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Abstract

Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired
behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the
form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis
that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free
system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned
stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more
and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation.
Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers
does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor
the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for
such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can
account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to
individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be
observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other
behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model
makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We
suggest that further investigation of factored representations in computational neuroscience studies may be useful.
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Introduction

Standard Reinforcement Learning (RL) [1] is a widely used

normative framework for modelling conditioning experiments

[2,3]. Different RL systems, mainly Model-Based and Model-Free

systems, have often been combined to better account for a variety

of observations suggesting that multiple valuation processes coexist

in the brain [4–6]. Model-Based systems employ an explicit model

of consequences of actions, making it possible to evaluate

situations by forward inference. Such systems best explain goal-

directed behaviours and rapid adaptation to novel or changing

environments [7–9]. In contrast, Model-Free systems do not rely

on internal models and directly associate values to actions or states

by experience such that higher valued situations are favoured.

Such systems best explain habits and persistent behaviours [9–11].

Of significant interest, learning in Model-Free systems relies on a

computed reinforcement signal, the reward prediction error

(RPE). This signal parallels the observed shift of dopamine

neurons’ response from the time of an initially unexpected reward

– an outcome that is better or worse than expected – to the time of

the conditioned stimulus that precedes it, which, in Pavlovian

conditioning experiments, is fully predictive of the reward [12,13].

However recent work by Flagel et al. [14], raises questions

about the exclusive use of classical RL Model-Free methods to

account for data in Pavlovian conditioning experiments. Using an

autoshaping procedure, a lever-CS was presented for 8 seconds,

followed immediately by delivery of a food pellet into an adjacent

food magazine. With training, some rats (sign-trackers; STs)

learned to rapidly approach and engage the lever-CS. However,

others (goal-trackers; GTs) learned to approach the food magazine
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upon CS presentation, and made anticipatory head entries into it.

Furthermore, in STs, phasic dopamine release in the nucleus

accumbens, measured with fast scan cyclic voltammetry, matched

RPE signalling, and dopamine was necessary for the acquisition of

a sign-tracking CR. In contrast, despite the fact that GTs acquired

a Pavlovian conditioned approach response, this was not

accompanied with the expected RPE-like dopamine signal, nor

was the acquisition of a goal-tracking CR blocked by administra-

tion of a dopamine antagonist (see also [15]).

Classical dual systems models [16–19] should be able to account

for these behavioural and pharmacological data, but the physio-

logical data are not consistent with the classical view of RPE-like

dopamine bursts. Based on the observation that STs and GTs

focus on different stimuli in the environment, we suggest that the

differences observed in dopamine recordings may be due to an

independent valuation of each stimulus. In classical RL, valuation

is usually done at the state level. Stimuli, embedded into states –

snapshots of specific configurations in time –, are therefore hidden

to systems. In this case, it would prevent dealing separately with

the lever and the magazine at the same time. However, such data

may still be explained by a dual systems theory, when extended to

support and benefit from factored representations; that is, learning

the specific value of stimuli independently from the states in which

they are presented.

In this paper, we present and test a model using a large set of

behavioural, physiological and pharmacological data obtained

from studies on individual variation in Pavlovian conditioned

approach behaviour [14,20–25]. It combines Model-Free and

Model-Based systems that provide the specific components of the

observed behaviours [26]. It explains why inactivating dopamine

in the core of the nucleus accumbens or in the entire brain results

in blocking specific components and not others [14,25]. By

weighting the contribution of each system, it also accounts for the

full spectrum of observed behaviours ranging from one extreme –

sign-tracking – to the other [26] – goal-tracking. Above all, by

extending classical Model-Free methods with factored representa-

tions, it potentially explains why the lever-CS and the food

magazine might acquire different motivational values in different

individuals, even when they are trained in the same task [22]. It

may also account for why the RPE-like dopaminergic responses

are observed in STs but not GTs, and also the differential

dependence on dopamine [14].

Results

We model the task as a simple Markov Decision Process (MDP)

with different paths that parallel the diverse observed behaviours

ranging from sign-tracking – engaging with the lever as soon as it

appears – to goal-tracking – engaging with the magazine as soon

as the lever-CS appears – (see Figure 1).

The computational model (see Figure 2) consists of two learning

systems, employing distinct mechanisms to learn the same task: (1)

Figure 1. Computational representation of the autoshaping procedure. (A) MDP accounting for the experiments described in [14,21,22,26].
States are described by a set of variables: L/F - Lever/Food is available, cM/cL - close to the Magazine/Lever, La - Lever appearance. The initial state is
double circled, the dashed state is terminal and ends the current episode. Actions are engage with the proximal stimuli, explore, or go to the
Magazine/Lever and eat. For each action, the feature that is being focused on is displayed within brackets. The path that STs should favour is in red.
The path that GTs should favour is in dashed blue. (B) Time line corresponding to the unfolding of the MDP.
doi:10.1371/journal.pcbi.1003466.g001

Author Summary

Acquisition of responses towards full predictors of rewards,
namely Pavlovian conditioning, has long been explained
using the reinforcement learning theory. This theory
formalizes learning processes that, by attributing values
to situations and actions, makes it possible to direct
behaviours towards rewarding objectives. Interestingly,
the implied mechanisms rely on a reinforcement signal
that parallels the activity of dopamine neurons in such
experiments. However, recent studies challenged the
classical view of explaining Pavlovian conditioning with a
single process. When presented with a lever whose
retraction preceded the delivery of food, some rats started
to chew and bite the food magazine whereas others chew
and bite the lever, even if no interactions were necessary
to get the food. These differences were also visible in brain
activity and when tested with drugs, suggesting the
coexistence of multiple systems. We present a computa-
tional model that extends the classical theory to account
for these data. Interestingly, we can draw predictions from
this model that may be experimentally verified. Inspired by
mechanisms used to model instrumental behaviours,
where actions are required to get rewards, and advanced
Pavlovian behaviours (such as overexpectation, negative
patterning), it offers an entry point to start modelling the
strong interactions observed between them.

Modelling Individual Differences in Pavlovian CRs
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a Model-Based system which learns the structure of the task from

which it infers its values; (2) a Feature-Model-Free system where values

for the relevant stimuli (lever-CS and the food magazine) are directly

learned by trial and error using RPEs. The respective values of each

system are then weighted by an v parameter before being used in a

classical softmax action-selection mechanism (see Methods).

An important feature of the model is that varying the systems

weighting parameter v (while sharing the other parameter values

of the model across subgroups) is sufficient to qualitatively

reproduce the characteristics of the different subgroups of rats

observed experimentally during these studies.

To improve the matching of the following results with the main

experimental data, a different set of parameter values was used for

each subgroup (ST, GT and IG). The values were retrieved after

fitting autoshaping data only (see Methods, Table S1). Simulated

results on other behavioural, physiological and pharmacological

data are generated with the same parameter values. While it might

result in a weaker fitting of the other experimental data, this

permits a straightforward comparison of results at different levels

for the same simulation. Moreover, it confirms that the model can

reproduce behavioural, physiological and pharmacological results

with a single simulation per subgroup.

On each set of experimental data, we compare different variants

of the computational model in order to highlight the key

mechanisms that are required for their reproduction. Simulation

results on each data subset are summarized in Figure 3. The role

of each specific mechanism of the model in reproducing each

experimental data is detailed in Figure 4.

Behavioural data
Autoshaping. The central phenomenon that the model is

meant to account for is the existence of individual behavioural

differences in the acquisition of conditioned approach responses in

rats undergoing an autoshaping procedure; that is, the develop-

ment of a sign-tracking CR, a goal-tracking CR, or an

intermediate response.

Based on their engagement towards the lever, Flagel et al. [21]

divided rats into three groups (see [26] for a more recently defined

criterion). At lever appearance, rats that significantly increased

their engagement towards it (top 30%) were classified as STs,

whereas rats that almost never engaged with the lever (bottom

30%) were classified as GTs (these latter animals engaged the food

magazine upon CS presentation). The remaining rats, engaging in

both lever and magazine approach behaviours were defined as the

Intermediate Group (IGs) (see Figure 5 A, B). STs and GTs

acquired their respective CRs at a similar rate over days of training

[22].

The current model is able to reproduce such results (see Figure 5

C, D). By running a simulation for each group of rats, using

different parameters (mainly varying the v parameter) the model

reproduces the different tendencies to engage with the lever

(v~0:499), with the magazine (v~0:048) or to fluctuate between

the two (v~0:276). A high v strengthens the influence of the

Feature-Model-Free system, which learns to associate a high

motivational value to the lever CS, and a sign-tracking CR

dominates. A low v increases the influence of the Model-Based

system, which infers the optimal behaviour to maximize reward,

Figure 2. General architecture of the model and variants. The model is composed of a Model-Based system (MB, in blue) and a Feature-Model-
Free system (FMF, in red) which provide respectively an Advantage function A and a value function V values for actions ai given a state s. These
values are integrated in P, prior to be used into an action selection mechanism. The various elements may rely on parameters (in purple). The impact
of flupentixol on dopamine is represented by a parameter f that influences the action selection mechanism and/or any reward prediction error that
might be computed in the model.
doi:10.1371/journal.pcbi.1003466.g002

Modelling Individual Differences in Pavlovian CRs
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and goal-tracking is favoured. When both systems are mixed, i.e.

with an intermediate v, the behaviour is more likely to oscillate

between sign- and goal-tracking, representative of the intermediate

group.

These results rely on the combination of two systems that would

independently lead to ‘pure’ sign-tracking or goal-tracking CRs.

Three tested variants of the model could reproduce these

behavioural results as well (see Figure S1): a combination of

Feature-Model-Free systems and simple Model-Free system

(Variant 1); a multi-step extension of Dayan 2006’s model [16]

giving a Pavlovian impetus for the lever (Variant 2); and a

symmetrical version of this last model with two impetuses, one for

the lever, and one for the magazine (Variant 3) (see Methods).

Interestingly, a combination of Model-Based and classical Model-

Free (not feature-based : Variant 4) fails in reproducing these

results (see Figure S8). This is because both systems are proven to

converge to the same values and both would favour pure goal-

tracking, such that varying their contribution has no impact on the

produced behaviours.

Thus, at this stage, we can conclude that several computational

models based on dual learning systems can reproduce these

behavioural results, given that the systems favour different

Figure 3. Summary of simulations and results. Each line represents a different model composed of a pair of Reinforcement Learning systems.
Each column represents a simulated experiment. Experiments are grouped by the kind of data accounted for: behavioural (autoshaping [14,21], CRE
[22], Incentive salience [23,24]), physiological [21] and pharmacological (Flu post-NAcC [25], Flu pre-systemic [21]). Variant 4 (i.e. Model-based/Model-
Free without features) is not included as it failed to even reproduce the autoshaping behavioural results and was not investigated further.
doi:10.1371/journal.pcbi.1003466.g003

Figure 4. Summary of the key mechanisms required by the model to reproduce experimental results. Each line represents a different
mechanism of the model. Each column represents a simulated experiment. For each mechanism, it states in which experiment and for which
behaviour – sign-tracking (red), goal-tracking (blue) or both (+) – it is required. Note however that all mechanisms and associated parameters have, to
a certain extent, an impact on any presented results.
doi:10.1371/journal.pcbi.1003466.g004

Modelling Individual Differences in Pavlovian CRs
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behaviours (see Figure S1). However, Variants 1, 2 and 3 fail to

reproduce other behavioural, pharmacological and physiological

data characteristic of STs and GTs (see following sections).

Incentive salience. The results in Figure 5 only represent the

probability of approach to either the lever-CS or the food

magazine. Thus, they do not account for the specific ways rats

engage and interact with the respective stimuli. In fact, if food is

used as the US, rats are known to chew and bite the stimuli on

which they are focusing [23,24] (see Figure 6 A). Importantly, both

STs and GTs express this consumption-like behaviour during the

CS period, directed towards the lever or the food magazine,

respectively. It has been argued that this behaviour may reflect the

degree to which incentive salience is attributed to these stimuli,

and thus the extent to which they become ‘‘wanted’’ [23,24,27].

In an RL-like framework, incentive salience attribution can be

represented as a bonus mechanism for interacting with stimuli.

The Feature-Model-Free system in the model realizes such a

function, providing a specific bonus for each stimulus in any

simulated rat. Such bonus was inspired by the Pavlovian impetus

mechanism of Dayan 2006’s model [16]. Figure 6 C shows the

percentage of Feature-Model-Free value that contributed to the

computation of the probability to engage with the respective

favoured cues of STs and GTs at the end of the simulation.

The presence of the magazine in the inter-trial interval (ITI),

and the necessary revision of the associated bonus at a lower value

Figure 5. Reproduction of sign- versus goal-tracking tenden-
cies in a population of rats undergoing an autoshaping
experiment. Mean probabilities to engage at least once with the
lever (A,C) or the magazine (B,D) during trials. Data are expressed as
mean + S.E.M. and illustrated in 50-trial (2-session) blocks. (A,B)
Reproduction of Flagel et al. [21] experimental results (Figure 2 A,B).
Sign-trackers (ST) made the most lever presses (black), goal-trackers
(GT) made the least lever presses (white), Intermediate group (IG) is in
between (grey). (C,D) Simulation of the same procedure (squares) with
the model. Simulated groups of rats are defined as STs (v~0:499;
b~0:239; a~0:031; c~0:996; uITI~0:027; Qi(s1,goL)~0:844;
Qi(s1,exp)~0:999; Qi(s1,goM)~0:538; n = 14) in red, GTs (v~0:048 ;
b~0:084; a~0:895; c~0:727; uITI~0:140; Qi(s1,goL)~1:0;
Qi(s1,exp)~0:316; Qi(s1,goM)~0:023; n = 14) in blue and IGs
(v~0:276; b~0:142; a~0:217; c~0:999; uITI~0:228;
Qi(s1,goL)~0:526; Qi(s1,exp)~0:888; Qi(s1,goM)~0:587; n = 14) in
white. The model reproduces the same behavioural tendencies. With
training, STs tend to engage more and more with the lever and less
with the magazine, while GTs neglect the lever to increasingly engage
with the magazine. IGs are in between.
doi:10.1371/journal.pcbi.1003466.g005

Figure 6. Possible explanation of incentive salience and
Conditioned Reinforcement Effect by values learned during
autoshaping procedure. Data are expressed as mean + S.E.M.
Simulated groups of rats are defined as in Figure 5. (A) Number of
nibbles and sniffs of preferred cue by STs and GTs as a measure for
incentive salience. Data extracted from Mahler et al. [23] from Figure 3
(bottom-left). (B) Reproduction of Robinson et al. [22] experimental
results (Figure 2 B). Lever contacts by STs and GTs during a conditioned
reinforcer experiment. (C) Probability to engage with the respective
favoured stimuli of STs and GTs at the end of the simulation (white,
similar to the last session of Figure 5 C for STs and D for GTs)
superimposed with the contribution in percentage of the values
attributed by the Feature-Model-Free system in such engagement for
STs (red) and GTs (blue). We hypothesize that such value is the source of
incentive salience and explains why STs and GTs have a consumption-
like behaviour towards their favoured stimulus. (D) Probability to
engage with the lever versus exploring when presented with the lever
and no magazine for STs (red), GTs (blue) and a random-policy group
UN (white), simulating the unpaired group (UN) of the experimental
data. Probabilities were computed by applying the softmax function
after removing the values for the magazine interactions (see Methods).
STs would hence actively seek to engage with the lever relatively to GTs
in a Conditioned Reinforcement Effect procedure.
doi:10.1371/journal.pcbi.1003466.g006

Modelling Individual Differences in Pavlovian CRs
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when exploring, makes the associated bonus smaller than that of

the lever (see Methods). This results in a even smaller contribution

of this bonus in GTs behaviour (blue bar in Figure 6 C) compared

to STs (red bar in Figure 6 C). Although it is not straightforward to

interpret how the probability of engagement (white bars in Figure 6

C) in the model might be translated into a consumption-like

behaviour from a computational point of view, we propose that

the different contributions of bonuses could explain the slightly

smaller number of nibbles and sniffs of preferred cue observed

experimentally in GTs compared to STs (Figure 6 A, adapted

from [23]). This may also explain why other studies have observed

a smaller proportion of nibbles on the magazine in GTs [24] and

less impulsiveness [28] in GTs compared to STs. We come back to

this issue in the discussion.

Variants 1 and 3 also realize such function by providing bonuses

for actions leading to both stimuli (see Figure S2). Only providing

bonus for sign-tracking behaviour – as in Dayan’s model (Variant

2) – does not fit well with the attribution of incentive salience to

both stimuli. It would suggest that we should not observe incentive

salience towards the magazine in any rats, which is in discrepancy

with the experimental data. Thus, the important mechanism here

is that stimuli are not processed differently. Any stimulus is

attributed with its respective bonus, which is pertinent in regard to

the attribution of incentive salience.

Conditioned Reinforcement Effect (CRE). An important

question about the difference in observed behaviours is about the

properties acquired by the lever that makes it more attractive to

STs than to GTs. To answer this question, Robinson and Flagel

studied the dissociation of the predictive and motivational

properties of the lever [22]. Part of their results involves asking

whether the Pavlovian lever-CS would serve as a conditioned

reinforcer, capable of reinforcing the learning of a new instru-

mental response [29,30]. In a new context, rats were presented

with an active and an inactive nose port. Nose poking into the

active port resulted in presentation of the lever for 2 seconds

without subsequent reward delivery, whereas poking into the

inactive one had no consequence. The authors observed that while

both STs and GTs preferred the active nose port to an inactive

one, STs made significantly more active nose pokes than GTs (see

Figure 6 B, see also [31]). This suggests that the lever acquired

greater motivational value in STs than in GTs.

Without requiring additional simulations, the model can explain

these results by the value that has been incrementally learned and

associated with approaching the lever in the prior autoshaping

procedure for STs and GTs. In the model, STs attribute a higher

value to interacting with the lever than GTs and should actively

work for its appearance enabling further engagement. Figure 6 D

shows the probabilities of engagement that would be computed at

lever appearance after removing the magazine (and related

actions) at the end of the experiment. Indeed, even though the

lever is presented only very briefly, upon its presentation in the

conditioned reinforcement test, STs actively engage and interact

with it [22]. Any value associated to a state-action pair makes this

action in the given state rewarding in itself, favouring actions (e.g.

nosepokes) that would lead to such state. Repeatedly taking this

action without receiving rewards should eventually lead to a

decrease of this value and reduce the original engagement.

Physiological data
Not only have Flagel et al. [14] provided behavioural data but

they also provide physiological and pharmacological data. This

raises the opportunity to challenge the model at different levels, as

developed in the current and next sections.

Using Fast Scan Cyclic Voltammetry (FSCV) in the core of the

nucleus accumbens they recorded the mean of phasic dopamine

(DA) signals upon CS (lever) and US (food) presentation. It was

observed that depending on the subgroup of rats, distinct

dopamine release patterns emerge (see Figure 7 A,B) during

Pavlovian training. STs display the classical propagation of a

phasic dopamine burst from the US to the CS over days of

training and the acquisition of conditioned responding (see

Figure 7 A). This pattern of dopamine activity is similar to that

seen in the firing of presumed dopamine cells in monkeys reported

by Schultz and colleagues [12] and interpreted as an RPE

corresponding to the reinforcement signal d of Model-Free RL

systems [1]. In GTs, however, a different pattern was observed.

Initially there were small responses to both the CS and US, of

which the amplitudes seemed to follow a similar trend over

training (see Figure 7 B).

By recording the mean of the RPEs d computed in the Feature-

Model-Free system during the autoshaping simulation (i.e. only

fitted to behavioural data), the model can still qualitatively

Figure 7. Reproduction of patterns of dopaminergic activity of
sign- versus goal-trackers undergoing an autoshaping exper-
iment. Data are expressed as mean + S.E.M. (A,B) Reproduction of
Flagel et al. [14] experimental results (Figure 3 d,f). Phasic dopamine
release recorded in the core of the nucleus accumbens in STs (light
grey) and GTs (grey) using Fast Scan Cyclic Voltammetry. Change in
peak amplitude of the dopamine signal observed in response to CS and
US presentation for each session of conditioning (C,D) Average RPE
computed by the Feature-Model-Free system in response to CS and US
presentation for each session of conditioning. Simulated groups of rats
are defined as in Figure 5. The model is able to qualitatively reproduce
the physiological data. STs (blue) show a shift of activity from US to CS
time over training, while GTs develop a second activity at CS time while
maintaining the initial activity at US time.
doi:10.1371/journal.pcbi.1003466.g007

Modelling Individual Differences in Pavlovian CRs
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reproduce the different patterns observed in dopamine recordings

for STs and GTs (see Figure 7 C,D). For STs, the model

reproduces the progressive propagation of d from the US to the

CS (see Figure 7 C). For GTs, it reproduces the absence of such

propagation. The RPE at the time of the US remains over

training, while a d also appears at the time of the CS (see Figure 7

D). In the model, such discrepancy is explained by the difference

in the values that STs and GTs use for the computation of RPEs at

the time of the CS and the US. STs, by repeatedly focusing on the

lever, propagate the total value of food to the lever and end up

having a unique d at the unexpected lever appearance only. By

contrast, by repeatedly focusing on the magazine during the lever

appearance but, as all rats, also from time to time during ITI, GTs

revise the magazine value multiple times, positively just after food

delivery and negatively during ITI. Such revisions lead to a

permanent discrepancy between the expected and observed value,

i.e. a permanent d, at lever appearance and food delivery, when

engaging with the magazine.

The key mechanism to reproduce these results resides in the

generalization capacities of the Feature-Model-Free system. Based

on features rather than states, feature-values are to be used, and

therefore revised, at different times and states of the experiment,

favouring the appearance of RPEs. Variants 2, 3 and 4 relying on

classical Model-Free systems are unable to reproduce such results

(see Figure S3). By using values over abstract states rather than

stimuli, it makes it impossible to only revise the value of the

magazine during ITI. Therefore, given the deterministic nature of

the MDP, we observe a classical propagation of RPEs in all

pathways up to the appearance of the lever.

Pharmacological data
Effects of systemic flupentixol administration on the

learning of sign- and goal-tracking behaviours. Flagel et

al. [14] also studied the impact of systemic injections of the non

specific dopamine antagonist, flupentixol, on the acquisition of

sign-tracking and goal-tracking CRs. The authors injected

flupentixol in rats prior to each of 7 sessions and observed the

resulting behaviours. Behaviour during the 8th session was

observed without flupentixol.

Systemic injections of flupentixol in STs and GTs (Flu groups,

black curves in Figure 8 A,B) blocked expression of their respective

behaviours during training. Saline injections (white curves in

Figure 8 A,B) left their performances intact. The crucial test for

learning took place on the 8th day, when all rats were tested

without flupentixol. STs failed to approach the lever, and

performed as the saline-injected controls did on the first day of

training.

Thus, in STs flupentixol blocked the acquisition of a sign-

tracking CR (see Figure 8 A). Interestingly, on the flupentixol-free

test day GTs did not differ from the saline-injected control group,

indicating that flupentixol did not block the acquisition of a goal-

tracking CR (see Figure 8 B). Thus, acquisition of a sign-tracking

CR, but not a goal-tracking CR, is dependent on dopamine (see

also [15]).

The model reproduces these pharmacological results (see

Figure 8 C,D). As in the experimental data, simulated GTs and

STs do not show a specific conditioned response during the first 7

sessions under flupentixol. On the 8th session, without flupentixol,

we observe that STs still do not show a specific conditioned

response while GTs perform at a level close to that of the saline-

injected control group (see Figure 8 C,D).

The absence of specific conditioned response in the whole

population for the first 7 sessions is first due to the hypothesized

[32] impact of flupentixol on action selection (see Methods). With

enough flupentixol, the elevation of the selection temperature

leads to a decrease of the influence of learned values in the

expressed behaviour, masking any possibly acquired behaviour.

The absence of a specific conditioned response in STs is due to

the blockade of learning in the second system by flupentixol, since

it is RPE-dependent. Therefore almost no learning occurs in the

system (see Figure 8).

In contrast, with the first system being RPE-independent,

flupentixol has no effect on learning, because it is Model-Based

rather than Model-Free [33]. The expression of behaviour is

blocked at the action selection level, which does not make use of

values learned by the Model-Based system. Thus, GTs, relying

mainly on the first system, learn their CR under flupentixol but are

just not able to express it until flupentixol is removed. The lower

level of goal-tracking in the Flu group relative to the saline-injected

control group on the 8th session is due to the lack of exploitation

induced by flupentixol injection during the previous 7 sessions. By

engaging less with the magazine, the Flu group ends up associating

a lower value to the magazine (i.e. the value did not fully converge

in 7 sessions) to guide its behaviour.

Interestingly, if the model had been constituted of Model-Free

systems only – as in Variants 1, 2 and 3 – it would not have been

able to reproduce these results, because both systems would have

been RPE-dependent and thus sensitive to the effect of flupentixol

(see Figure S4).

Effects of local flupentixol administration on the

expression of sign- and goal-tracking behaviours. In a

related experiment, Saunders et al. [25] studied the role of

dopamine in the nucleus accumbens core in the expression of

Pavlovian-conditioned responses that had already been acquired.

After the same autoshaping procedure as in [20], they injected

different doses of flupentixol in the core of the nucleus accumbens

of rats and quantified its impact on the expression of sign-tracking

and goal-tracking CRs in an overall population (without distin-

guishing between STs and GTs).

They found that flupentixol dose dependently attenuated the

expression of sign-tracking, while having essentially no effect on goal-

tracking (see Figure 9 A, B). Along with the Flagel et al. [14] study,

these results suggest that both the acquisition and expression of a sign-

tracking CR is dopamine-dependent (at least in the core) whereas the

acquisition and expression of a goal-tracking CR is not.

Given the assumption that the Feature-Model-Free system

would take place in or rely on the core of the nucleus accumbens,

this model reproduces the main experimental result: the decreased

tendency to sign-track in the population (see Figure 9 C). Note that

in the previous experiment, the injection of flupentixol was

systemic, and assumed to affect any region of the brain relying on

dopamine, whereas in the present experiment it was local to the

core of the nucleus accumbens. Therefore, we modelled the

impact of flupentixol differently between the current and previous

simulations (see Methods). In the model, the tendency to sign-track

is directly correlated with a second operational system. Any

dysfunction in the learning process (here by a distortion of RPEs)

reduces this trend.

The model successfully reproduced the absence of reduction of

goal-tracking, in contrast to the reduction of sign-tracking.

However, it was unable to reproduce the invariance in goal-

tracking (see Figure 9 D) and rather produced an increase in goal-

tracking. This is due to the use of a softmax operator for action

selection, as this is the case in the vast majority of computational

neuroscience RL models [16–19,32,34–36], which automatically

favours goal-tracking when sign-tracking is blocked (see Limita-

tions). We did not attempt to cope with this limitation because our

focus here was the absence of reduction of goal-tracking.

Modelling Individual Differences in Pavlovian CRs
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Besides, the model could, after re-learning, reproduce the

selective impact of intra-accumbal flupentixol injections observed

in sign-tracking but not in goal-tracking, because such injections

affected the learning process in the Feature-Model-Free system

only.

Discussion

We tested several mechanisms from the current literature on

modelling individual variation in the form of Pavlovian condi-

tioned responses (ST vs GT) that emerge using a classical

autoshaping procedure, and the role of dopamine in both the

acquisition and expression of these CRs. Benefiting from a rich set

of data, we identified key mechanisms that are sufficient to account

for specific properties of the observed behaviours. The resulting

model relies on two major concepts: Dual learning systems and

factored representations. Figure 4 summarizes the role of each

mechanism in the model.

Dual learning systems
Combining Model-Based and Model-Free systems has previ-

ously been successful in explaining the shift from goal-directed to

habitual behaviours observed in instrumental conditioning [17–

19,33,34]. However, few models based on the same concept have

been developed to account for Pavlovian conditioning [16]. While

the need for two systems is relevant in instrumental conditioning

given the distinct temporal engagement of each system, such a

distinction has not been applied to Pavlovian phenomena (but see

recent studies on orbitofrontal cortex [37–39]). The variability of

behaviours and the need for multiple systems have been masked

by focusing on whole populations and, for the most part, ignoring

individual differences in studies of Pavlovian conditioning. The

nature of the CS is especially important, as many studies of

Pavlovian conditioned approach behaviour have used an auditory

stimulus as the CS, and in such cases only a goal-tracking CR

emerges in rats [40,41].

As expected from the behavioural data, combining two learning

systems was successful in reproducing sign- and goal-tracking

behaviours. The Model-Based system, learning the structure of the

task, favours systematic approach towards the food magazine, and

waiting for food to be delivered, and hence the development of a

goal-tracking CR. The Feature-Model-Free system, directly

evaluating features by trials and errors, favours systematic

approach towards the lever, a full predictor of food delivery, and

hence the development of a sign-tracking CR. Moreover, utilizing

the Feature-Model-Free system to represent sign-tracking behav-

iour yields results consistent with the pharmacological data.

Disrupting RPEs, which reflects the effects of flupentixol on

Figure 8. Reproduction of the effect of systemic injections of flupentixol on sign-tracking and goal-tracking behaviours. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Flagel et al. [14] experimental results (Figure 4 a,d). Effects of flupentixol on the probability to
approach the lever for STs (A) and the magazine for GTs (B) during lever presentation. (C,D) Simulation of the same procedure (squares) with the
model. Simulated groups of rats are defined as in Figure 5. (C) By flattening the softmax temperature and reducing the RPEs of the Feature-Model-
Free system, to mimic the possible effect of flupentixol, the model can reproduce the blocked acquisition of sign-tracking in STs (red), engaging less
the lever relatively to a saline-injected control group (white). (D) Similarly, the model reproduces that goal-tracking was learned but its expression

was blocked. Under flupentixol (first 7 sessions), GTs (blue) did not express goal-tracking, but on a flupentixol-free control test (8th session) their
engagement with the magazine was almost identical to the engagement of a saline-injected control group (white).
doi:10.1371/journal.pcbi.1003466.g008
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dopamine, blocks the acquisition of a sign-tracking CR, but not a

goal-tracking CR. The model does not make a distinction between

simple approach behaviour versus consumption-like engagement,

as reported for both STs and GTs [23,24]. However given that

such engagement results from the development of incentive

salience [23,24], the values learned by the Feature-Model-Free

system to bias behaviour towards stimuli attributed with motiva-

tional value are well-suited to explain such observations. The

higher motivational value attributed to the lever by STs relative to

GTs can also explain why the lever-CS is a more effective

conditioned reinforcer for STs than for GTs [22].

Importantly, none of the systems are dedicated to a specific

behaviour, nor rely on a priori information to guide their processes.

The underlying mechanisms increasingly make one behaviour

more pronounced than the other through learning. Each system

contributes to a certain extent to sign- and goal-tracking

behaviour. This property is emphasized by the weighted sum

integration of the values computed by each system before applying

the softmax action-selection mechanism. The variability of

behaviours in the population can then be accounted for by

adjusting the weighting parameter v from 1 (i.e. favouring sign-

tracking) to 0 (i.e. favouring goal-tracking). This suggests that the

rats’ actions result from some combination of rational and

impulsive processes, with individual variation contributing to the

weight of each component.

The integration mechanism is directly inspired by the work of

Dayan et al. [16] and as the authors suggest, the parameter v may

fluctuate over time, making the contribution of the two systems

vary with experience. In contrast to their model, however, the

model presented here does not assign different goals to each

system. Thus, the current model is more similar to their previous

model [17], which uses another method for integration.

A common alternative to integration when using multiple

systems [17,18,35] is to select at each step, based on a given

criterion (certainty, speed/accuracy trade-off, energy cost), a single

system to pick the next action. Such switch mechanism does not fit

well with the present model, given that it would be interpreted as if

actions relied sometimes only on motivational values (i.e. Feature-

Model-Free system) and sometimes only on a rational analysis of

the situation (i.e. Model-Based system). It also does not fit well with

pharmacological observation that STs do not express goal-tracking

tendencies in the drug-free test session following systemic-

injections of flupentixol [14], as Flagel et al. stated, ‘‘[sign-

tracking] rats treated with flupentixol did not develop a goal-

tracking CR’’.

Factored representations
Classical RL algorithms used in neuroscience [16–18,35],

designed mainly to account for instrumental conditioning, work

at the state level. Tasks are defined as graphs of states, and

corresponding models are unaware of any similarity within states.

Therefore, any subsequent valuation process cannot use any

underlying structure to generalize updates to states that share

stimuli. Revising the valuation process to handle features rather

than states per se, makes it possible to attribute motivational values

to stimuli independently of the states in which they are presented.

Recent models dedicated to Pavlovian conditioning [36,42–46]

usually represent and process stimuli independently and can be

said to use factored representations, a useful property to account

for phenomena such as blocking [47] or overexpectation [48]. In

contrast to the present model, while taking inspiration from RL

theory (e.g. using incremental updates), these models are usually

far from the classical RL framework. Of significant difference with

the present study, most of these models tend to describe the

varying intensity of a unique conditioned response and do not

account for variations in the actual form of the response, as we do

here. In such models, the magazine would not be taken into

account and/or taken as part of the context, making it unable to

acquire a value for itself nor be the focus of a particular response.

In RL theory, factorization is mainly evoked when trying to

overcome the curse of dimensionality [49] (i.e. standard algorithms

do not scale well to high dimensional spaces and require too much

physical space or computation time). Amongst methods that

intend to overcome this problem are value function approxima-

tions and Factored Reinforcement Learning. Value function

approximations [35,50,51] attempt to split problems into orthog-

onal subproblems making computations easier and providing

valuations that can then be aggregated to estimate the value of

states. Factored Reinforcement Learning [52–54] attempts to find

similarities between states so that they can share values, reducing

the physical space needed and relies on factored Markov Decision

Processes. We also use factored Markov Decision processes, hence

the ‘‘factored’’ terminology. However, our use of factored

representations serves a different purpose. We do not intend to

build a compact value-function nor infer the value of states from

Figure 9. Reproduction of the effect of post injections of
flupentixol in the core of the nucleus accumbens. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Saunders et al. [25]
experimental results (Figure 2 A,D). Effects of different doses of
flupentixol on the general tendency to sign-track (A) and goal-track (B)
in a population of rats, without discriminating between sign- and goal-
trackers. (C,D) Simulation of the same procedure with the model. The
simulated population is composed of groups of rats defined as in
Figure 5. By simulating the effect of flupentixol as in Figure 8, the model
is able to reproduce the decreasing tendency to sign-track in the overall
population by increasing the dose of flupentixol.
doi:10.1371/journal.pcbi.1003466.g009
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values of features but rather make these values compete in the

choice for the next action.

Taking advantage of factored representations into classical RL

algorithms is at the very heart of the present results. By

individually processing stimuli within states (i.e. in the same

context, at the same time and same location) and making them

compete, the Feature-Model-Free system favours a different policy

– oriented towards engaging with the most valued stimuli – (sign-

tracking) than would have been favoured by classical algorithms

such as Model-Based or Model-Free systems (goal-tracking).

Hence, combining a classical RL algorithm with the Feature-

Model-Free system enables the model to reproduce the difference

in behaviours observed between STs and GTs during an

autoshaping procedure. Moreover, by biasing expected optimal

behaviours towards cues with motivational values (incentive

salience), it is well suited to explain the observed commitment to

unnecessary and possibly counter-productive actions (see also

[16,55,56]). Most of all, it enables the model to replicate the

different patterns of dopamine activity recorded with FSCV in the

core of the nucleus accumbens of STs and GTs. The independent

processing of stimuli leads to patterns of RPE that match those of

dopamine activity for STs – a shift of bursts from the US to the

CS; and in GTs – a persistence of bursts at both the time of the US

and the CS.

A promising combination
By combining the two concepts of dual learning systems and

factored representations in a single model, we are able to

reproduce individual variation in behavioural, physiological and

pharmacological effects in rats trained using an autoshaping

procedure. Interestingly, our approach does not require a deep

revision of mechanisms that are extensively used in our current

field of research.

While Pavlovian and instrumental conditioning seem entangled

in the brain [57], the two major concepts on which rely their

respective models, dual learning systems and factored representa-

tions, have to our knowledge never been combined into a single

model in this field of research.

This approach could contribute to the understanding of

interactions between these two classes of learning, such as CRE

or Pavlovian-Instrumental Transfer (PIT), where motivation for

stimuli acquired via Pavlovian learning modulates the expression

of instrumental responses. Interestingly, the Feature-Model-Free

system nicely fits with what would be expected from a mechanism

contributing to general PIT [58]. It is focused on values over

stimuli without regard to their nature [58], it biases and interferes

with some more instrumental processes [55,56,58] and it is

hypothesized to be located in the core of the nucleus accumbens

[58]. It would thus be interesting to study whether future

simulations of the model could explain and help better formalize

these aspects of PIT.

We do not necessarily imply that instrumental and Pavlovian

conditioning might rely on a unique model. Rather, we propose

that if they were the results of separated systems, they should

somehow rely on similar representations and valuation mecha-

nisms, given the strength of the observed interactions.

Theoretical and practical implications
The proposed model explains the persistent dopamine response

to the US in GTs over days of training as a permanent RPE due to

the revision of the magazine value during each ITI. Therefore, a

prediction of the model is that shortening the ITI should reduce

the amplitude of this burst (i.e. there should be less time to revise

the value and reduce the size of the RPE); whereas increasing the

ITI should increase the amplitude of this burst. Removing the food

dispenser during ITI, similar to theoretically suppressing the ITI,

should make this same burst disappear. Studying physiological

data by grouping them given the duration of the preceding ITI

might be sufficient, relatively to noise, to confirm that its duration

impacts the amplitude of dopamine bursts. In the current

experimental procedure, the ITI is indeed randomly picked in a

list of values with an average of 90 sec. Moreover, reducing ITI

duration should lead to an increase of the tendency to goal-track in

the overall population. Indeed, with a higher value of the food

magazine, the Feature-Model-Free system would be less likely to

favour sign-tracking over goal-tracking CR. The resulting decrease

in sign-tracking in the overall population would be consistent with

findings of previous works [59–62], where a shorter ITI reduces

the observed performance in the acquisition of sign-tracking CRs.

Alternatively, it would also be interesting to examine the

amplitude of dopamine bursts during the ITI (especially when

exploring the food magazine), to determine whether or not

physiological responses during this period affect the outcome of

the conditioned response.

It would be interesting to split physiological data not only

between STs and GTs but also between the stimuli on which the

rats started and/or ended focusing on during CS presentation at

each trial. This would help to confirm that the pattern of

dopamine activity is indeed due to a separate valuation of each

stimuli. We would predict that at the time of the US, dopamine

bursts during engagement with the lever should be small relatively

to dopamine bursts during engagement with the magazine.

Moreover, comparing dopamine activity at the time of the CS

when engaging with the lever versus the magazine could help

elucidate which update mechanism is being used. If activity differs,

this would suggest that the model should be revised to use SARSA-

like updates, i.e. taking into account the next action in RPE

computation. Such a question has already been the focus of some

studies on dopamine activity [63–65].

There is no available experimental data for the phasic

dopaminergic activity of the intermediate group. The model

predicts that such a group would have a permanent phasic

dopamine burst, i.e. RPE, at US and a progressively appearing

burst at CS (see Figure S6). Over training, the amplitude of the

phasic dopamine burst at US should decrease until a point of

convergence, while at the mean time the response at CS should

increase until reaching a level higher than the one observed at US.

However, one must note, that the fitting of the intermediate group

is not as good as for STs or GTs, as it regroups behaviours that

range from sign-tracking to goal-tracking, such that this is a weak

prediction.

There is the possibility that regularly presenting the magazine or

the lever could, without pairing with food, lead to responses that

are indistinguishable from CRs. However, ample evidence

suggests that the development of a sign-tracking or goal-tracking

CR is not due to this pseudoconditioning phenomenon, but rather

a result of learned CS-US associations. That is, experience with

lever-CS presentations or with food US does not account for the

acquisition of lever-CS induced directed responding [22,66].

Nonetheless, it should be noted that the current model cannot

distinguish between pseudoconditioning CR-like responses and

sign-tracking or goal-tracking behaviours. This would require us to

introduce more complex MDPs that embed the ITI and can more

clearly distinguish between approach and engagement.

Limitations
The Feature-Model-Free system presented in this article was

designed as a proof of concept for the use of factored
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representations in computational neuroscience. In its present form

it updates the value of one feature (the focused one) at a time, and

this is sufficient to account for much of the experimental data. It

does not address whether multiple features could be processed in

parallel, such that multiple synchronized, but independently

computed, signals would update distinct values relative to the

attention paid to the associated features. Further experiments

should be performed to confirm this hypothesis. Subsequently,

using factored representations in the Model-Based system was not

necessary to account for the experimental data and the question

remains whether explaining some phenomena would require it.

While using factored representations, our approach still relies on

the discrete-time state paradigm of classical RL, where updates are

made at regular intervals. Although such simplification can explain

the set of data considered here, one would need to extend this to

continuous time if one would like to also model experimental data

where rats take more or less time to initiate actions that can vary in

duration [14]. The present model, which does not take timing into

consideration, cannot account for the fact that STs and GTs both

come to approach their preferred stimuli faster and faster as a

function of training nor does it make use of the variations of ITI

duration. Our attempt to overcome this limitation using the MDP

framework was unsuccessful. Focusing on features, it becomes

more tempting to deal with the timing of their presence, a property

that is known to be learned and to have some impact on

behaviours [61,67–69].

Moreover, in the current model, we did not attempt to account

for the conditioned orienting responses (i.e. orientation towards

the CS) that both STs and GTs exhibit upon CS presentation [25].

However, we hypothesize that such learned orienting responses

could be due to state discrimination mechanisms that are not

included in the model, and would be better explained with partial

observability and actions dedicated to collect information. This is

beyond the scope of the current article, but is of interest for future

studies.

As evident by the only partial reproduction of the flupentixol

effects on the expression of sign- and goal-tracking behaviours, the

model is limited by the use of the softmax action-selection

mechanism, which is widely used in computational neuroscience

[16–19,32,34–36]. In the model, all actions are equal – there is no

action with a specific treatment – and the action-selection

mechanism necessarily selects an action at each time step. Any

reduction in the value of one action favours the selection of all

other actions in proportion to their current associated values. In

reality, however, blocking the expression of an action would

certainly lead mainly to inactivity rather than necessarily picking

the alternative and almost never expressed action. One way of

improving the model in this direction could be to replace the

classical softmax function by a more realistic model of action

selection in the basal ganglia (e.g. [70]). In such a model, no action

is performed when no output activity gets above a certain

threshold. Humphries et al. [32] have shown that changing the

exploration level in a softmax function can be equivalent to

changing the level of tonic dopamine in the basal ganglia model of

Gurney et al. [70]. Interestingly, in the latter model, reducing the

level of tonic dopamine results in difficulty in initiating actions and

thus produces lower motor behaviour, as is seen in Parkinsonian

patients and as can be seen in rats treated with higher doses of

flupentixol [14]. Thus a natural sequel to the current model would

be to combine it with a more realistic basal ganglia model for

action selection.

We simulated the effect of flupentixol as a reduction of the RPE

in the learning processes of Model-Free systems to parallel its

blockade of the dopamine receptors. While this is sufficient to

account for the pharmacological results previously reported [14], it

fails to account for some specific aspects that have more recently

emerged. Mainly, it is unable to reproduce the instant decreased

engagement observed at the very first trial after post-training local

injections of flupentixol [25]. Our current approach requires re-

learning to see any impact of flupentixol. A better understanding

of the mechanisms that enable instant shifts in motivational values,

by shifts in the motivational state [71] or the use of drugs [14,25],

might be useful to extend the model on such aspects.

We also tried to model the effect of flupentixol on RPEs with a

multiplicative effect, as it would have accounted for an instant

impact on behaviour. However, it failed to account for the effects

of flupentixol on learning of the sign-tracking CRs, as a

multiplicative effect only slowed down learning but did not disrupt

it. How to model the impact of flupentixol, and dopamine

antagonists or drugs such as cocaine remains an open question

(e.g. see [72,73]).

Finally, our work does not currently address the anatomical

counterpart of v at the heart of the model, nor the regions of the

brain that would match the current Model-Based system and the

Feature-Model-Free system. Numerous studies have already

discussed the potential substrates of Model-Based/Model-Free

systems in the prefrontal cortex/dorsolateral striatum [74], or the

dorsomedial and dorsolateral striatum [33,75–78]. The weighted

sum integration may suggest a crossed projection of brains regions

favouring sign- and goal-tracking behaviours (Model-Based and

Feature-Model-Free systems) into a third one. We postulate there

is a difference in strength of ‘‘connectivity’’ between such regions

in STs vs GTs [79]. Further, one might hypothesize that the core

of the nucleus accumbens contributes to the Feature-Model-Free

system. The integration and action selection mechanisms would

naturally fit within the basal ganglia, stated to contribute to such

functions [32,80–82].

Conclusion
Here we have presented a model that accounts for variations in

the form of Pavlovian conditioned approach behaviour seen

during autoshaping in rats; that is, the development of a sign-

tracking vs goal-tracking CR. This works adds to an emerging set

of studies suggesting the presence and collaboration of multiple RL

systems in the brain. It questions the classical paradigm of state

representation and suggests that further investigation of factored

representations in RL models of Pavlovian and instrumental

conditioning experiments may be useful.

Methods

Modelling the autoshaping experiment
In the classical reinforcement learning theory [1], tasks are

usually described as Markov Decision Processes (MDPs). As the

proposed model is based on RL algorithms, we use the MDP

formalism to computationally describe the Pavlovian autoshaping

procedure used in all simulations.

An MDP describes the interactions of an agent with its

environment and the rewards it might receive. An agent being

in a state s can execute an action a which results in a new state s’
and the possible retrieval of some reward r. More precisely, an

agent can be in a finite set of states S, in which it can perform a

finite set of discrete actions A, the consequences of which are

defined by a transition function T : S|A?P(S), where P(S) is

the probability distribution P(s’Ds,a) of reaching state s’ doing

action a in state s. Additionally, the reward functionR : S|A?R

is the reward R(s,a) for doing action a in state s. Importantly,

MDPs should theoretically comply with the Markov property: the
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probability of reaching state s’ should only depend on the last state

s and the last action a. An MDP is defined as episodic if it includes

at least one state which terminates the current episode.

Figure 1 shows the deterministic MDP used to simulate the

autoshaping procedure. Given the variable time schedule (30–

150s) and the net difference observed in behaviours in inter-trial

intervals, we can reasonably assume that each experimental trial

can be simulated with a finite horizon episode.

The agent starts from an empty state (s0) where there is nothing

to do but explore. At some point the lever appears (s1) and the

agent must make a critical choice: It can either go to the lever (s2)

and engage with it (s5), go to the magazine (s4) and engage with it

(s7) or just keep exploring (s3,s6). At some point, the lever is

retracted and food is delivered. If the agent is far from the

magazine (s5,s7), it first needs to get closer. Once close (s7), it

consumes the food. It ends in an empty state (s0) which symbolizes

the start of the inter-trial interval (ITI): no food, no lever and an

empty but still present magazine.

The MDP in Figure 1 is common to all of the simulations and

independent of the reinforcement learning systems we use. STs

should favour the red path, while GTs should favour the shorter

blue path. All of the results rely mainly on the action taken at the

lever appearance (s1), when choosing to go to either the lever, the

magazine, or to explore. Exploring can be understood as not going

to the lever nor to the magazine.

To fit with the requirements of the MDP framework, we

introduce two limitations in our description, which also simplify

our analyses. We assume that engagement is necessarily exclusive

to one or no stimulus, and we make no use of the precise timing of

the procedure – the ITI duration nor the CS duration – in our

simulations.

Inter-trial interval (ITI). While the MDP does not model

the ITI, the results regarding physiological data rely partially on its

presence. Extending the MDP with a set of states to represent this

interval would increase the complexity of the MDP and the time

required for simulations. The behaviour that could have resulted

from such an extension is easily replaced by applying the following

formula at the beginning of each episode:

V(M)/(1{uITI )|V(M) ð1Þ

where the parameter 0ƒuITIƒ1 reflects the interaction with the

magazine that occurred during the ITI. A low uITI?0 symbolizes

a low interaction and therefore a low revision of the value

associated to the magazine. A high uITI?1 symbolizes a strong

exploration of the magazine during the inter-trial interval and

therefore a strong decrease in the associated value due to

unrewarded exploration.

Model
The model relies on the architecture shown in Figure 2. The

main idea is to combine the computations of two distinct

reinforcement learning systems to define what behavioural

response is chosen at each step.

Model-Based system (MB). The first system is Model-Based

[1], and classically relies on a transition function T and a reward

function R which are learned by experience given the following

rules:

T (s,a,s’)/
(1{a)|T (s,a,s’’)za if s’~s’’

(1{a)|T (s,a,s’’) otherwise

(
ð2Þ

R(s,a)/R(s,a)za(r{R(s,a)) ð3Þ

where the learning rate 0ƒaƒ1 classically represents the speed at

which new experiences replace old ones. Using a learning rate

rather than counting occurrences is a requirement for accordance

with the incremental expression of the observed behaviours. This

can account for some resistance or uncertainty in learning from

new experiences.

Given this model, an action-value function Q can then be

computed with the following classical formula:

Q(s,a)/R(s,a)zc
X

s’

T (s’Ds,a) max
a’
Q(s’,a’) ð4Þ

where the discount rate 0ƒcƒ1 classically represents the

preference for immediate versus distant rewards. The resulting

Advantage function A [83,84], the output of the first system, is

computed as follows:

A(s,a)/Q(s,a){ max
a’
Q(s,a’) ð5Þ

It defines the (negative) advantage of taking action a in state s
relatively to the optimal action known. The optimal action

therefore has an advantage value of 0.

In terms of computation, the advantage function could be

replaced by the action-value function without changing the

simulation results (we only compare A{values over the same

state and therefore maxa’Q(s,a’) is constant whatever the action).

It has been used in preceding works dealing with interactions

between instrumental and Pavlovian conditioning [16,84] and we

kept it for a better and more straightforward comparison with

variants of the model that were directly inspired by these

preceding works.

Feature-Model-Free system (FMF). A state is generally

described by multiple features. Animals, especially engaged in a

repetitive task, might not pay attention to all of them at once. For

example, when the lever appears and a rat decides to engage with

the magazine, it focuses primarily on the magazine while ignoring

the lever, such that it could update a value associated to the

magazine but leave intact any value related to the lever (see

Figure 10 A). Although this could be related to an attentional

process that bias learning, we do not pretend to model attention

with such a mechanism.

Relying on this idea, the second system is a revision of classical

Model-Free systems which is based on features rather than states.

It relies on a value function V : C?R based on a set of features C,
which is updated with an RPE:

V(c(s,a))/V(c(s,a))zad ð6Þ

d/rzcmax
a’
V(c(s’,a’)){V(c(s,a))

where c : S|A?C is a feature-function that returns the feature

c(s,a) the action a was focusing on in state s (see Table S2; Figure 1

also embeds the features returned by c for each action and state).

One could argue that this feature-function, defined a priori,

introduces an additional requirement relative to classical Model-

Free systems. This is a weak requirement since this function is

straightforward when actions, instead of being abstractly defined,
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are described as interactions towards objects in the environment.

This function simply states that, for example, when pressing a

lever, the animal is focusing on the lever rather than on the

magazine. Similar to Q{learning, we assume that the future

action to be chosen is the most rewarding one. Therefore, the

value chosen for the reached state s’, in the computation of the

RPE, is the highest value reachable by any possible future action

maxa’V(c(s’,a’)).
Classical Model-Free systems do not permit generalization in

their standard form: even when two states share most of their

features, updating the value of one state leaves the value of the

other untouched. This new system overcomes such limitation (see

Figure 10 B). In Feature-Model-Free Reinforcement Learning,

multiple states in time and space can share features and their

associated values. For example, while in ITI, rats tend from time

to time to explore the magazine [22,26], which might lead them to

revise any associated value, which can also be used when the lever

appears. Therefore, actions in ITIs might impact the rest of the

experiment.

In the simulated experiment (see Figure 1), this generalization

phenomenon happens as follows: Assuming that the simulated rat

was engaging the magazine (eng) before food delivery (from s4 to

s7), then the value V of c(s4,eng)~M is updated with the

following d~0zcmaxa’V(c(s7,a’)){V(M). As the best subse-

quent action (and, for simplification, the only possible one) is to

consume the food (in s7), it results in a positive d~cV(F ){V(M).
During ITI (which in the MDP is simulated by the uITI

parameter), if the simulated rat checks the magazine (goM) and

finds no food, then V(M) is revised with a negative

d~cV(1){V(M) (Figure 10 B). The value V(M) is therefore

revised at multiple times in the experiment and, for example, a

decrease of value during ITI has an impact on the choice of

engaging with the magazine (goM) at lever appearance.

Processing features rather than states and the generalization that

results from it is a key mechanism of the presented model. It makes

the system favour a different path than the one favoured by

classical reinforcement learning systems.

Contrary to what the system suggests, it is almost certain that

rats might handle multiple features at once and could simulta-

neously update multiple values. We present here a version without

such capacity since it is not required in the simulated experiments

and simplifies its understanding.

Integration. The Feature-Model-Free system accounts for

motivational bonuses V that impact values A computed by the

Model-Based system. The integration of these values is made

through a weighted sum:

P(s,a)~(1{v)A(s,a)zvV(c(s,a)) ð7Þ

where 0ƒvƒ1 is a combination parameter which defines the

importance of each system in the overall model. v is equivalent to

the responsibility signal in Mixture of Experts [35,85]. We want to

emphasize that the two systems are not in simple competition, and

it is not the case that there is a unique system acting at a time.

Rather, they are both active and take part in the decision

proportionally to the fixed parameter v. A simple switch between

systems would not account for the full spectrum of observed

behaviours ranging from STs to GTs [26].

Action selection. We use a softmax rule on the integrated

values P to compute the probability to select an action A in state s:

p(a~A)~
eP(s,A)=bP
a0 e
P(s,a0)=b

ð8Þ

where bw0 is the selection temperature that defines how

probabilities are distributed. A high temperature (b??) makes

all actions equiprobable, a low one makes the most rewarding

action almost exclusive.

Impact of flupentixol. When simulating the pharmacological

experiments, namely the impact of flupentixol, a parameter 0ƒf v1 is

used to represent the impact of flupentixol on parts of the model.

As a dopamine receptor antagonist, we model the impact of

flupentixol on phasic dopamine by revising any RPE d used in the

model given the following formula:

df /
d{f if

d{f

d
§0

0 otherwise

8<
: ð9Þ

where df is the new RPE after flupentixol injection. The impact is

filtered (
d{f

d
§0) such that flupentixol injection could not lead to

negative learning when the RPE was positive, but at most block it

Figure 10. Characteristics of the Feature-Model-Free system. (A) Focusing on a particular feature. The Feature-Model-Free system relies on a
value function V based on features. Choosing an action (e.g. goL, goM or exp), defines the feature it is focusing on (e.g. Lever, Magazine or nothing
1). Once the action is chosen (e.g. goM in blue), only the value of the focused feature (e.g. V(M)) is updated by a standard reward prediction error,
while leaving the values of the other features unchanged. (B) Feature-values permit generalization. At a different place and time in the episode, the
agent can choose an action (e.g. goM in blue) focusing on a feature (e.g. M) that might have already been focused on. This leads to the revision of the
same value (e.g. V(M)) for two different states (e.g. s1 and s0). Values of features are shared amongst multiple states.
doi:10.1371/journal.pcbi.1003466.g010
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(i.e. the sign of df cannot be different from the one of d). With a

low f?0, the RPE is not affected (df ?d). A high f?1 reduces the

RPE, imitating a blockade of dopamine receptors.

Various studies (e.g. [32]) also suggest that tonic dopamine has

an impact on action selection such that any decrease in dopamine

level results in favouring exploration over exploitation. We

therefore simulated the effect of flupentixol on action selection

by revising the selection temperature given the following formula:

bf /
b

1{f
ð10Þ

where bf is the new selection temperature, and 0ƒf v1

represents the strength of the flupentixol impact. A strong f?1,

which represents an effective dose of flupentixol, favours a high

temperature bf ?? and therefore exploration. A low f?0, i.e. a

low dose or an absence of flupentixol, leaves the temperature

unaffected: bf ?b.

For the first pharmacological experiment (Effects of systemic

flupentixol administration on the learning of sign- and goal-

tracking behaviours) both the impact on the softmax and on the

RPE were activated, as the flupentixol was injected systemically

and assumed to diffuse in the whole brain. For the second

experiment (Effects of local flupentixol administration on the

expression of sign- and goal-tracking behaviours) only the impact

on the RPE was activated, as the flupentixol was injected locally in

the core of the nucleus accumbens. We hypothesize that the

Feature-Model-Free system relies in the core of the nucleus

accumbens whereas the selection process (softmax) does not.

Initialization. In the original experiments [14,20], prior to

the autoshaping procedure, rats are familiarized with the Skinner

box and the delivery of food into the magazine. While the MDP

does not account for such pretraining, we can initialize the model

with values (Qi(s1,goL), Qi(s1,goM) and Qi(s1,exp)) that reflect it

(see the estimation of the model parameters). These initial values

can be seen as extra parameters common to the model and its

variants.

Variants
Given the modular architecture of the model, we were able to

test different combinations of RL systems. Their analysis

underlined the key mechanisms required for reproducing each

result (see Figures S1, S2, S4 and S5). Figure 11 (B, C and D)

schematically represents the analysed variants.

Most of the results rely on the action taken by the agent at the

lever appearance. The action taken results from the values

P(s1,goL), P(s1,goM) and P(s1,exp), the computation of which

differs in each of the variants described below.

Variant 1 : Model-Free/Feature-Model-Free. Variant 1

was tested to assert the necessity of the Model-Based system as part

of the model to reproduce the results. Thus in Variant 1, the

Model-Based system is replaced by a classical Model-Free system,

Advantage learning [83,84], while the Feature-Model-Free system

remains unchanged (see Figure 11 B).

In such a Model-Free system, the action-value function QMF is

updated online according to the transition just experienced. At

each time step the function is updated given an RPE d that

computes the difference between the observed and the expected

value, as follows:

QMF(s,a)/QMF(s,a)zad ð11Þ

d/rzcmax
a’
QMF(s’,a’){QMF(s,a)

Computation of the associated Advantage function AMF follows

Equation (5). This model computes integrated values as follows:

P(s,a)~(1{v)AMF(s,a)zvV(c(s,a)) ð12Þ

It is important to note that while Equation (12) looks similar to

Equation (7), the Advantage function is computed by a Model-

Based system in the model (A) and a Model-Free system in this

variant (AMF), leading to very different results on pharmacological

experiments.
Variant 2 : Asymmetrical. Inspired by a work from Dayan

et al. [16], Variant 2 combines a classical Advantage learning

system [83,84] with some Bias system taking its values directly

from the other system (see Figure 11 C). This system computes the

integrated values as follows:

P(s,a)~(1{v)|AMF(s,a)zv
V(s) if a~goL

0 otherwise

�
ð13Þ

It asymmetrically gives a bonus to the path that should be taken

by STs. In slight discrepancy with the original model, it uses the

maximum value over action-value function QMF as the value

function VMF used to compute the advantage function. Hence,

there is a single RPE computed at each step.
Variant 3 : Symmetrical. In the same line as Variant 2,

Variant 3 symmetrically gives a bonus to both paths using a

classical Advantage learning system in combination with a

Pavlovian system. This system computes the integrated values as

follows:

P(s,a)~AMF(s,a)z

vV(s) if a~goL

(1{v)V(s) if a~goM

0 otherwise

8><
>: ð14Þ

This model does not exactly fit Equation (7) of the general

architecture. It is based on 3 systems, where the real competition is

between the two bias systems, whereas the Model-Free system is

mainly used to compute the values used by the two others (see

Figure 11 D). The rest of the architecture is not impacted.
Variant 4 : Model-Based/Model-Free. Variant 4 was

developed to confirm the necessity of a feature-based system. It

combines two advantage functions computed from a Model-Based

(A) and a Model-Free (AMF) system.

P(s,a)~(1{v)A(s,a)zvAMF(s,a) ð15Þ

While computed differently, both advantage functions will

eventually converge to the same optimal values [1] making both

systems favouring the same optimal policy. Note that uITI cannot

be used in this variant as there exists no value over the magazine

itself. While varying the parameters might slow down learning or

make the process more exploratory, this could never lead to sign-

tracking as both systems, whatever the weighting, would favour
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goal-tracking. As such, Variant 4 is unable to even account for the

main behavioural results in the autoshaping procedure (see Figure S8).

Given that all the subsequent simulated results relies on a

correct reproduction of the default behaviours, this variant was not

investigated further and is not compared to the other variants in

supplementary results figures.

Estimating the model parameters
The model relies on model-specific parameters (v, b, a and c)

and experience-specific parameters (uITI , Qi(s1,goL), Qi(s1,goM)
and Qi(s1,1)). If the model were used to simulate a different

experiment, the model-specific parameters would be the same

while different experience-specific parameters might be required.

For an easier analysis and a simpler comparison between the

model and its variants, we reduce the number of parameters by

sharing parameters with identical meanings amongst systems (i.e.

both systems within the model share values for their learning rates

a and discount rates c, rather than having independent parameter

values).

Due to the number of parameters, finding the best values to

qualitatively fit the experimental data cannot be done by hand.

Using a genetic algorithm makes it possible to optimize the search

of suitable values for the parameters.

Parameter values were retrieved by fitting the simulation of the

probabilities to engage either the lever or the magazine with the

experimental data of one of the previous studies [21]. No direct

fitting was intended on other experimental data. Hence, a single

set of values was used to simulate behavioural, physiological and

pharmacological data.

If for a variant, the optimization algorithm fails to fit the

experimental data, it suggests that whatever the values, the

mechanisms involved cannot explain the behavioural data

(Variant 4).

Probabilities to engage the lever or the magazine were taken

as independent objectives of the algorithm, since fitting sign-

tracking probabilities is easier than fitting goal-tracking

probabilities. For each objective, the fitness function is

computed as the least square errors between the experimental

and simulated data. Parameter optimization is done with the

multi-objective genetic algorithm NSGA-II [86]. We used the

implementation provided by the Sferes 2 framework [87]. All

parameters required for reproducing the behavioural data were

fitted at once.

For NSGA-II, we arbitrarily use a population of 200 individuals

and run it over 1000 generations. We use a polynomial mutation

with a rate of 0.1, and simulate binary cross-overs with a rate of

0.5. We select the representative individual, to be displayed in

figures, from the resulting Pareto front by hand, such that it best

visually fits the observed data.

To confirm that v is the key parameter of the model, we

additionally tried to fit the whole population at once (i.e. sharing

all parameter values in agents but v) and we were still able to

reproduce the observed tendencies of sign- and goal-tracking in

the population (see Figure S7 A,B) and the resulting different

phasic dopaminergic patterns (see Figure S7 C,D).

It is however almost certain that each subgroup does not express

the exact same values for the other parameters. Removing such

constraint by fitting each subgroup separately, indeed provides

better results. Results presented in this article are based on such

separate fitting.

Supporting Information

Figure S1 Comparison of variants of the model on
simulations of autoshaping experiment. Legend is as in

Figure 5 (C,D). Simulation parameters for STs (red), GTs (blue)

Figure 11. Systems combined in the model and the variants. Variants of the model rely on the same architecture (described in Figure 2) and
only differ in the combined systems. Colours are shared for similar systems. (A) The model combines a Model-Based system (MB, in blue) and a
Feature-Model-Free (FMF, in red) system. (B) Variant 1 combines a Model-Free system (MF, in green) and a Feature-Model-Free system. (C) Variant 2
combines a Model-Free system and a Bias system (BS, in grey), that relies on values from the Model-Free system. (D) Variant 3 combines a Model-Free
system and two Bias systems, that rely on values from the Model-Free system. Variant 4 is not included as it failed to even reproduce the autoshaping
behavioural results.
doi:10.1371/journal.pcbi.1003466.g011
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and IGs (white) in the model (A), Variant 1 (B), Variant 2 (C) and

Variant 3 (D) are summarized in Table S1. All variants reproduce

the spectrum of behaviours ranging from sign-tracking to goal-

tracking.

(TIFF)

Figure S2 Comparison of variants of the model on
incentive salience and Conditioned Reinforcement Ef-
fect intuitions. Legend is as in Figure 6. Simulation parameters

for STs (red), GTs (blue) and IGs (white) are summarized in Table

S1. Variant 2 (C) relying on asymmetrical bonuses given only to

sign-tracking cannot reproduce the attribution of a motivational

value by the second system to both the lever and the magazine.

Others (A,B,D) attribute values to both stimuli and parallels the

supposed acquisition of motivational values by stimuli, i.e.

incentive salience. All variants are able to account for a

Conditioned Reinforcement Effect more pronounced in STs than

in GTs.

(TIFF)

Figure S3 Comparison of variants of the model on
simulations of patterns of dopaminergic activity. Legend

is as in Figure 7 (C,D). Simulation parameters for STs (left) and

GTs (right) are summarized in Table S1. The model (A) and

Variant 1 (B) can reproduce the difference observed in

dopaminergic patterns of activity in STs versus GTs. Other

variants (C,D) fail to do so, given that the classical Model-Free

system propagates the RPE from food delivery to lever appearance

on all pathways of the MDP.

(TIFF)

Figure S4 Comparison of variants on simulations of the
effect of systemic injections of flupentixol. Legend is as in

Figure 8 (C,D). Simulation parameters for STs (left) and GTs

(right) are summarized in Table S1. Only the Model (A) can

reproduce the difference in response to injections of flupentixol

observed in STs versus GTs. All variants (B,C,D) fail to do so,

given that they only rely on Model-Free, i.e. RPE-dependent,

mechanisms that are blocked by flupentixol.

(TIFF)

Figure S5 Comparison of variants on simulations of the
effect of post injections of flupentixol. Legend is as in

Figure 9 (C,D). Simulation parameters for groups of rats

composing the population are summarized in Table S1. Variants

2 (C) and 3 (D), accounting for sign- and goal-tracking using a

single set of values, have a similar impact of flupentixol on both

behaviours, leaving relative probabilities to engage with lever and

magazine unaffected. Variant 1 (B) uses different systems, thus

flupentixol impacts sign-tracking in the model in the same way as it

does in experimental data. However, given that both systems rely

on RPE-dependent mechanisms, the impact is not as visible as in

the model (A).

(TIFF)

Figure S6 Prediction of the model about expected
patterns of dopaminergic activity in intermediate

groups. Data are expressed as mean + S.E.M. Average RPE

computed by the Feature-Model-Free system in response to CS

and US presentation for each session of conditioning in the

intermediate group. Simulated group is defined as in Figure 5.

(TIFF)

Figure S7 Behavioural and physiological simulations of
autoshaping with shared parameter values across STs,
GTs and IGs. (A,B) Legend is as in Figure 5 (C,D).

Reproduction of the respective tendencies to sign- and goal-track

of STs (v~0:5), IGs (v~0:375) and GTs (v~0:05)) using a

single set of parameters (a~0:2, c~0:8, b~0:09, uITI~0:2,

Qi(s1,goL)~0:0, Qi(s1,exp)~0:5 and Qi(s1,goM)~0:5). (C,D)

Legend is as in Figure 7 (C,D). Reproduction of the different

patterns of phasic dopaminergic activity in STs and GTs using the

same single set of parameters. By simply varying the v parameter,

the model can still qualitatively reproduce the observations in

experimental data.

(TIFF)

Figure S8 Simulation of autoshaping experiment for
Variant 4. Legend is as in Figure 5 (C,D). Simulation for

parameters STs (red), GTs (blue) and IGs (white) in the Variant 4

are summarized in Table S1. Variant 4 is not even able to

reproduce the main behavioural data.

(TIFF)

Table S1 Summary of parameters used in simulations.
Parameters retrieved by optimisation with NSGA-II and used to

produce the results presented in this article for the model and its

variants. Parameters for STs, GTs and IGs were optimized

separately (A,B,C,D,E). To confirm that v is the key parameter of

the model, we also optimized parameters for STs, GTs and IGs by

sharing all but the v parameter (F) to produce Figure S7.

(TIFF)

Table S2 Definition of feature-function c. Stimuli (Lever,

Magazine, Food or 1) returned by the feature-function c for each

possible state-action pair Ss,aT in the MDP described in Figure 1.

The feature-function simply defines the stimulus that is the focus of

an action in a particular state.

(TIFF)
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