
Optimization of Humanoid Walking Controller:
Crossing the Reality Gap

Miguel Alexandre Campos Oliveira1 and Stephane Doncieux2

and Jean-Baptiste Mouret3 and Cristina Peixoto Santos4

Abstract— Humanoid locomotion remains a challenge be-
cause of the inherent instability of such robotic platforms.
Inspired from observations on animals, Central Pattern Gener-
ators have been proposed to support the generation of rhythmic
patterns able to make a robot smoothly walk while requiring
few computational power. Nevertheless, tuning such controllers
is challenging, in particular because small irregularities in
the walking pattern easily make the robot fall. Optimization
algorithms can be used to tune them in simulation, but the
transfer of such solutions to the real robot raises the reality
gap problem, as a solution efficient in simulation may well be
inefficient in reality. It is proposed here to use the transferability
approach to solve this problem. Its principle is to learn a model
of the transferability between simulation and reality while doing
several evaluations on the real robot. This model is then used to
estimate how well a controller will transfer onto the real robot
and the optimization process tries to optimize it besides other
cost functions related to locomotion and tested in simulation
only. The approach has been applied to the DARWIN-OP robot.

I. INTRODUCTION

Humanoid robots are highly unstable robotics platforms.
Making a humanoid robot move around in a robust fash-
ion still remains a challenge. Approaches like ZMP (Zero
Moment Point) [29], [24] have proved their efficiency in
a well controlled environment. Such approaches require a
high computational load as they require complex geometrical
computations to be performed at each time step. Likewise,
they require to know beforehand where the feet should be
placed. Although it may be appropriate in some situations,
it would be interesting to design controllers that require
less computational power and that are also more robust.
Drawing inspiration from how animals do indeed walk,
approaches based on Central Pattern Generators adopt a
completely different point of view [8]. Instead of computing
exactly the position of each part of the robot, they consist
in synchronized dynamical systems linked to leg motors and
that make them move in a rhythmic fashion. Using CPG

*This work is funded by FEDER Funding supported by the Operational
Program Competitive Factors - COMPETE and National Funding supported
by the FCT - Portuguese Science Foundation through project PTDC/
EEACRO/100655/2008. Miguel Oliveira is supported by grant CRO-BI-
2012

1,4 Miguel Oliveira and Cristina P. Santos are with Indus-
trial Electronics Department, School of Engineering, University of
Minho, 4800-058 Guimaraes, Portugal mcampos@dei.uminho.pt,
cristina@dei.uminho.pt

2,3Stephane Doncieux and Jean-Baptiste Mouret are with ISIR, Uni-
versité Pierre et Marie Curie-Paris 6, CNRS UMR 7222 4 place Jussieu,
F-75252, Paris Cedex 05, France doncieux@isir.upmc.fr,
mouret@isir.upmc.fr

for walking results then in a smoother walking pattern and
also requires much less computational power as all is needed
is to update the dynamics of the CPG, what is by far less
demanding than other geometrical based approaches.

CPG based controllers have been used in different kind
of legged robots, even quadruped [27], [18] and biped
robots. Most typical approaches when implementing CPGs
for bipedal walking use phase oscillators that are fed into
pattern generation layers [21], [1], [3], [25] or using neural
oscillators [19].

One of the main difficulties while using CPGs, consists in
finding out how to tune them to exhibit a particular motion
pattern. This is particularly critical when designing walking
controllers for humanoid controllers as they can easily fall.
Optimization tools are particularly interesting in this context
to automatically find the most appropriate set of parameters
and thus avoid a tedious manual tuning. Anyway, they raise
a difficult problem: as the system to optimize is highly non-
linear, appropriate methods mostly rely on metaheuristics,
e.g. evolutionary algorithms, and thus require a large amount
of tests. Such an approach is difficult to apply directly to the
real robot, because it would require a huge amount of time
and the robot could be damaged during the process, may it
be because of the large number of tests or because some of
them may put a great strain on the mechanics.

In this work, it is proposed to rely on a simulation to avoid
such problems. In this case, there is a risk of over-fitting to
features that are specific to the simulation, thus leading to a
reality gap, i.e. to a situation in which a controller works well
in simulation, while being completely inefficient on the real
robot. To avoid this problem, the transferability approach has
been used [22], [14]. This approach consists in performing
some experiments on the real robot in order to learn a model
of the transferability of controllers between simulation and
reality. This model is then used in the optimization process in
order to favor controllers that do transfer well. The approach
is tested on a DARWIN-OP robot.

II. RELATED WORK

A. Humanoid walking with a CPG

Typical solutions to the problem of biped locomotion
make extensive use of the knowledge of the robot and of
its environment. Most of them are model-based solutions
and employ inverse kinematics and kinetics in order to
generate feet placement sequences, according to determined
constraints established through some stability criterion, as
the popular Zero-Moment Point (ZMP) [29], [24].

Bio-inspired approaches appear as possible alternatives
to humanoid locomotion generation with quite successful
results and less requirements. One such approach is based
on the concept of Central Pattern Generators (CPGs), and
exploits the characteristics of intraspinal neural networks
in vertebrates [8]. These generate rhythmic activations for
walking motor patterns.

There are several key points which make CPGs good
candidates for legged robot control and can potentially gen-
eralize their ability in dynamic environments. These include
(see [8] for a review): 1) CPGs produce stable rhythmic
patterns with respect to their limit cycle behavior, returning
to the normal stable state after transient perturbations. 2)
They typically have a small number of control parameters,
reducing the dimensionality of the control problem on higher
level control. 3) Small changes in control parameters, even
if abrupt, result in smooth modulations for the produced
trajectories. 4) CPGs are well suited to integration of sensory
feedback pathways [12], [1]. This provides the ability for
the robots to tackle unexpected disturbances and thus make
them able to work in dynamic and not completely known
environments.

In [7], the authors proposed a CPG-based locomotion con-
troller for Darwin-OP robot capable of achieving a velocity
of ≈ 10cm/s in simulation. In [25], it is also proposed
a locomotion controller based in CPGs. They achieved a
8cm/s velocity from a hand tuned CPG parameterization in
simulation, and were able to optimize the robot velocity to
10(cm/s) using the multi objective NSGA-II algorithm.

However, the lack of a defined framework promoted the
development of several CPG approaches [2], [26], [20],
[23], [5], [28], [16]. Furthermore, many of these approaches
rely on hand tuned ad-hoc solutions. Typically, the large
number of parameters needed for robot locomotion and the
lack of knowledge about the dynamical behavior between
the robot and environment makes hand-tuning a difficult
task for locomotion beyond simple flat terrain walking and
navigation [15].

B. Crossing the reality gap

Many authors note that solutions optimized in simulation
often do not work well once tested on the real robot [9],
[30], [22], [13]. This issue, termed the “the reality gap” [9],
is critical to enable the adoption of optimization algorithms
in engineering: optimizing directly on the real device is too
slow to be practical, but optimizing in simulation has a high
probability of leading to useless solutions.

The most intuitive idea to cross this gap is to put the
blame on simulators and to improve their accuracy. Several
authors proposed to automatically optimize it, for instance
by learning a surrogate model of the objective function [10],
or to automatically improve an existing simulator [4], [30]
with tests in reality. Nevertheless, automatically optimizing a
simulator that is general enough to be used to optimize solu-
tions is at least as challenging as creating good optimization
algorithms for robotics. Moreover, more accurate simulators

often means slower running times, which may cancel out the
benefits of simulation.

In a radical proposition, Jakobi proposed to make simu-
lator less accurate by hiding badly modeled phenomena in
in an “envelope of noise”. Despite some success with the
evolution of a controller for an hexapod robot [9], Jakobi did
not precisely describe how to choose what has to be noised
and how this noise should be applied. For instance, it is
hard to know how to add noise when optimizing locomotion
controllers for humanoid robots.

The transferability approach is a recent alternative to cross
the reality gap. It led to promising results when optimizing
controllers for a wheeled robot [14], a quadruped [14], [22]
and a hexapod [13]. This approach relies on the observation
that simulators make mistakes but they are also often right.
For instance, the rigid body simulator ODE have a very
simple model of viscous joint damping, but systems with low
viscous damping coefficients are accurately simulated [6].
The goal of the transferability approach is to make the
optimization algorithm aware of such limits of the simulation
thanks to an automated process. To this end, a few controllers
are transferred during the optimization and a regression
algorithm (e.g. a SVM or a neural network) is used to
approximate the function that maps behaviors in simulation
to the difference of performance between simulation and
reality. To use this approximated transferability function, the
single-objective optimization problem is transformed into a
multi-objective optimization in which both performance in
simulation and transferability are maximized.

III. METHOD

A. Fitness Specification

Based on the literature [15] and on our expertise in
dynamical systems, the following objectives are used to
evaluate the walking gait performance:

• COP edge distance, fCOP: the average distance of the
COP to the edge of the foot support polygon, DCOP,
when the foot is in stance phase is to be maximized.

• Force, fF: a good gait should keep the feet parallel to
the floor; have a minimum impact force between the
feet and the floor when the stance starts, and have the
measured force of the four built-in force sensors in each
foot, uniformly distributed.

• Displacement, fD: a gait is considered better if it
achieves higher frontal displacements.

• Ground Clearance, fGC: the robot should raise its feet
while walking. In order to calculate the highest distance
from the ground of a swing foot, we take the maximum
distance to the ground of the lowest sensor of a swing
foot.

• Transferability, fT: as defined in section III-B.
Limb trajectories are shaped by varying the CPG parame-

ters. In order to achieve biped locomotion for a biped robot
that is stopped and has to start walking, we have considered
a 3 staged evolution. Each stage is performed during a
certain amount of time and different motions are sequentially

Fig. 1. Proposed Reality GAP Algorithm.

added in each stage. There is no interruption between the
stages, meaning that motions set in one stage are kept to the
following stages. Further, different objectives are evaluated
during the stages, as follows:

• Balancing Stage: Balancing and Pelvis rotation
motions. Objectives: max((fCOP)), min((fF)) and
min((fT)). Time: t ≤ 5 s;

• Stepping Stage: add Flexion and Knee yielding mo-
tions. Objectives: max(fGC), min(fF) and min(fT).
Time: 5 < t ≤ 9 s;

• Walking Stage: all motions. Objectives: max(fD),
min(fF) and min(fT). Time: 9 < t ≤ 20 s.

B. Transferability for a humanoid robot
Each candidate solution i is described by a vector of 5

values Si = {fDsi, fFsi, xsi, ysi, φsi}, where fDsi corresponds
to the displacement, fFsi to the force sensor value, xsi to the
forward displacement, ysi to the lateral displacement and φsi
to robot’s pitch, φs. If a candidate solution is tested on the
real robot, the same values can be computed on the real robot,
leading to an evaluation of the transferability (the “size” of
the reality gap): gi =

∑
|Si−Ri|, where Ri corresponds to

Si but measured on the real robot.
The set of couples (Sj , gj), where j is a transferred

controller, make a database that is used to train a Support
Vector Machine (SVM). Once trained, this predictor can
predict gi for each value of Sj .

C. Optimization Loop
Figure 1 presents the algorithm’s fluxogram, each step

being defined as follows:

1) Initialization
a) The initial population, of size np, is generated

out of a hand tuned solution which is known to
be able to walk on the real robot [25].

b) All individuals pi ∈ P, i = {1, . . . , np} are
executed in simulation, yielding Si.

c) ns individuals are chosen from population P .
First we choose the best individual (with higher
fitness functions), then, we incrementally select
the most different w.r.t. those already chosen. By
choosing the most different, we are increasing the
diversity of the elements stored in the Database
and then used to train the transferability function.
The difference is computed according to: di =∑ns

j=1 |Si − Sj |, that, is, we incrementally select
the individuals with higher di. Where i indicates
those from the population, i ∈ {1, . . . , np}, that
are being compared with j already chosen, j ∈
{1, . . . , ns}.

d) Each of these selected individuals, pi ∈ P, i =
{1, . . . , ns}, is executed in reality, yielding Ri =
{fDri, fFri, xri, yri, φri}.

e) Compute the reality gap gi for each individual
pi, between the performance in simulation and in
reality: gi =

∑
|Si −Ri|.

f) For each individual pi, a Database entry, Di =
{pi, Si, Ri, gi}, is created. This Database is used
to maintain a record of all the individuals already
executed in reality (and necessarily in simula-
tion).

g) Update the Database size, m, to the current
number of elements: m← m+ ns.

2) Update Transferability function
The SVM is trained with all the m individuals in
the Database and yields an updated transferability
Function fT (p).

3) Optimization The NSGA-II loop is executed for ne
generations:

a) NSGA-II Optimization loop for pi ∈ P, i =
{1, . . . , np}:
i) Evaluate individual pi in simulation.

ii) Acquire Si.
iii) Compute the objective functions.
iv) Generate the new population based on NSGA-

II algorithm.
4) Selection

a) For each individual pi ∈ {1, . . . , ne × np},
calculate di =

∑m
j=1 |Si − Sj |, where j iterates

the elements in the Database.
b) Select the k individuals with higher di, so as to

maximize the diversity.
5) Execution in Reality

a) Execute individuals pi, i ∈ {1, . . . , k} in reality.
b) Observe Ri.
c) Compute the reality gap, gi, for each individual:

gi = |Si −Ri|.

6) Update Database
a) Create a new entry Di for each of the new k

executed individuals: Di = {pi, Si, Ri, gi}.
b) m← m+ k.
c) If the stop criteria is not met - the number of gap

iterations, ng , is not reached - return to point 2.
7) Selection of the Initial Population if the number of

gap iterations, ng , is not reached, it is necessary to
calculate the new population np for the Simulation
NSGA-II loop. The selection of the individuals for the
new population respect the following criterions:

a) The individuals that were able to perform the
walking stage in the real robot are selected.

b) The individuals from all np populations of all ne
generations of one ng gap iteration, with the best
ft are selected. To guarantee that only individuals
with good ft are chosen, we pick the individuals

with ft >

ne∑
i=1

x̄i

ne
, and chose those with the best

ft and x̄i =

np∑
j=1

fTj

np
, where i = {1, . . . , ne}

Best simulation solutions are often not transferable to
reality because they typically exploit every details of the sim-
ulation, whereas differences between simulation and reality
lies in these details. To be able to deal with possible con-
flicting solutions and search for relevant trade-off solutions,
we apply a multi-objective approach,that considers several
task-dependent objectives and a transferability objective.

D. CPG based control architecture

The locomotion controller used in this work relies on
a Central Pattern Generator (CPG) capable of generat-
ing bipedal locomotor behaviors, such as walking for-
ward/backwards and turning, as described in [17]. The
system could easily integrate local sensory feedback. The
proposed CPG controls a single leg, divided in rhythmic and
unit motion pattern generators.

The use of a phase oscillator as a rhythmic generator
allowed for a simple contralateral coupling between the
left and right CPGs, maintaining the correct coordination
between the generated locomotor trajectories in both legs
by producing each a driving rhythmic signal φi in strict
alternation (i for left/right leg). Motion pattern generators
receive this rhythmic input and produce the corresponding
joint trajectory, z, in a synergistic approach of modular
motion primitives encoded as a set of non-linear dynamical
equations with well defined attractor dynamics, similarly to
other works [23]. Basic parameterized motion primitives, e.g.
sine and bell-shaped motions (implemented as Gaussians),
were considered.

The joint angle value zi,j , for leg i and joint j, is:

żi,j = −α (zi,j −Oi,j) +
∑

fm
j

(
zi,j , φi, φ̇i

)
. (1)

The final motor program in a single joint results from the
sum of rhythmic motion primitives fmj around a center point
Oi,j . α is a relaxation parameter for the offset. j specifies the

joint: hip roll (hRoll), hip yaw (hYaw), hip pitch (hPitch),
knee (kPitch), ankle roll (aRoll) and ankle pitch (aPitch); and
i specifies the left or right leg.

The balancing motion is controlled as follows:

fbalancing
hRoll = −Abalancingω sin (φi) (2)

fbalancing
aRoll = −fbalancing

hRoll (3)

i specifies the left or right leg, φi is the phase of left or
right CPG, and parameter Abalancing specifies the amplitude
of the lateral displacement motion.

Leg flexion motion is performed by the unloaded leg.This
is shown in eq. (4) for hip, eq. (5) for knee, and eq. (6) for
ankle.

fflex
hPitch =

Ahipωφi

σ2
exp

(
− φ2

i

2σ2

)
(4)

fflex
kPitch = −Akneeωφi

σ2
exp

(
− φ2

i

2σ2

)
(5)

fflex
aPitch = −

(
fflex

hPitch + fflex
kPitch

)
(6)

The amplitude of the bell trajectory is specified by parameter
Ahip for the hip and Aknee for the knee.

The pelvic rotation is performed at the hip yaw joints,
described by :

f rotation
hYaw = −Arotationω sin

(
φi +

π

2

)
(7)

The propulsion of the body during locomotion stems from
leg motions in the sagittal plane, alternately moving the
contralateral legs forward and backward, like a compass:

fcompass
hPitch = −Acompassω sin

(
φi +

π

2

)
(8)

fcompass
aPitch = −fcompass

hPitch (9)

The overall result of all the motions is straight bipedal
walking. Here we summarize all the motions assigned to
each joint:

żhRoll = −α(zhRoll −OhRoll) + fbalancing
hRoll , (10)

żaRoll = −α(zaRoll −OaRoll) + fbalancing
aRoll , (11)

żhYaw = −α(zhYaw −OhYaw) + f rotation
hYaw (12)

żhPitch = −α(zhPitch −OhPitch) + fflex
hPitch + fcompass

hPitch (13)

żkPitch = −α(zkPitch −OkPitch) + fflex
kPitch + fyield

kPitch (14)

żaPitch = −α(zaPitch −OaPitch) + fflex
aPitch + fcompass

aPitch (15)

Further details about this approach can be found in [17].
A correct tuning of parameters, p, is necessary for achiev-

ing bipedal walking in the robot. The upper an lower bounds
of each parameter are shown in Table I.

IV. EXPERIMENTAL SETUP

A. Implementation on the Darwin-OP

The Darwin-OP is a lightweight humanoid robot with 20
Degrees of Freedom (DOFs) equipped with eight Force-
sensing Resistors on the soles of the feet. In this work
trajectories were generated for 6 DOFs per leg.

Experiments were carried out on the Darwin-OP robot
and on the Webots physics simulator. The robot is expected
to move in flat floor straightforward during 20 s. At each
sensorial cycle (16 ms), sensory information is acquired. The
system is integrated considering the Euler method with 1 ms

TABLE I
PARAMETER BOUNDS

Parameter Abalancing Ahip Aknee σ Arotation Ayield Acompass ωsw(rad/s) OhRoll OhPitch OkPitch OaRoll OaPitch

Lower bound (l) 0.01 0.01 0.01 π/4 0.01 0.01 0.01 1.57 -50 -19 0 -50 -19

Upper bound (u) 40 80 110 π/4 100 8 80 6.28 40 19 100 40 19

fixed integration step. At the end of each solution evaluation,
the robot is set to its initial position and rotation, so that the
initial conditions are equal for the evaluation of all solutions
of all populations in real or simulated environment.

To assure that at least one solution has a good performance
in the real robot, we introduce a hand-tuned solution in the ns
solutions which we a priori know that is able to walk both in
simulation and in the real robot. This hand tuned solution was
determined after some time in order to produce a solution
able to achieve the best displacement both in simulation
and in the real robot, while still producing good results
from a functional perspective. That is, a locomotion that
visually looked stable and smooth without producing large
oscillations in pitch or in roll. This hand-tuning required the
know-how of someone used to deal both with CPGs biped
locomotion.

For the reality gap process we consider, np = 100, ne =
30, k = 5, ng = 12. The SVM uses the polynomial kernel
with a parameter degree of 2. To train the SVM with the
first data, we test ns = 20 solutions in the real robot. All of
them are chosen from the initial population of the NSGA-II,
in such way that the most different are selected.

The ARToolkit [11] is used to calculate the displacement
of the Darwin robot. A camera is mounted on the ceiling
faced downwards. We rely on 1 marker in top of the robot
head. We are only interested in frontal and lateral robot
displacement. In case the marker position is not acquired or
the returned confidence factor is small, the system assumes
it did not change.

B. Treatments

The following treatments were considered in the simulator
and in the real robot, by considering the following objectives:

• Exp1 - max(fD), min(fF) and min(fT)
• Exp2 - max(fD), min(fF), max(fGC) and min(fT).
• Exp3 - max(fD), max(fGC) and min(fT). The Force

was set as a constraint.
Five experiments have been run for each treatment. Fur-

thermore, each solution has been tested 5 times both in
simulation and in the real robot.

A control treatment, SimOnly, was considered in which
no experiment was done on the real robot. It was inspired
from [25] and considered the following objectives: max(fD),
min(fF) and max(fGC). 10 experiments were performed and
afterwards the transferability (fT) for the 10 non-dominated
sets of solutions were calculated. Among these, the 10
solutions with best transferability were selected and run on
the real robot.

V. RESULTS

A. Walking performance achieved

Figure V-A depicts the results of the simulated dis-
placement for the last non-dominated population of each
experiment(fDs) (blue circles) and the real displacement
(fDr) of all solutions that were able to walk (red crosses),
for each of the treatments. Considering the walking behavior
in simulation, the SimOnly and the Exp 3 were able to
obtain the solutions with best displacement. However, note
that SimOnly was not able to generate a single solution that
walks on the real robot. The Exp 1 and Exp 2 treatments
obtain almost similar values of displacement in the real robot.
It is important to emphasize that 1) controllers able to make
the robot move were generated by the proposed approach
and 2) without any manual tuning between simulation and
reality.

Figure V-A(b) shows the percentage of solutions that were
able to make the real robot walk without falling. The Sim
Only experiment was unable to find solutions that walk in
the real robot. Exp 1 and Exp 2 treatments obtain the highest
number of solutions that walk. This number is lower for Exp
3 experiment, though this was able to find solutions with
better displacement (see Figure V-A(a)).

Figure 3 depicts, for the real robot tests, the values of
CoM lateral and frontal displacement of the hand tuned
H solution (red dashed line) and the Si solutions.Si are
solutions that achieved the maximum displacements for Expi

Fig. 2. Mean value (blue circle) and max and min (errorbar) of a) the
displacement for the S values for the simulation. Mean value (red x) and
max and min (errorbar) of the displacement values for S the real robot. b)
k solutions percentage that were able to walk.

in simulation while being able to make the real robot walk.
These solutions are considered as risky solutions, as the
displacement was considered in priority on other functions
rewarding the stability.

Fig. 3. Frontal and Lateral CoM displacements values of the H hand
tuned solution (red dashed line), and the best S1 solution (solid blue line),
S2 solution (dashed green line) and S3 solution (dotted black line).

H (red dashed line) has a better frontal displacement than
S1 and S2 solutions but similar to the S3 solution. However,
the hand tuned solution has a much higher lateral displace-
ment compared to any of these solutions. For instance, the
S3 solution has a very low lateral displacement and a very
high frontal one. These values are displayed on Table II.
This shows up the obtained improvement in the performance
criteria.

B. Functional Gait Analysis

14 14.5 15 15.5 16 16.5 17 17.5 18

−0.1

0

0.1

R
o

ll
(r

a
d

)

14 14.5 15 15.5 16 16.5 17 17.5 18

−0.1

0

0.1

P
it

c
h

(r
a
d

)

14 14.5 15 15.5 16 16.5 17 17.5 18
0

2000

4000

F
o

rc
e

14 14.5 15 15.5 16 16.5 17 17.5 18
0

0.005

0.01

time(s)

f G
C

r(m
)

Fig. 4. Roll, Pitch and Force values of the H hand tuned solution (red
dashed line), and the best S1 solution (solid blue line), S2 solution (dashed
green line) and S3 solution (dotted black line).

In the following, the impact of the evolutionary approach
on the roll, pitch and force measures made on the real robot
is studied. These are assessed through the built-in gyroscope
and accelerometer sensors of the robots. In the top panel
of figure 4, the mean roll of the solutions is similar (H :
−0.009, S1 : −0.0034, S2 : 0.0016, S3 : 0.005) but the
roll of the hand tuned solution presents a higher oscillation

(H : 0.25, S1 : 0.22, S2 : 0.24, S3 : 0.21). The third panel
depicts the values of the 4 left foot sensors of both solutions
during the locomotion. In order to simplify the visualization
we sum the value of the 4 left foot sensors. We can see that
the S2 solution has a tendency to have force during longer
periods of time in the robot left foot, and stance periods
increase. This means that the robot rises less times its foot
(similar behavior for right foot), but rather drags them. On
the other hand, solution S1 and S3 are solutions with well
identified stance and swing phases.

In the second panel of Figure 4, the hand tuned solution
shows a lower mean pitch (H : −0.068, S1 : −0.03, S2 :
−0.03, S3 : −0.039), meaning that the robot slightly tilted
forward comparatively to the S solutions, which are more
vertical. Furthermore, the pitch oscillation of the S solutions
is lower than the one of the hand-tuned solution (H : 0.316,
S1 : 0.22, S2 : 0.21, S3 : 0.26). Regarding the pitch, one
can see that the S solutions were able to perform a smoother
locomotion in despite these are risky solutions which aim
was to improve the displacement.

C. Sensitivity Analysis

In this section we are interested in verifying if there is any
relationship between the CPG parameters and the obtained
reality gap. In order to verify which CPG parameters most
influence the gap, we verify the correlation between the gap
(g) and the parameters of the solutions that were tested in
the real robot and so belong to the database.

The correlation between the parameters and reality gap
(g) is assessed by computing the Pearson correlation coef-
ficient (R) as a summary statistic. Table III presents the R
coefficients between the parameters and the g, as well as
the corresponding p-values (p) for the statistical significance
of the association. The statistical significant associations
(p < 0.05) and the strongest correlations (R > 0.5) are
highlighted. The highest correlation is obtained for OkPitch

(R = −0.52). This means that by increasing the OkPitch

value (flexing the knee joint) we decrease the value of the g,
therefore reducing the reality GAP. Thus, this reality GAP
problem seems to be correlated to the posture.

VI. DISCUSSION AND CONCLUSION

The transferability approach allowed a multi-objective
optimization algorithm to optimize CPG parameters in sim-
ulation while ensuring that a least some of the evolved
solutions do indeed work on the real robot.

Despite the use of the transferability objective, significant
differences can still be observed between the behavior in
simulation and on the real robot. This suggests that the
webots simulator used in these experiments could probably
be improved to generate a behavior that is closer to that
of the real robot. The transferability model, by highlighting
what behaviors do transfer and what behaviors don’t, could
actually be used by the simulation designers to find out which
are the less precisely modeled parts of the simulation and
then update them.

TABLE II
H AND Si SOLUTIONS WITH THE BEST DISPLACEMENT FOR EACH EXPERIMENT i.

Experiment Pitch Roll COM Objective functions
mean ± std amplitude mean ± std amplitude Frontal Lateral fD fGC fF fT

S1(run3) -0.03±0.07 0.22 0.003±0.06 0.22 0.29 0.07 0.33 0.006 0.55 0.82
S2(run2) -0.03±0.06 0.21 -0.002±0.05 0.24 0.32 0.049 0.23 0.006 0.56 0.85
S3(run3) -0.039±0.07 0.26 -0.005±0.05 0.21 0.71 0.048 0.6 0.006 0.6 0.97
H -0.068 ± 0.08 0.316 -0.009 ± 0.069 0.25 0.65 0.29 0.16 0.006 0.74 0.8005

TABLE III
PEARSON CORRELATION COEFFICIENTS (R) AND THE CORRESPONDING P-VALUES (p) FOR THE STATISTICAL SIGNIFICANCE OF THE ASSOCIATION

BETWEEN THE PARAMETERS AND THE GAP

Abalancing AflexhPitch AflexkPitch σ Arotation Ayield Acompass ωsw(rad/s) OhRoll OhPitch OkPitch OaRoll OaPitch

R 0.057 -0.41 -0.24 -0.029 0.027 0.33 -0.05 -0.19 0.069 0.23 -0.52 0.42 -0.41

P 0.74 0.011 0.15 0.866 0.873 0.048 0.750 0.257 0.687 0.167 0.001 0.01 0.012

Another perspective of this work would be to better exploit
the non dominated set of solutions generated at the end of
an experiment in order to choose, depending on the context,
the fastest controller, the more stable one or a trade-off
between the two. Generating all these solutions in a single
optimization run is actually another advantage of multi-
objective evolutionary algorithms over a careful hand tuning
resulting in a single solution.

REFERENCES

[1] S. Aoi, N. Ogihara, T. Funato, Y. Sugimoto, and K. Tsuchiya.
Evaluating functional roles of phase resetting in generation of adaptive
human bipedal walking with a physiologically based model of the
spinal pattern generator. Biol. Cybernetics, 102:373–387, 2010.

[2] S. Aoi and K. Tsuchiya. Adaptive behavior in turning of an oscillator-
driven biped robot. Auton. Robots, 23(1):37–57, July 2007.

[3] S. Aoi and K. Tsuchiya. Generation of bipedal walking through
interactions among the robot dynamics, the oscillator dynamics, and
the environment: Stability characteristics of a five-link planar biped
robot. Aut. Robots, 30(2):123–141, 2010.

[4] J. Bongard, V. Zykov, and H. Lipson. Resilient Machines Through
Continuous Self-Modeling. Science, 314(5802):1118–1121, 2006.

[5] S.-J. Chung and M. Dorothy. Neurobiologically Inspired Control of
Engineered Flapping Flight. ArXiv e-prints, May 2009.

[6] E. Drumwright, J. Hsu, N. Koenig, and D. Shell. Extending open
dynamics engine for robotics simulation. In Simulation, Modeling, and
Programming for Autonomous Robots, pages 38–50. Springer LNCS
6472, 2010.

[7] I. Ha, Y. Tamura, and H. Asama. Gait pattern generation and
stabilization for humanoid robot based on coupled oscillators. In IEEE
IROS, pages 3207–3212, 2011.

[8] A. J. Ijspeert. 2008 special issue: Central pattern generators for
locomotion control in animals and robots: A review. Neural Networks,
21(4):642–653, 2008.

[9] N. Jakobi. Evolutionary robotics and the radical envelope-of-noise
hypothesis. Adaptive behavior, 1997.

[10] Y. Jin. A comprehensive survey of fitness approximation in evolution-
ary computation. Soft computing, 9(1):3–12, 2005.

[11] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for
a video-based augmented reality conferencing system. In Proceedings
of IWAR, 1999.

[12] Y. Kim, Y. Tagawa, G. Obinata, and K. Hase. Robust control of cpg-
based 3d neuromusculoskeletal walking model. Biological cybernetics,
pages 1–14, 2011.

[13] S. Koos, A. Cully, and J.-B. Mouret. Fast damage recovery in robotics
with the t-resilience algorithm. arXiv preprint arXiv:1302.0386, 2013.

[14] S. Koos, J.-B. Mouret, and S. Doncieux. The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions
on Evolutionary Computation, 17(1):122–145, Feb 2013.

[15] J.-Y. Lee, M.-S. Kim, and J.-J. Lee. Multi-objective walking trajecto-
ries generation for a biped robot. In IEEE IROS, 2004.

[16] V. Matos and C. P. Santos. Omnidirectional locomotion in a quadruped
robot: A cpg-based approach. In IEEE IROS, pages 3392 –3397, 2010.

[17] V. Matos and C. P. Santos. Central pattern generators with phase reg-
ulation for the control of humanoid locomotion. Business Innovation
Center Osaka, Japan, 2012.

[18] C. Maufroy, H. Kimura, and K. Takase. Integration of posture and
rhythmic motion controls in quadrupedal dynamic walking using phase
modulations based on leg loading/unloading. Auton. Robots, 28:331–
353, April 2010.

[19] S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo. Three
dimensional bipedal stepping motion using neural oscillators-towards
humanoid motion in the real world. In IEEE IROS, 1998.

[20] J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng. A biologically in-
spired biped locomotion strategy for humanoid robots: Modulation of
sinusoidal patterns by a coupled oscillator model. IEEE Transactions
on Robotics, 24(1):185–191, 2008.

[21] J. Morimoto, G. Endo, J. Nakanishi, S. Hyon, G. Cheng, D. Ben-
tivegna, and C. Atkeson. Modulation of simple sinusoidal patterns by
a coupled oscillator model for biped walking. In IEEE ICRA, 2006.

[22] J.-B. Mouret, S. Koos, and S. Doncieux. Crossing the reality gap: a
short introduction to the transferability approach. In Proceedings of
the workshop ”Evolution in Physical Systems”. ALIFE’2012., 2012.

[23] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato. Learning from demonstration and adaptation of biped
locomotion. Rob. and Aut. Systems, 47(2-3):79 – 91, 2004.

[24] K. Nishiwaki and S. Kagami. Simultaneous planning of com and zmp
based on the preview control method for online walking control. In
11th IEEE-RAS International Conference on Humanoid Robots, 2011.

[25] M. Oliveira, V. Matos, C. P. Santos, and L. Costa. Multi-objective
parameter cpg optimization for gait generation of a biped robot. In
IEEE ICRA, 2013.

[26] L. Righetti and A. J. Ijspeert. Programmable central pattern generators:
an application to biped locomotion control. In IEEE ICRA, 2006.

[27] L. Righetti and A. J. Ijspeert. Pattern generators with sensory feedback
for the control of quadruped locomotion. In IEEE ICRA, 2008.

[28] K. Seo, S.-J. Chung, and J.-J. Slotine. Cpg-based control of a turtle-
like underwater vehicle. Autonomous Robots, 28:247–269, 2010.

[29] M. Vukobratović and B. Borovac. Zero-moment point—thirty five
years of its life. International Journal of Humanoid Robotics,
1(01):157–173, 2004.

[30] J. Zagal and J. Ruiz-Del-Solar. Combining simulation and reality
in evolutionary robotics. Journal of Intelligent and Robotic Systems,
50(1):19–39, 2007.

