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Abstract— We present a developmental approach that allows
a humanoid robot to continuously and incrementally learn
entities through interaction with a human partner in a first
stage before categorizing these entities into objects, humans or
robot parts and using this knowledge to improve objects models
by manipulation in a second stage. This approach does not
require prior knowledge about the appearance of the robot, the
human or the objects. The proposed perceptual system segments
the visual space into proto-objects, analyses their appearance,
and associates them with physical entities. Entities are then
classified based on the mutual information with proprioception
and on motion statistics. The ability to discriminate between
the robot’s parts and a manipulated object then allows to
update the object model with newly observed object views
during manipulation. We evaluate our system on an iCub robot,
showing the independence of the self-identification method on
the robot’s hands appearances by wearing different colored
gloves. The interactive object learning using self-identification
shows an improvement in the objects recognition accuracy with
respect to learning through observation only.

Key-words: developmental robotics, incremental learning,
robot self-identification, interactive object exploration

I. INTRODUCTION

Future service robots will need the ability to work in
different human environments that cannot be predicted in
advance. Serving humans will require a capability to detect
many different objects and to learn about them. Ideally,
robots should be able to learn about objects without constant
or dedicated supervision, but rather like children do, during
interaction with adults and by manipulating objects [1].

Objects appearances can be learned through observation.
However, more complete objects representations are re-
quired, when a robot needs to exploit objects for accom-
plishing tasks. This information can be essentially retrieved
through active object exploration [2]. Manipulation provides
an opportunity to gather an object appearance from differ-
ent viewing angles and scales by turning the object and
approaching to a camera. However, during manipulations,
objects are often partly covered by a robot’s or human hand,
and thus the ability to distinguish between features that
belong to the robot, the human, and the manipulated object,
is crucial. This paper focuses on this issue: we propose an
approach to enhance learning through object manipulation
and categorization of visible entities into robot’s parts, hu-
man parts, and manipulable objects. The interplay of the
implemented modules is shown in Fig. 1.
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Fig. 1. The main modules of the proposed system.

Self-identification has been used in various applications,
as it endows the robot with a better control of its body [3], it
facilitates interaction with humans and objects. The ability to
distinguish between several individuals or sources of motion
also gives the robot an opportunity to understand the dynamic
of its environment and to interact with several persons [4].

Among the variety of robot self-recognition methods, most
algorithms are based on local approaches or prior knowl-
edge. Some strategies impose restrictions on the change of
motors configurations during self-recognition. Others exploit
a predefined appearance of the robot’s body or a prede-
fined pattern of the robot’s motion that simplifies the self-
identification [3]. Since these techniques are not independent
of the appearance of the robot’s body and behavior, they
cannot be easily generalized over new end-effectors and they
cannot recognize robot’s parts extended by grasped tools, that
would be useful to increase the robot capabilities.

Following a developmental robotics approach, we take
inspiration from the sensorimotor developmental stage in hu-
mans. Observations show, that at the beginning of life, infants
learn about own body through simple repetitive movements,
and then spend a lot of time by exploring surrounding objects
through interaction [5]. These exploratory actions become
effective, once toddlers learn to control and recognize their
own body [6]. Our preliminary experiments investigating this
issue with the iCub robot are presented in [7].

In this paper we propose a self-identification, categoriza-
tion, and learning method which is able to differentiate and to
memorize appearances of objects, humans, and robot’s parts.
The algorithm builds upon our previous learning approach
[8] and introduces new elements integrating the robot’s



actions into the learning process and improving the final
learning performance. Our algorithm does not require prior
knowledge about the robot or objects appearances, robot’s
body model (kinematics or dynamics), nor the functional
description of its joints, and is thus easily adaptable to
different robots.

The paper is organized as follows: Section 2 gives a brief
overview of the related work on robot self-discovery and its
applications; the proposed approach is detailed in Section 3;
the performed experiments and their evaluation are reported
in Section 4; the last Section is devoted to conclusions and
future work.

II. RELATED WORK
Self-identification has been performed using several ap-

proaches. It can be achieved based on a known robot’s
appearance, or a predefined pattern of the robot’s motion
[3]. The identification of a robot’s hand can be also based
on temporal contingency, for example, by learning the time
delay between the initiation of the robot’s movements and
the emergence of its parts in the visual field, as proposed in
[4]. However, methods based on time delay are often limited
to one active motion source at a time.

The identification of robot’s parts without prior knowledge
can be based on correlation between the proprioceptive and
sensory information. This information can be analyzed dur-
ing head-arm movements, as performed in [9]. The authors
analyse the speed of visual motion and of the robot’s joints
to recognize the robots arms and learn its appearance.

A system discovering robot’s hands during natural interac-
tion with a human is presented in [10]. Mutual information
is used to identify which salient region of the visual space
can be influenced by the robot’s actions: the algorithm
analyzes the visual input and proprioceptive sensing. Since
it is designed to detect humans and robot’s parts, it focuses
on regions that are close to the sensor and move fast.

Assuming knowledge of the robot’s body, several studies
exploit the robot’s actions for object exploration. The decom-
position of scene into objects by means of interactive actions
is proposed in [11]. In [12], perception and interaction are
integrated for autonomous acquisition of kinematic structures
of rigid articulated objects. The interactive learning of objects
features and object-specific grasping knowledge is performed
in [13]. Robots actions are also used to improve object
recognition in ambiguous situations. Having several similar
objects, interaction can be used to turn one object into a
representative perspective that allows to recognize it [14].

In our approach, we do not focus on the selection of a
particular action to act on objects, or use of actions for object
segmentation; we rather attempt to learn objects appearances
in between actions and during manipulations, while the
objects are grasped. As a consequence, the discrimination
between manipulated objects, the robot’s and human parts is
fundamental.

III. PROPOSED METHOD
Our approach detects proto-objects as salient regions of the

visual space, incrementally encodes their appearance, and as-

sociates them with physical entities. The learning algorithm
is based on our previous work on object learning through
observation [8], but it has been improved with Bayesian
filtering in order to enhance temporal coherency of object
recognition and enhanced with a capability of categorization
and interactive learning. Entities are classified into robot’s
hands, human hands, and manipulable objects. The pose of
each object entity, its dimensions, and its localization in
the robot’s space are estimated in order to plan the robot’s
actions. Finally, the object learning is improved through
manipulation using the outcome of categorization.

As input data, we use color and depth images from a RGB-
D sensor (Kinect) and robot’s motors states. The complete
experimental setup will be described in section IV.

A. Segmentation of the visual space

The visual attention in our approach is based on motion;
we therefore begin proto-object detection by estimating
moving regions by image differencing. Among all moving
regions, we ignore whose located far from the robot accord-
ing to the constraints of the reachable area. In remaining
regions, GFT-points are extracted and grouped into clusters
of coherently moving points. Each cluster is considered a
proto-object and tracked in time. The contours of proto-
objects are refined based on the depth variation of the
visual field. The processing steps are detailed in [8] and
summarized in Fig. 2.

B. Robot actions

Before interaction, we localize proto-objects in the oper-
ational space of the robot, estimate their orientations and
dimensions. By retrieving the depth information from the
RGB-D sensor and processing it as a point cloud, we com-
pute each proto-object’s 3D position relative to the sensor
before transforming it to the operational space. The proto-
object’s axes orientations are obtained from eigenvectors and
eigenvalues of the covariance matrix of the proto-object’s
points giving three orthogonal reference directions for which
we compute the proto-object’s dimensions.

Since this study is aimed at learning objects appearances,
the robot should perform actions that help to explore differ-
ent object perspectives. Thus, we use both simple actions,
like reach, push, take, and more complex manipulations,
TakeLiftFall and TakeObserve, that are aimed at reveal-
ing new object perspectives. Both manipulations are com-
posed from a sequence of action primitives. TakeLiftFall
includes reaching an object, taking it, lifting, and releasing
that turns the object into a random perspective, when it falls
on the table. TakeObserve consists of reaching an object,
taking it, turning, approaching to the camera, and returning
to the table; during this manipulation, the robot perceives
several object perspectives and its visual details.

C. Object model learning

The proto-objects appearances are learned incrementally
based on the algorithm presented in [8]. Our system acquires
all information iteratively by analyzing low-level image
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Fig. 2. The segmentation of the visual space into proto-objects p0, p1, p2. See [8] for a complete description.

features and synthesizing them into higher-level representa-
tions. As low-level features, we extract SURF points [15]
and colors of superpixels [16] that correspond to nearly
homogeneous image regions segmented with some regularity.
Mid-features are constructed as pairs and triples of low-level
features nearest in the visual space. All extracted features are
quantized into vocabularies of visual words. Since an entity
appearance can vary between its perspectives, we learn its
model as a set of views Ei = {vj}, each view being encoded
by the occurrence frequencies of its mid-features vj = {mk}.

In [8], views are recognized through a voting method
based on TF-IDF (Term-Frequency - Inverse-Document Fre-
quency [17]) of mid-features and a maximum likelihood
approach:

L(vj) =
∑

mk∈vj

tf(mk)idf(mk), (1)

where tf(mk) is the frequency of the mid-feature mk, and
idf(mk) is the inverse view frequency for this mid-feature.

Since several objects can have similar views, we introduce
a Bayesian filter that improves temporal consistency of
recognition between consecutive images therefore reducing
potential confusion between objects. The probability of
recognizing a view is estimated recursively based on its
likelihood, its probability computed in the previous image,
and its tracking:

pt(vj) = ηL(vj)
∑
l

p(vj |vl)pt−1(vl), (2)

where η is the normalization term; L(vj) is the current
likelihood of the view vj ; pt−1(vl) is the probability of the
view vl computed in the previous image; p(vj |vl) is the
probability that the view vj appears, when the view vl was
recognized in the previous images. This probability is fixed
to 0.8 when vj = vl, and otherwise 0.2/Nv with Nv being
the total number of views.

The recognized view is then associated with a physical
entity. If the entity tracking from previous image was suc-
cessful, the view is associated to the same entity. When track-
ing fails, the current entity is recognized through a maximum
likelihood approach similar to the view recognition but based
on the occurrence frequency of views among entities:

L(Ei) = tf(vj)idf(vj), (3)

where tf(vj) is the frequency of the view vj , and idf(vj) is
the inverse entity frequency for the view vj .

Since our experiments are based on object manipulation, it
is important to recognize connected physical entities moving
together, while the robot or the human interacts with an
object. For this purpose, we use a double-check recognition.
In the first stage, the most probable view is identified. In the
second stage, features that don’t belong to the most probable
view (see Fig. 3) participate in the voting method again to
identify a second possible view. Thus, each moving region of
the visual space is recognized either as a single entity or two
connected entities. Since objects are partly covered by hands
during manipulations, the double-check recognition allows
to prevent erroneous updates of objects models with hand
features. The information about connected physical entities
is also used by the categorization module described in the
Section III.D and during interactive object learning presented
in the Section III.E.

Fig. 3. Recognition of connected views: the mid-features (in this case,
pairs of superpixels) found in the most probable view are shown by the
green color, the mid-features found in the connected view are red, and the
rest of extracted mid-features are blue.

D. Categorization

The categorization procedure is aimed at identifying the
nature of physical entities detected in the visual space, while
the robot learns objects through interaction with a human
partner. First, the parts of the robot’s body are discriminated
among all entities, and then, the rest of single entities are
distinguished either as a human part or a manipulable object
category. As a result, each entity is associated with one of
the following categories (see Fig. 4): a robot cr, a human ch,
an object co, an object grasped by the robot co+r, an object
grasped by the human co+h, or unknown cu category that
will be identified later, when more statistics is gathered.

1) Robot self-identification: The robot’s body identifica-
tion is based on mutual information (MI) between visual
data and proprioception. As proprioceptive information, we
analyze the robot’s arm and torso motors states. We acquire
states of the following arm joints (see Fig. 4): shoulder
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Fig. 4. The categorization algorithm: single entities are categories as
cr , ch or co based on mutual information between the visual data and
proprioception and statistics on entities motion; connected entities are
categorized as co+r or co+h based on the entities categorization statistics
throughout the whole experiment

(pitch, roll, and yaw), elbow, wrist (pronosupination, pitch,
and yaw) and torso joints (pitch, roll, and yaw). Finger joints
are not considered, since their movements do not produce a
significant visual displacement of the hand.

The visual space is quantized regularly by applying a
grid (12x10) producing 120 visual clusters. The position of
each physical entity is quantized to the closest visual cluster.
Each time a new image is acquired from the visual sensor,
we acquire the robot’s arms and torso joints values. The
joints values are incrementally quantized into a vocabulary
of arm-torso configurations, where each entry is encoded as
a vector of joints values. During quantization, if the minimal
L2 distance between the current vector of joints values and
each vocabulary entry exceeds a threshold, a new config-
uration is stored in the vocabulary; otherwise, the current
vector of joints values is recognized as the closest arm-torso
configuration from the vocabulary. In our experiments, we
obtain in average 37 arm-torso configurations.

As in [10], MI is used to evaluate the occurrence depen-
dency between the robot’s arm-torso configuration Ac and
the physical entity localization LEi

:

MI(LEi
;Ac) = H(LEi

)−Hc(LEi
|Ac), (4)

where H(LEi) is the marginal entropy, and Hc(LEi |Ac) is
the conditional entropy computed in the following way:

H(LEi) = −
∑
l

p(lEi)log(p(lEi)), (5)

Hc(LEi |Ac) = −
∑
ac

p(ac)
∑
lEi

p(lEi |ac)log(p(lEi |ac)),

(6)
where p(lEi

) is the probability of the entity localization lEi
,

p(ac) is the probability of the arm-torso configuration ac,
and p(lEi |ac) is the probability of the entity localization lEi

given the arm-torso configuration ac.
Since we change the appearance of the robot’s hands dur-

ing experiments, MI(LEi ;Ac) is estimated for each robot’s
arm and for each physical entity. Thereby, the robot category

cr can be associated with several entities that correspond
to different appearances of the hand (for example, with and
without wearing gloves); while views of each entity describe
the hand appearance in different postures (see Fig. 5).

Fig. 5. The representation models of three entities that correspond to
different appearances of the robot’s hands.

The threshold identifying the robot category is selected
empirically by analyzing the MI distribution for robot’s and
non-robot’s parts on a small labelled database. If MI is higher
than thr = 40%, the physical entity is identified as a robot
category cr; otherwise, its category is identified according to
the algorithm of the following section.

2) Discrimination of human and object categories: The
discrimination between human parts and manipulable objects
is based on statistics on entities motion: human parts often
move by themselves while objects are static most of time,
and they are rather displaced by the robot or the human.

Since our vision module is able to detect and to categorize
connected entities moving together, we identify objects dur-
ing manipulations based on the statistics of their simultane-
ous motion with entities categorized as robot’s parts. During
the experiment, we count the number of times each entity
Ei moves alone as a non-robot category, and the number of
times the same entity moves connected to a robot’s entity
and estimate the associated occurrence frequencies:

• fs =
NcEi

6=cr

NcEi

is the occurrence frequency of a non-
robot’s entity moving alone,

• fc =
NcEi

,cEi2
=cr

NcEi
,cEi2

is the occurrence frequency of an
entity moving together with a connected entity Ei2

categorized as a robot’s part.
Since objects usually do not move alone, the frequency fs

should be low and fc should be high for the object category.
Therefore, a non-robot’s entity is identified as:
• the object category co, if fc > tho.c. and fs < tho.s.;
• the human category ch, otherwise.
Gathering these statistics require the identification of the

robot hand category cr, therefore all entities are temporarily
associated with the unknown category cu before cr is iden-
tified. Once the robot’s body is identified, all single entities
are categorized as co, ch, or cr. In the case of connected
entities, the category of each individual entity is retrieved
from the categorization statistics and the connected entity is
categorized as an object grasped by the robot category cr+o

or an object grasped by the human category ch+o.

E. Object model update during interaction

The outcome of the categorization module is used to
improve object learning during manipulation. The interaction
with an object starts when the robot detects an object entity in



a reachable distance. In case of a successful grasp, the model
of the grasped entity Eg is updated during manipulation. This
is a kind of self-supervision, where the object is supposed
to be the same during manipulation.

The perceptual system continuously detects entities in the
visual space and categorizes them. In the case of detecting
connected entities with one entity identified as a robot
category, the categories of both connected views are verified.
We link each connected view with a set of physical entities
{Ei} that have this view in their models. The category cEi

of each entity is retrieved from the categorization statistics,
and each connected view is identified as:
• a robot’s view, if at least one linked entity is identified

as the robot category (∃i, cEi
= cr);

• a non-robot’s view, if none of linked entities is identified
as the robot category (∀i, cEi 6= cr).

If during manipulation, a proto-object is identified as a
robot’s view connected to a non-robot’s view,the manipulated
entity model is updated with the non-robot’s view. If a proto-
object identified as a robot’s view contains a large amount
of features that do not correspond to this entity, a new view
is stored with these features. If this newly created view is
identified again later, it will be added to the manipulated
entity model. Therefore, interactive learning allows to update
the object model with both newly created and recognized
non-robot’s views.

IV. EXPERIMENTS
The proposed approach is evaluated on an iCub robot

interacting with a human partner, as demonstrated in Fig.
6a, and manipulating objects, as shown in Fig. 6b. Objects
used in the experiments are shown in Fig. 7.

Fig. 6. The context of the experiments: a) learning through observation;
b) learning through manipulation.

Fig. 7. Objects used in the experiments.

We design experiments for two purposes: first, to evaluate
the categorization algorithm and then to analyse the accuracy
of objects learning through manipulation and to compare it
with the results of learning through observation.

A. Camera calibration
In our experiments, the visual input is acquired from an

RGB-D sensor mounted above the robot (see Fig. 6b). This
sensor is chosen due the precision of depth data compared
to stereo vision. Since in our scenario, the robot performs
actions in its operational space, the visual sensor is calibrated
with respect to the robot, like described in [7]. In this
procedure, a calibration pattern is placed on the table and
the robot moves its hand to the origin of the pattern in order
to acquire its position in the operational space Hpat→rob.
The OpenCV library is used to estimate the sensor position
relative to the pattern Hsen→pat, and the transformation
matrix from the target to the robot’s space is computed:

Hsen→rob = Hpat→rob ×Hsen→pat.

B. Evaluation of categorization
In this experiment, a human manipulates objects and

produces simple hand movements in the visual field of
the robot. The robot performs simple actions, like reach,
take, push, and manipulations with and without objects, as
described in the Section III.B. The self-identification method
is evaluated based on the robot’s hands positions estimated
by the forward kinematics model.

During evaluation, the categorization module was able
to identify the robot’s hand within first 10 seconds of its
motion in the visual field. The average self-recognition rate
was about 98.2%. Our self-identification method is also
evaluated with changing the robot’s hand appearance by
wearing colored gloves (see Fig. 5). The system has shown
to be independent on the robot’s hand appearance and to
recognize 98.1% of the robot’s hands in the blue gloves and
98.0% of the robot’s hands in the pink gloves. The slightly
lower self-recognition accuracy in the case of changing the
hand appearance can be explained by a large sizes of the
gloves that reduce visibility of hand motion.

The system’s ability to identify an object category is
evaluated in an interactive scenario, while the robot is asked
to interact with entities detected at a reachable distance. As
shown in Fig. 8, each object has been successfully identified
during within 5-10 seconds of interaction with it. Human
parts have been correctly identified in 89% of images.
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Fig. 8. Identification of five objects based on their probability p(cE =
co) of being an object category co; each object is marked as an unknown
category cu, when it appears, and as co, when it is identified.

C. Evaluation of object learning
We evaluate the accuracy of objects learning through inter-

action and compare it with the results of learning through ob-
servation. During observation, a human demonstrates objects



to the robot (about 700 images per object). Then, during ma-
nipulation, the robot performs TakeLiftFall action (about
800 images per object) in order to improve its knowledge
about objects appearances.

Since our experiments are based on interaction with ob-
jects, it is difficult to evaluate the system using existing image
databases. Thus, we created a database of 50 images for
each object shown from different perspectives. This database
is processed after each experiment in order to estimate the
object recognition rate based on the number of times an
object is identified as its most frequently associated entity.

Learning through manipulation improved the recognition
rate for several objects compared to the results of learning
through observation (see Fig. 9). This improvement slightly
depends on the robot’s hand appearance; the best results have
been achieved with the robot’s hand appearance the most
different from all objects appearances, i.e. without wearing
gloves. Gloves produce a larger occlusion of object features,
making it less visible and leading to less updates of object
models and smaller learning improvement.

Using only observation, several objects whose appearance
significantly varies between perspectives are associated with
multiple physical entities. It occurs when the human partner
takes an object out of the visual field while demonstrating
different perspectives, making it impossible to track the
object and therefore to associate all its views with a sin-
gle entity. For these objects (O2, O4, O5, O8, O9), learning
during manipulation has been especially useful as several
entities created during observation have been merged into
a single entity during interactive learning, thus leading to
better object recognition. Moreover, the system was able to
memorize new views while manipulating objects O1, O6, O8,
thus improving the informativeness of objects models.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
0,0

20,0

40,0
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80,0

100,0

observation interaction

Fig. 9. Object recognition rate (with initial robot’s hands appearances):
the results after objects observation are shown by the blue color, and the
improvement after manipulation is shown by the yellow color.

V. CONCLUSION AND FUTURE WORK

The proposed developmental approach allows a robot to
explore its close environment in purely unsupervised way, to
identify its body and to categorize other visible physical en-
tities as human parts or manipulable objects. Based on these
categories, it is possible to learn objects through observation
and to improve their visual models through manipulation.

Important aspects of our model are its capacity to extract
new information about an object during and in between
manipulations and its adaptability to the modification of the

robot’s appearance. The system works online and gathers all
information in an incremental manner.

Future work will include the use of weak supervision by
integrating the audio information in our system. We plan
to take advantage of naming objects, like in infant directed
speech, in order to learn objects names and to improve object
recognition in more complex interactive scenarios.
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