the filter only
when the score associated with n∗B is low enough. Otherwise,
n̂B is updated from angular velocity measurements only. Let
us briefly establish the stability of this filter. Consider the
candidate Lyapunov function

L = 1− nTBn̂B

Then, if n∗B = nB ,

L̇ = −ṅTBn̂B − nTB ˙̂nB

= −(−S(ω)nB)T n̂B − nTBS(n̂B)ω

+ k(ρ∗)nTBS(n̂B)(n̂B × nB)

= −k(ρ∗)‖S(n̂B)nB‖2 (13)

Thus, this filter is stable and almost globally convergent, i.e.
provided that n̂B(0) 6= −nB(0).

Finally, we obtain an estimate of v (i.e. velocity in body
frame up to the scale factor dA) as:

v̂ = (M̂ − a∗I3)n̂B (14)



IV. VALIDATION AND COMPARATIVE EVALUATION

In this section we validate the estimation algorithms
presented in the previous sections and evaluate their per-
formance. These algorithms are used in conjunction with
an ESM homography computer vision algorithm[2].For each
image, the filter is used to make a prediction of the raw ho-
mography that is used as initialization of the ESM algorithm.
The visual method provides two results: an homography
estimation and the correlation score between the current
image and the reference image. If the correlation score is
good enough (> 0.85) the estimate is considered as ”good”
and is used as measurement in the filter. Three algorithms
are compared:

1) ESM algorithm alone: the visual method is initialized
by the homography estimated at the previous frame.
This method is named ESMonly thereafter;

2) Filter (3): this filter, which uses no IMU data, is named
filternoIMU hereafter;

3) Filter (6): this filter, which uses the rate gyro data, is
named filterIMU.

Three issues are investigated: i) tracking quality and
ability of the filter to follow the pattern in the presence
of fast dynamics; ii) ability of the filter to interpolate the
homography between two frames and provide estimation of
the homography at higher rate; iii) quality of the normal and
velocity estimation algorithm.

A. Experimental setup
We make use of a sensor consisting of a xSens MTiG

IMU working at a frequency of 200 [Hz], and an AVT
Stingray 125B camera that provides 40 images of 800×600
[pixel] resolution per second. The camera and the IMU are
synchronised. The camera uses wide-angle lenses (focal 1.28
[mm]). The target is placed over a surface parallel to the
ground and is printed out on a 376 × 282 [mm] sheet of
paper to serve as a reference for the visual system. The
reference image is 320×240 [pixel]. So the distance dA can
be determined as 0.527[m]. The processed video sequence
presented in the accompanying video is 1321 frames long
and presents high velocity motion (rotations up to 5[rad/s],
translations, scaling change) and occlusions. In particular, a
complete occlusion of the pattern occurs little after t = 10[s].

Four images of the sequence are presented on Figure
1. A ”ground truth” of the correct homography for each
frame of the sequence has been computed thanks to a
global estimation of the homography by SIFT followed by
the ESM algorithm. If the pattern is lost, we reset the
algorithm with the ground-truth homography. The sequence
is used at different sampling rates to obtain more challenging
sequences and evaluate the performances of the proposed
filters.

For both filters (3) and (6), the estimation gains
have been chosen as k1 = 25 and k2 = 250.
Following the notation of the description available at
http://esm.gforge.inria.fr/ESM.html, the ESM algorithm is
used with the following parameter values: prec = 2,iter =
50.

Fig. 1. Four images of the sequence at 20[Hz]: pattern position at previous
frame (green), vision estimate (blue), and prediction of the filterIMU (red).

B. Tracking quality

In this section we measure the quantitative performance
of the different estimators. This performance is reflected
by the number of frames for which the homography is
correctly estimated. We use the correlation score computed
by the visual method to discriminate between well and badly
estimated frames. A first tracking quality indicator is the
percentage of well estimated frames. This indicator will be
labelled as ”%track”. Another related criteria concerns the
number of time-sequences for which estimation is successful.
For that, we define a track as a continuous time-sequence
during which the pattern is correctly tracked. We provide
the number of tracks in the sequence (label ”nb track”) and
also the mean and the maximum of track length. Table I
presents the obtained results for the full sequence at different
sampling rates (40[Hz], 20[Hz], 10[Hz]).

The ESMonly estimator works well at 40[Hz] since 95%
of the sequence is correctly tracked but performance rapidly
decreases as distance between images grow (72% at 20[Hz],
and only 35% at 10[Hz]). It must be noted that the ESM
estimator parameters are tuned for speed and not for perfor-
mance, having in mind real-time applications.

The filternoIMU estimator outperforms the ESMOnly filter
on the sequence at 40[Hz]. Tracks are on average twice
longer and many losses of the pattern are avoided ( 11 tracks
versus 19 for ESMonly). At 20[Hz] the performance is still
better but the difference between these two solutions reduces.
At 10[Hz] the filter degrades performance.

The filterIMU tracks almost all the sequence at both
40[Hz] and 20[Hz]. There is just one tracking failure, which
occurs around time t = 10[s] due to the occlusion of the
visual target. Improvement provided by the IMU is clearly
demonstrated. At 10[Hz], the performance significantly de-
teriorates but this filter still outperforms the other ones.

Let us finally remark that these performances are obtained
despite the fact that the assumption of constant velocity in
body frame (upon which the filter stability was established)
is violated, as can be seen on the video and on the velocity
data presented further.



Frame Method %track nb track length
rate track mean max

40Hz ESM Only 94.31 19 65.36 463
FilternoIMU 97.74 11 114.27 607

1321 img FilterIMU 98.78 2 646.5 915

20Hz ESM Only 72.38 59 8.0 89
FilternoIMU 80.5 52 10.17 94

660 img FilterIMU 97.42 2 321.5 456

10Hz ESM Only 38.79 46 2.78 27
FilternoIMU 32.36 58 1.72 4

330 img FilterIMU 58.66 59 3.27 27

TABLE I
RATE OF GOOD TRACK FOR DIFFERENT FRAME-RATES AND METHODS:

PERCENTAGE OF WELL ESTIMATED FRAMES, NUMBER OF TRACKS,
MEAN AND MAXIMUM TRACK LENGTH ON THE SEQUENCE

C. Prediction quality

The results reported in this section have been obtained
with the FilterIMU and the video sequence at 20[Hz]. To
evaluate the prediction quality we consider the error between
the ground truth and the predicted homographies. A first
comparison could be made by considering the matrix norm of
the difference (in SL(3)) between these two homographies.
In order to obtain a more precise comparison, we decompose
the raw homography transformation (2D) into elementary
2D transformations (translation, rotation, ...). Indeed, a raw
homography can be uniquely decomposed as a product of
a similarity transformation by an affine transformation, and
finally by a projective transformation ([7]):

G = G33

(
sR(θ) t

0T2 1

)(
R(φ)DR(φ)T 02

0T2 1

)(
I2 02

`T 1

)
with

R(α) =

(
cosα − sinα
sinα cosα

)
, D =

(
s1 0
0 1

s1

)
t =

(
tx ty

)T
, ` =

(
`1 `2

)T
, φ ∈ [0,

π

2
]

The 8 parameters of this decomposition represent: a rotation
parameter θ, two translation parameters tx, ty , one scale
factor s > 0, two anisotropic scaling parameters with the
shear angle φ and related scale s1, and finally two parameters
`1, `2 related to infinite line behaviour (vanishing point,
horizon).

Let

T oref =

(
I2

pref
2

0T2 1

)
with pref the size in [px] of the reference pattern image IA
(320 × 240 in our experimental setup). We will decompose
G−1T oref since G−1 provides an error in the current image
and the shift by the translation T oref allows us to split-up
translation and rotation, i.e. the translation t is the vector
from origin (top left corner) to the center of the pattern in
the image and it is not corrupted by other parameters.

We are interested by two comparisons with respect to the
ground-truth: the homography predicted by the FilterIMU
(pred) and the homography obtained after visual processing
of the last image (vis). For each frame used by the filter, we
compare coefficients of the decomposition of G−1

∗ T oref (∗ ∈

{pred, vis}) with coefficients of the decomposition of the
ground truth homography G−1

gt T
oref by using the following

error:
cmp(∗) = (t∗x − tgtx , t∗y − tgty , θ∗ − θgt,

φ∗ − φgt, s∗

sgt ,
s∗1
sgt1
,

`∗1
`gt1
,

`∗2
`gt2

) ∗ ∈ {pred, vis}

Table II presents parameter statistics of the comparison with
the ground-truth of the prediction (cmp(pred)) and the pre-
vious image (cmp(vis)). Figure 4 presents the comparison
on θ, s, ty for prediction and previous image homographies.

From the translation part of Figure 4, we see that the
filter gives good prediction of the translation. Some errors
still remain (3.1[px] in average, max 22[px] in the portion
of the sequence with important scale changes) but by com-
parison with vision homography (11.5[px] in average and
66[px]max) the errors remain small. This figure shows that
the filter works well for fast linear motions, although the
assumption of constant velocity used in the stability analysis
is not satisfied.

Inspection of the rotationnal part (variable θ) shows that
the IMU is very reliable as the rotation error is about
0.2[deg] with very low standard deviation whereas the vi-
sion homography rotation is about (3[deg] in average). For
other coefficients, the error for the predicted homography
is smaller on average than the error for the previous image
homography and in most cases this remains true all along
the sequence.

All these results show that the prediction is accurate and
is always better than the measurement from previous image.
In practice, the prediction could be used as output of the
filter thus allowing to have homography estimates at IMU
rate. All the more so as the prediction process is fast, so it
does not much increase latency.

Prediction from i0 to i0 + 2 Previous image i0
compared with ground truth on i0 + 2

error on mean std mean std
tx [px] 3.09 3.14 11.4 10
ty [px] 2.56 2.81 13.2 11.3
θ [deg] 0.222 0.155 3 2.64
φ[deg] 0.00322 0.0029 0.0114 0.0105
`1 2.71e-05 9.53e-06 3.45e-05 3.23e-05
`2 1.04e-05 5.91e-06 3.12e-05 2.96e-05
s 0.999 0.00681 0.999 0.0439
s1 1.01 0.00443 0.999 0.0379

TABLE II
PREDICTION QUALITY STATISTICS: MEAN AND STANDARD VARIATION

FOR THE ERROR BETWEEN GROUD-TRUTH AT i0 + 2 AND PREDICTED

HOMOGRAPHY AT i0 + 2/VISION HOMOGRAPHY AT i0 .

D. Normal and velocity estimation
This section concerns the evaluation of the normal and

velocity estimator proposed in Section III.
The ground-truth for the normal is obtained by decom-

posing (see [11] p.136 for the decomposition algorithm)
the inverse of the ground-truth homography in 3D rotation,
translation and normal:

H−1 =
1

γ
(RT − 1

dA
RT pnTA) (15)



From the decomposition we get (RT , 1
dA
RT p, nA) The

decomposition is not unique and gives us two possible
homographies and thus two normals. Since the target (sheet
of paper) was placed on the ground, we know that the
normal is quasi-vertical and we keep as ground-truth the
solution closest to the vertical. The ground-truth normal
in body frame can be computed as nB = RTnA. An
approximation v̂gt of the ground-truth velocity is obtained
applying a derivative filter to the ground-truth position p

dA

(i.e., position up to scale factor obtained by decomposition
of the ground-truth homography):

˙̂pgt = v̂gt − k4(p̂gt −
p

dA
)

˙̂vgt = −k5(p̂gt −
p

dA
)

(16)

with k4 = 27 and k5 = 225.
Algorithms proposed in Section III are applied with the

following parameters: k3 = 2, δ1 = 0.33, δ2 = 0.3. The
20[Hz] sequence is used and the filter for normal estimation
is initialized at random for the two tracks of the sequence
(recall that the pattern is lost around t = 10[s] due to an
occlusion of the visual target). Figure 2 shows the angle error
in degree between the ground-truth nB and the value n̂B
estimated by the filter. One can observe the fast convergence
of n̂B to the ground-truth despite the fact that the initial
error is large at the begining of each track, thus validating the
claim for large stability domains of the proposed filters. After
the transcient convergence phase the error remains small (≈
5[deg]). It must be noted that when the linear velocity is very
small the filter relies only on the gyrometer measurements
(normal is not observable in this case). Drift could occur in
this situation and capacity of the filter to converge from large
initial errors is all the more important.

Figure 3 shows a comparison of the velocity at a scale
factor v̂ estimated by the filter (i.e. Eq. (14)) and the ground-
truth v̂gt . For legibility of the figures, we only show results
on the time-interval [15; 35]s. Horizontal and vertical velocity
are well estimated, with a small time-lag of about 80[ms].
The velocity in z (in the optical axis direction) is less reliable
with the presence of offsets.

CONCLUSION

We have presented experimental validations of new non-
linear filters for visuo-inertial fusion and extensions of these
filters have been proposed in order to recover the visual
target normal and velocity in body-frame (up to a scale
factor). Validations show the efficiency of the fusion al-
gorithms and the capacity of the filters to converge from
large initial errors. Extensions of this work are multiple.
The proposed solution allows one to reduce the frequency
of vision acquisition/processing. This is a key aspect in
real-time embarked applications. Exploiting accelerometer
measurements may reduce the frequency of vision processing
still more. The quality of normal estimation also suggests to
make a step further in the direction of estimation in cartesian
space. Finally, we plan to apply this work to the feedback
control of UAVs with limited computing power.
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Fig. 2. Estimation error (in degree) between the normal and its estimate.
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Fig. 3. Estimation of velocity at a scale factor (≈1.9 real velocity) in body
frame: estimated velocity (green) and ground-truth (red).

0 5 10 15 20 25 30 35
Time in secondes

−40

−20

0

20

40

60

tr
a
n
sl

a
ti

o
n
 y

(p
x
)

Prediction error on translation y(px)

Prediction

Previous position

0 5 10 15 20 25 30 35
Time in secondes

−10

−5

0

5

10

ro
ta

ti
o
n
 (

d
e
g
)

Prediction error on rotation (deg)

Prediction

Previous position

0 5 10 15 20 25 30 35
Time in secondes

0.95

1.00

1.05

sc
a
le

Prediction error on scale

Prediction

Previous position

Fig. 4. Prediction quality: mean and standard variation for the error between
groud-truth and the predicted H (in red) and the error for the homography in
previous frames in green for, from top to bottom: translation on y, rotation,
scale error.


