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Abstract— This article addresses the problem of direct vision-
based robot control where the equilibrium state is defined
via a reference image. Direct methods refer to intensity-based
nonmetric techniques to perform that stabilization. Intensity-
based strategies provide for higher accuracy, whereas not
requiring any metric information improves their versatility.
However, existing direct techniques either have a coupled error
dynamics, or are designed for planar objects only. This paper
proposes a new direct technique that decouples the translational
motion from the rotational one for the general case of both
planar and nonplanar targets under general translational and
rotational displacements. Furthermore, for the important case
of a fronto-parallel planar object, the proposed technique leads
to a fully diagonal interaction matrix. The equilibrium state
is made locally exponentially stable for all those cases. These
improvements are theoretically proven and experimentally
demonstrated using a 6-DoF robotic arm.

I. INTRODUCTION

Visual servoing refers to the use of image feedback to con-
trol a robot with respect to the scene. Its typical application
consists in stabilizing the robot at a pose defined by means
of a reference image, also called goal image. Although there
exists a variety of well-established solutions to this problem
[2], its vast majority: 1) is based on image features, such
as points, lines, etc. Thus, they strongly depend on some
particular features, on an error-prone feature matching, and
on special tuning procedures; and 2) requires (at least coarse)
metric information to provide a provably stabilizing control
law. This holds even for image-based visual servoing tech-
niques, where depth estimates are necessary in the interaction
matrix. These two topics are discussed next.

Techniques of vision-based estimation can generally be
classified into feature- or intensity-based. Despite the afore-
mentioned drawbacks, the vast majority of existing visual
servoing schemes are indeed based on image features. This
is probably due to its relatively large domain of convergence.
Differently, there are no steps of feature extraction and
matching within intensity-based techniques of estimation.
These techniques directly exploit the intensity value of the
pixels so as to recover the needed parameters. Therefore,
they make use of raw and dense image data, what allows
for attaining high levels of versatility and accuracy. Another
advantage refers to their possibility of ensuring robustness
to arbitrary illumination changes, even in color images [7].

As for nonmetric visual servoing, in spite of its increased
level of versatility and robustness [9], there exist only few
works on such class of vision-based control. A possible
reason is the difficulty to find an interesting control error
that is diffeomorphic to the camera pose (at least around the

1G. Silveira is with CTI, DRVC, Brazil,Geraldo.Silveira@cti.gov.br.
This author has also been supported by the brazilian councilCNPq.

2L. Mirisola is with UFABC, CMCC, Brazil,luiz.mirisola@ufabc.edu.br
3P. Morin is with UPMC, ISIR, France,morin@isir.upmc.fr. This author

has been supported by the “Chaire d’excellence en RobotiqueRTE-UPMC”.

equilibrium), and is regulated by a nonmetric control law. An
early work on nonmetric visual navigation is given in [1],
where a ground robot is used. Recently, a general intensity-
based nonmetric technique has been presented in [8], called
Direct Visual Servoing (DVS). It is general in the sense that
all 6 DoF of a robot are stabilized with respect to both planar
and nonplanar objects, under both translational and rotational
displacements between the reference and current frames.
Nevertheless, the error dynamics in the DVS is coupled.

This article proposes a new decoupled DVS technique. The
decoupling idea briefly presented in [3] for planar objects
is here developed and extended to general surfaces and
displacements as in [8]. The translational motion is thus
decoupled from the rotational one in the general scenario.
Furthermore, for the important case of a fronto-parallel
planar object, it is shown that the proposed technique leads
to a fully diagonal interaction matrix. The new control error
is theoretically proved to be diffeomorphic to the camera
pose around the equilibrium, and the latter is proved to be
locally exponentially stable. These improvements are also
confirmed with experiments using both synthetic and real
data, for both planar and nonplanar objects, simulating and
applying a camera-mounted 6-DoF holonomic robot.

II. THEORETICAL BACKGROUND

This section defines the notation used throughout this arti-
cle and recalls essential models and methods. Let‖v‖, v̂ and
v′ denote the Euclidean norm, an estimate, and a transformed
version of the variablev, respectively. An asterisk, e.g.,
v∗, is used to indicate thatv is defined with respect to
the reference frameF∗. The notations[w]× andvex([w]×)
represent, respectively, the antisymmetric matrix associated
to the vectorw = [w1, w2, w3]

⊤ and its inverse mapping:

[w]× =




0 −w3 w2

w3 0 −w1

−w2 w1 0



, vex([w]×) =




w1

w2

w3



 . (1)

A. Two-view Geometry

The relation between corresponding pointsp ↔ p∗ in
two perspective images can be described in different geome-
tries. Using projective geometry (which is an extension of
Euclidean geometry), the general relation is given by [4]

p ∝ Gp∗ + ρ∗e ∈ P
2, (2)

where the symbol “∝” denotes proportionality up to a
nonzero scale factor,G ∈ SL(3) is a projective homography
relative to a plane (projective basis),e ∈ R

3 denotes the
epipole, andρ∗ ∈ R is the projective parallax of the 3D point
whose projection in the reference imageI∗ is p∗, relatively
to that plane (see Fig. 1). This parallax is proportional to
the distance of that 3D point to that plane and is inversely
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Fig. 1. Two-view geometry. Given the 3-D pointm∗, its projectionp∗

in the imageI∗ is related to its projectionp in I by the pointGp∗, and
the pointe multiplied by the projective parallax. This parallax is indeed the
ratio of the distances of the aligned pointsGp∗, e andp.

proportional to its depth. The epipole is proportional to the
translation between the current and reference frames; and the
homographyG can be characterized as

G ∝ G∞ + eq∗⊤, (3)

where the 3-vectorq∗ is a representation of the line at infinity
of such plane in the reference image, andG∞ ∈ SL(3) is
the homography at infinity. Such homography is proportional
to a matrix that is similar to a rotation matrix. A procedure
to estimate the parameters{G, e, ρ∗} in (2) is recalled next.

B. Direct Visual Servoing: Estimation Aspects

In Direct Visual Servoing (DVS) [8], the estimation pro-
cedure to obtain all needed parameters directly exploits the
pixel intensities without any feature extraction or matching.
The basic framework for such intensity-based estimation
is the direct image registration. Direct image registration
consists in searching for the parameters that best transform
the current image such that each pixel intensity in the
current imageI(p) is matched as closely as possible to the
corresponding one in the reference imageI∗(p∗).

Therefore, a first step consists in devising a suitable pho-
togeometric transformation model. This can be performed by
choosing an appropriate model of illumination changes, e.g.,
[7], along with a warping modelw(.) from (2). Formally,
the action of this transformation model on pixels is given by

I ′
gh(g,h,p∗) = S(p∗) · I

(
w(g,p∗)

)
+ β ≥ 0, (4)

where the operator “·” represents the componentwise mul-
tiplication of matrices, and the geometric and photometric
parameters are respectively gathered ing = {G, e, ρ∗}
and h = {S, β}, where S can be viewed as a surface
that compensates for both global and local illumination
variations, andβ ∈ R.

A typical direct image registration system can then be
formulated as the following nonlinear optimization problem:

min
g={G,e,ρ∗

i
}

h={S,β}

1

2

n∑

i=1

[
I ′

gh(g,h,p∗
i ) − I∗(p∗

i )︸ ︷︷ ︸
di(g,h)

]2
, (5)

which seeks to minimize the norm of the vector of image
differencesd(g,h) = {di(g,h)}n

i=1, i.e.,

d(g,h) =





I ′
gh

(
g,h,p∗

1

)
− I∗(p∗

1)

I ′
gh

(
g,h,p∗

2

)
− I∗(p∗

2)
...

I ′
gh

(
g,h,p∗

n

)
− I∗(p∗

n)




∈ R

n, (6)

where n is the number of pixels considered for exploita-
tion. Other cost functions may be considered instead of
that widely used sum-of-squared-differences. For example, a
robust function [5], e.g., an M-estimator, may be used if there
exist unknown occlusions. Finally, the nonlinear optimization
problem in (5) can be solved by standard iterative methods,
e.g., Gauss–Newton. For an improved solution in terms of
convergence properties, the reader is referred to [7].

C. Direct Visual Servoing: Control Aspects

The geometric parametersg = {G, e, ρ∗} estimated
using pixel intensities (see Section II-B) can be used to
visual servoing in robotics. The translational and rotational
nonmetric control errors proposed in the DVS, i.e.,ευ ∈ R

3

andεω ∈ R
3 respectively, are given as

ε =

[
ευ

εω

]
=

[
(H − I)m∗′ + ρ∗e′

ϑµ

]
, (7)

where

H = K−1 GK; e′ = K−1 e; m∗′ = K−1 p∗, (8)

and ρ∗ ∈ R is the parallax of the chosen control point
p∗ ∈ P

2. The positive definite matrixK ∈ R
3×3 contains

the camera intrinsic parameters, i.e., focal lengths, skewand
principal point. Even for nonmetric techniques, (at least an
estimate of) such matrix isalways needed to control all six
degrees of freedom of a robot, as it moves in the Euclidean
space. The rotational errorεω in (7) is computed from the
homographyH ∈ R

3×3 via

r =
1

2
vex

(
H − H⊤

)
, (9)

ϑ =

{
real

(
arcsin(‖r‖)

)
, if tr(H) ≥ 1,

π − real
(
arcsin(‖r‖)

)
, otherwise,

(10)

µ =
r

‖r‖
, (11)

where the functiontr(·) denotes the trace of a matrix. If
‖r‖ = 0, then µ is not determined and therefore can be
chosen arbitrarily (e.g.,µ = [0, 0, 1]⊤).

Let the control inputs be the translational and rotational
velocities of the camera, gathered inv = [υ⊤,ω⊤]⊤ ∈ R

6

respectively. The nonmetric control law

v = λ ε, (12)

with λ > 0, is proven in [8] to locally stabilize the
equilibrium ε = 0 if the control point (8) is chosen such
that its parallax is sufficiently small.



III. PROPOSED DECOUPLED TECHNIQUE

This section presents the proposed decoupled direct visual
servoing technique, which extends some results from [3].
This new technique is intensity-based, nonmetric, and the
behavior of the translational motion is decoupled from the
rotational one. This is demonstrated for the general case of
both planar and nonplanar objects under general translational
and rotational displacements. Then, we show that it leads to
a fully decoupled system for the important case of a fronto-
parallel planar target.

A. Control Error and Some Properties

As in the DVS [8], the new control error is constructed
from the estimated parametersg = {G, e, ρ∗} (see Sec-
tion II-B). For the sake of simplicity, let us work with a
reduced version of the general control error in (7) as

ε
′ =

[
ε
′
υ

ε
′
ω

]
=

[
(H − I)m∗′ + ρ∗e′

vex(H − H⊤)

]
, (13)

whose rotational control error is equivalent to the original
one viaε

′
ω = 2r = 2ϑ−1‖r‖εω. Furthermore, around the

equilibrium it can be shown thatε′
ω ≈ 2εω asϑ−1‖r‖ ≈ 1.

This nonmetric control error is general in the sense that it
deals with both planar and nonplanar objects, under both
translational and rotational displacements between the refer-
ence and initial frames. Indeed, as in the general relation (2),
it does not assumeρ∗e′ = 0.

The new nonmetric control error is defined as

ε̄ = M ε
′, (14)

where

M =

[
2I [m∗′]×

−[c∗′]× I

]
(15)

is a constant(6×6)-matrix, andc∗′ is a 3-vector. Details on
choosing this vector will be given further on. More explicitly,
the new control error (14) writes

ε̄ =

[
2[(H − I)m∗′ + ρ∗e′] + [m∗′]×vex(H − H⊤)

vex(H − H⊤) − [c∗′]×[(H − I)m∗′ + ρ∗e′]

]
.

(16)
It is important to note that this control error is constructed
without requiring any metric information of the object,
regardless of its shape and of the camera displacement.

Theorem 3.1: The control error̄ε defined in (14) is locally
diffeomorphic to the camera pose around the reference image
provided that

m∗′⊤c∗′ 6= 2, (17)

m∗′⊤q∗′ 6=
2

z∗
, (18)

where z∗ > 0 is the depth of the control pointp∗, and
q∗′ = K⊤q∗. Furthermore, the linearization of the interac-
tion matrix of ε̄ at this configuration is given by

L̄
∣∣
ε̄=0

= −




2

z∗
I + [m∗′]×[q∗′]× 0

−
1

z∗
[c∗′]× + [q∗′]× 2I + [c∗′]×[m∗′]×



 .

(19)

Proof: Since ε̄ = M ε
′ and M is a constant matrix,

L̄ = ML′ with L̄ (resp.L′) the interaction matrix of̄ε (resp.
ε
′). From [6], the linearization ofL′ at ε

′ = 0 is given as

L′
∣∣
ε
′=0

= −

[
1

z∗
I −[m∗′]×

[q∗′]× 2I

]
, (20)

and (19) follows from (15) and (20). To conclude the proof,
there remains to show that the matrix (19) is invertible when
both (17) and (18) are satisfied. SinceL̄

∣∣
ε̄=0

= ML′
∣∣
ε
′=0

,
L̄

∣∣
ε̄=0

is invertible provided that bothM and L′
∣∣
ε
′=0

are
invertible. Let us first considerM. From Schur’s formula,
and (15),M is invertible provided that the matrix

M0 = 2I + [c∗′]×[m∗′]× (21)

is invertible. Consider any matrixQ such thatQm∗′ =
‖m∗′‖b3 with b3 = [0, 0, 1]⊤ the third canonical vector.
Using the fact that for any 3-vectorx, Q[x]×Q⊤ = [Qx]×,
one verifies by multiplying (21) on the left byQ and on the
right by Q⊤ that

QM0 Q⊤ = 2I + [Qc∗′]×[‖m∗′‖b3]× . (22)

Sincedet(QM0 Q⊤) = det(M0), a straightforward calcu-
lation yields

det(M0) = 2(2 − 〈Qc∗′, ‖m∗′‖b3〉)
2 (23)

= 2(2 − 〈c∗′,m∗′〉)2. (24)

This shows thatM0 (and consequentlyM) is invertible
provided the condition (17) is satisfied. A similar reasoning
shows thatL′

∣∣
ε
′=0

is invertible provided (18) is satisfied.
A nice property of the linearized interaction matrix in (19)

is its block-triangular structure. This property is exploited
next to derive simple stabilizing feedback laws with nice
decoupling properties.

B. Control Law and Stability Analysis

In the sequel, consider a camera-mounted 6-DoF holo-
nomic robot observing a motionless rigid object of unknown
shape. Let the control inputs be the translational and rota-
tional velocities of the camera, gathered in the vectorv ∈ R

6.
The nonmetric control law is simply defined as

v = Λ ε̄, (25)

with a diagonal gain matrixΛ = diag(Λv,Λw), andΛv =
diag(λ1, λ2, λ3), Λw = diag(λ4, λ5, λ6).

Theorem 3.2: The nonmetric control law (25) ensures
local exponential stability of the equilibrium̄ε = 0 provided
that the following conditions are satisfied:

sign(λ1) = sign(λ2) = sign

(
2

z∗
− m∗′⊤q∗′

)
, (26)

sign(λ4) = sign(λ5) = sign(2 − m∗′⊤c∗′), (27)

λ3, λ6 > 0. (28)

Proof: From the expression (19) of the linearization of
the interaction matrix and applying the control law (25), the
linearization of the closed-loop system atε̄ = 0 writes

˙̄ε = A ε̄, (29)



with

A = L̄
∣∣
ε̄=0

Λ =

[
Avv 0

Awv Aww

]
(30)

and hence

Avv = −

[
2

z∗
I + [m∗′]×[q∗′]×

]
Λv , (31)

Aww = −
[

2I + [c∗′]×[m∗′]×
]
Λw . (32)

We first determine the analytic expression of the eigenvalues
of A. SinceA is block triangular, its eigenvalues consist of
the union of the eigenvalues ofAvv andAww:

σ(A) = σ(Avv) ∪ σ(Aww), (33)

with σ(·) denoting the spectrum of a matrix. Let us first
considerAvv. If x denotes an eigenvector ofAvv associated
with the eigenvalueµ, then for any rotation matrixQ, Qx

is an eigenvector ofQAvvQ
⊤ associated with the same

eigenvalueµ. Thus,σ(Avv) = σ(QAvvQ
⊤). As in the proof

of Theorem 3.1, let us chooseQ such thatQm∗′ = ‖m∗′‖b3

with b3 = [0, 0, 1]⊤. Then, a straightforward calculation
shows thatQAvvQ

⊤ is upper-triangular so that its diagonal
terms correspond to its spectrum:

σ(QAvvQ
⊤) = σ(Avv) ={

−λ1

(
2

z∗
− m∗′⊤q∗′

)
,−λ2

(
2

z∗
− m∗′⊤q∗′

)
,−λ3

2

z∗

}
.

Applying the same procedure toAww yields

σ(QAwwQ⊤) = σ(Aww) =
{
−λ4(2 − m∗′⊤c∗′),−λ5(2 − m∗′⊤c∗′),−2λ6

}
.

The proof directly follows from the above expressions of
σ(Avv) andσ(Aww).
Theorem 3.2 provides explicit conditions on the control gains
so as to ensure local exponential stability of the closed-loop
system. Since bothm∗′ andc∗′ are defined by the user, the
unique important constraint is on the choice ofλ1 andλ2.

However, sincem∗ = z∗m∗′, a direct consequence of
(26)–(28) is that stability is garanteed∀λi > 0, i =
1, 2, . . . , 6, if the two following conditions are satisfied:

m∗⊤q∗′ < 2, (34)

m∗′⊤c∗′ < 2. (35)

Let us note that these conditions can always be verified.
The condition (34), which also holds in the original DVS,
expresses the perpendicular distance between the chosen
control point and the reference plane. Given that this plane
corresponds to the dominant plane of the object, this condi-
tion can be easily satisfied if the control point is chosen such
that its parallaxρ∗ ∈ R is sufficient small. In fact, one could
simply choose a point that hasρ∗ = 0 as the dominant plane
crosses the object. As for condition (35), it represents the
length of the projection ofm∗′ ontoc∗′. It can then be easily
satisfied by setting, e.g.,c∗′ = βm∗′/‖m∗′‖2, ∀β < 2. The
closed-loop system (29) is thus always locally exponentially
stable at the equilibrium,∀λi > 0. Furthermore, the behavior
of the translational control error is decoupled from the
rotational one, as shown in (30).

C. A Fully Decoupled Matrix

The obtained interaction matrix (19) is lower triangular
in the general case. This section presents a case of special
interest. Indeed, it occurs very often in practice and such
matrix is purely diagonal. Consider a planar object such that
its scaled normal vector isn∗ = [0, 0, 1/d∗]⊤, i.e., a plane
fronto-parallel to the reference frame whose perpendicular
distance is ofd∗ > 0. Let us choose the control point such
that m∗′ = [0, 0, 1]⊤ and setc∗′ = m∗′. As consequences,

1

z∗
= n∗⊤m∗′ =

1

d∗
, (36)

q∗′ = n∗, (37)

and the stability conditions (34) and (35) are satisfied.
Furthermore, the obtained interaction matrix (19) writes

L̄
∣∣
ε̄=0

= −





1
z∗

0 0 0 0 0
0 1

z∗
0 0 0 0

0 0 2
z∗

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2




. (38)

Therefore, a fully decoupled linear system (29) with strictly
negative diagonal elements is obtained∀λi > 0. Once again,
let us remark that such matrix is used only for analysis
purposes, i.e., it is not needed for servoing the robot.

IV. EXPERIMENTAL RESULTS

This section reports experimental results using both syn-
thetic and real data, simulating and using a camera-mounted
six-DoF robotic arm. In all cases, the control objective
consists in stabilizing the robot such that the current image of
the object coincides with its image captured at the reference
pose. The control error and control law are both calculated at
the signal level, i.e., they do not use either image featuresor
metric information of the object. Indeed, pixel intensities are
directly exploited to estimate all needed projective parame-
ters. The direct image registration technique described in[7]
is used for this purpose. Comparative results are presented
using the Direct Visual Servoing (DVS) and the proposed
decoupled DVS, all using a control gain ofλ = 0.4 and a
stop condition on the norm of the control errors of10−3.

A. Synthetic Data

This first set of experiments uses a nonplanar object. The
used target is indeed a hyperbolic paraboloid, also known as
horse’s saddle, whose center is placed 1m away from the ref-
erence camera pose. The displacement of the initial camera
pose relative to the reference one is of[0.17,−0.11, 0.01]
meters (norm of 0.2m, i.e., of 20% of the center’s depth)
in translation, and of[−0.1,−0.31, 1.04] radians (norm of
62.4◦) in rotation. All these information is obviously not
available for the control computation. The focal lengths are
set to 500 pixels, no skew, and the principal point as the
middle of the image, which has550 × 418 pixels. The
applied sampling period is of 30 ms, leading to a framerate
of 33.33Hz. The control point is chosen such thatm∗′ =
[0, 0, 1]⊤. For the sake of simplicity, all pixel intensities
within the region of interest of size 200×150 pixels (i.e.,
within the grid) are exploited, and no illumination variations



(a) reference pose (b) initial pose

(c) reference image (d) initial image

Fig. 2. Setup of the experiment using synthetic data. The target is nonplanar
(a horse’s saddle), and all pixels within the outlined image region (the grid)
are exploited. (Top) Configurations of the camera frame with respect to the
target, seen from different viewpoints. Only the exploitedpart of the object
is shown. (Bottom) Images as viewed by the camera at those relative poses.

have been imposed. The interested reader may refer to [7] for
numerous other estimation experiments, including varying
illumination conditions, different objects and color cameras.
The setup for this experiment is shown in Fig. 2.

1) DVS: This section presents the results obtained using
the reduced control error (13) under that setup. Let us remark
that such setup is particularly unfavourable for most 2D
visual servoing techniques due to the relatively large initial
rotational displacement around the~z-axis. This does not hold
for the DVS technique. Indeed, it successfully performs the
task accurately, whose convergence is established after 905
images without nearly any camera retreat. The corresponding
results are shown in Fig. 3. Nevertheless, one can observe
that there exists a coupling of the translational velocities with
rotational ones, in particularvx for such experiment.

2) Decoupled DVS: This section presents the results ob-
tained using the decoupled control error (16) withc∗′ = m∗′.
As for the DVS technique, it successfully performs the task
without nearly any camera retreat, whose convergence is now
established after only 762 images. The rate of convergence
is thus improved. Indeed, the coupling in the translational
velocities observed in the previous DVS is far less severe
using this technique. Furthermore, it fully disappears near
the equilibrium. See Fig. 4 for the corresponding results.

B. Real Data

This second set of experiments uses a planar object,
which is placed about 0.7m away from the reference pose.
The displacement of the initial robot pose relative to the
reference one is of[0.13,−0.23,−0.08] meters (norm of
0.27m, i.e., of about 38% of the depths) in translation, and
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Fig. 3. Direct visual servoing with respect to a nonplanar object. (Top)
Control inputs, i.e., the camera velocities. The translational velocities are
coupled with the rotational ones, in particularvx for such experiment.
(Bottom) Motion of the camera in the Cartesian space towards convergence.
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Fig. 4. Decoupled direct visual servoing with respect to a nonplanar
object. (Top) Control inputs, i.e., camera velocities. A decoupling behavior
of the translational velocities is observed as we compare them with Fig. 3.
(Bottom) Motion of the camera in the Cartesian space towards convergence.

of [−20.3, 2.17, 14.59] degrees (norm of 25◦) in rotation.
These are obviously unknown by the algorithms. To show the
robustness of the techniques, a coarsely calibrated webcamis
used. Indeed, the focal lengths are simply set to 420 pixels,
no skew and the principal point as the middle of the image,
which has320×240 pixels. This camera is placed on the end-
effector of a 6-axis robotic arm, and the hand/eye calibration
is also coarsely set. The framerate is of about 30Hz, which is
the maximum of the webcam. The chosen reference template
has70 × 70 pixels (to satisfy real-time constraints), and the
control point is chosen as its center. See Fig. 5 for this setup.

1) DVS: As in the previous set of experiments, the
reduced control error (13) is used here. The corresponding



(a) reference pose (b) initial pose

(c) reference image (d) initial image

Fig. 5. Setup of the the experiment using real data. It uses a planar object
and a coarsely calibrated camera-mounted robotic arm. (Top) Configurations
of the robot relative to the target. (Bottom) Images as viewed by the mounted
camera at those poses. All pixels within the outlined region are exploited.

results are shown in Fig. 6. Once again, the servoing task is
successfully performed, with convergence after 417 images.
Nevertheless, there exist a coupling of the translational
velocities with rotational ones.

2) Decoupled DVS: Again, the decoupled control error
(16) with c∗′ = m∗′ is used here. The task is also suc-
cessfully performed, with convergence after 309 images. The
rate of convergence is thus improved. The coupling behavior
previously observed is indeed reduced. See Fig. 7 for the
corresponding results.

V. CONCLUSIONS

This article has proposed a general intensity-based non-
metric visual servoing technique that decouples the error
dynamics. This new decoupled technique is general in the
sense that it deals with both planar and nonplanar objects, un-
der both translation and rotation displacements between the
reference and initial frames. The proposed technique directly
exploits the pixel intensities without extracting or matching
image features, does not require any metric information of
the object, and is proven to locally exponentially stabilize the
equilibrium state. Comparative results with a state-of-the-art
direct technique using a camera-mounted 6-DoF robotic arm
confirm the improvements. In future work we plan to exploit
the proposed framework for the control of other mechanical
systems, such as nonholonomic and underactuated robots.
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experiment. (Bottom) Motion in the Cartesian space towards convergence.
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