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Evolutionary robotics is often viewed as the application of a
family of black-box optimization algorithms – evolutionary algo-
rithms – to the design of robots, or parts of robots. When con-
sidering evolutionary robotics as black-box optimization, the se-
lective pressure is mainly driven by a user-defined, black-box fit-
ness function, and a domain-independent selection procedure.
However, most evolutionary robotics experiments face similar
challenges in similar setups: the selective pressure, and, in par-
ticular, the fitness function, is not a pure user-defined black box.
The present review shows that, because evolutionary robotics
experiments share common features, selective pressures for
evolutionary robotics are a subject of research on their own.
The literature has been split into two categories: goal refiners,
aimed at changing the definition of a good solution, and pro-
cess helpers, designed to help the search process. Two sub-
categories are further considered: task-specific approaches,
which require knowledge on how to solve the task and task-
agnostic ones, which do not need it. Besides highlighting the di-
versity of the approaches and their respective goals, the present
review shows that many task-agnostic process helpers have
been proposed during the last years, thus bringing us closer to
the goal of a fully automated robot behavior design process.

1 Introduction

DESPITE decades of research of in robotics [164], even the most
advanced robots are a far cry from the efficiency, adaptivity

and, overall sophistication of animals. Bio-inspired robots import
some ideas from these natural wonders [118–120, 152, 153, 60], with
the hope of taking advantage of billion years of evolution. Evolu-
tionary Robotics (ER) [141, 60, 53, 20] follows a close but different
path: instead of trying to replicate the result of evolution, why not
try to replicate evolution itself? Evolutionary robotics hence pro-
poses to employ evolution-inspired algorithms to design robots or,
more often, control systems for robots.

From the embodied cognition point of view [152, 153, 20], evolu-
tionary robotics could lead to machines with their own vision of the
world, devoid of anthropocentric bias. For instance, many mobile
robots see the world as a colorless, two-dimensional world, because
they perceive it through a LIDAR [164]; what is it like to think and
act in such a world? Answering such a question is very challenging
for humans, who experience a much richer world.

From the engineering point of view, evolutionary robotics aims
to propose an automated engineering process [113, 53, 20], that is,
a process in which engineers write specifications and a computer
takes care of the design.
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Evolutionary Algorithms (EA) (see e.g. [46, 56, 43]) provide the
algorithmic foundation of evolutionary robotics. In their modern
form, these population-based optimization algorithms are com-
posed of four components: a genotype, a genotype to phenotype
mapping, a set of variation operators, and a user-defined function
to be optimized, called a fitness function. This fitness function is
always left to the user. Because no assumptions are made about
the fitness function, evolutionary algorithms are often classified as
“black-box optimization algorithms”.

Viewing evolutionary algorithms as black-box optimization tools
is seductive because optimization is a well-defined field of applied
mathematics, and because black-box optimization can be used in
many real-world situations. However, it has a side effect: it incen-
tivizes researchers to work on what is not user-defined – the en-
coding and the evolutionary operators. As a result, evolutionary
robotics focused for a long time on how to encode the morphology
and the brain of robots (e.g., [165, 114, 85]) or how to encode neural
networks (e.g., [95, 123, 171, 50, 59, 128, 169, 35]).

At any rate, however good the encoding is, crafting a fitness func-
tion is “notoriously difficult” [20, 134]. A first challenge is that evo-
lutionary algorithms – like all optimization algorithms – do not pos-
sess any common sense: they exploit every way to maximize the
fitness function, in particular those that take unforeseen shortcuts.
For instance, let us imagine we want to evolve a neural network that
would allow a mobile robot to avoid obstacles [141]. A straightfor-
ward fitness function simulates robots for some time in a simula-
tor, and counts how many seconds they move without hitting a wall.
The result will probably be disappointing: with such a fitness func-
tion, the robot usually does not move at all but, counter-intuitively,
receives the maximum fitness score. A robot that does not move, af-
ter all, will not hit any walls! If the fitness function is improved so
that the robot is forced to move, then we can expect evolved robots
to move in a circle instead of exploring the environment. As illus-
trated by this example, a long refinement process is often required
before obtaining a fitness function that unambiguously reflects the
target behaviors.

A good fitness function is even more challenging to craft because
it serves two different purposes: it both defines the goal and guides
the search. Mixing up these two purposes makes sense in a black-
box optimization because the fitness function is the only informa-
tion that is available to identify promising solutions. This strat-
egy works well when finding good solutions does not impose large
detours that are not directly identifiable with the fitness function.
Recent experiments, however, exhibited several tasks in which this
kind of objective-based search was especially ineffective [106, 185].
In nature, fossils provides many examples of detours that would
have been hard to find using objective-based search: many traits
of animals and plants have been exapted, that is, they have been co-
opted for a purpose for which they were not initially selected [76].
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Fig. 1. (A) General principle of evolutionary algorithms. (B) Principles of evolutionary robotics. The dark gray area corresponds to selective
pressures as reviewed in this paper.

Classic examples are bird feathers, which may initially have evolved
for temperature regulation, and vertebrate bones, which may have
been selected to store phosphates [76]. Similarly, the history of sci-
ence and technology is full of critical but serendipitous discoveries.
For instance, the concept of heating food by microwaves was dis-
covered when working on radar tubes [157], and the effects of peni-
cillin on microbes were first observed in a failed experiment about
lysozyme. Because evolutionary robotics aims at creating artifacts
as complex as life forms, it is reasonable to expect that such detours
will have to occur in artificial evolution.

From the point of view of black-box optimization, problems when
crafting fitness functions stem from users who do not specify what
they are looking for with enough accuracy, and who do not provide
the “right” heuristic to guide the search. Put differently, these are
issues with the users, not with the algorithms. Such a view does
not give evolutionary robotics much hope: if programming a fit-
ness function to evolve simple behaviors is not straightforward, how
could we hope to employ evolution to design vastly more complex
and hard to define behaviors like, for instance, “being intelligent”?

Fortunately, evolutionary robotics is not black-box optimization:
most experiments have both common challenges and similar se-
tups. For example, most evolutionary robotics experiments involve
testing robots, observing their behavior and attributing the fitness
score (fig.1). Instead of only looking at the fitness score, designers
of algorithms for evolutionary robotics can assume that the concept
of behaviors exists and can be exploited. For instance, some recent
algorithms compare behaviors to prevent the algorithm from con-
verging toward a single family of behaviors [131], or to favor behav-
iors that have not been seen before [106]. The stimulating results
achieved with these algorithms suggest that studying selective pres-
sures may be at least as important as studying encodings and evolu-
tionary operators [131].

Interestingly, the study of selective pressures is at the center of
many, if not most, papers about biological evolution, whereas it
has only recently been identified as a main topic in evolutionary
robotics. Most of the early papers related to selective pressures are
“guides” to help researchers design a working experiment, often by
incorporating task-specific knowledge into the fitness function. For
instance, some papers advocate the use of an incremental approach
according to which the “practitioner” splits the task into sub-tasks
and solves each of them separately [81, 40, 95, 132]; some other pa-
pers describe how to reward the achievement of intermediate use-
ful behaviors [179]; many of them also discuss the use of noise in
the fitness function, in particular to discourage over-specialized so-
lutions [88, 89].

Two scientific advances have enabled the evolutionary robotics

community to study selective pressures in a more generic way
than fitness writing guides. First, multi-objective evolutionary al-
gorithms (see, e.g. [46]) have demonstrated that ranking candi-
date solutions can be achieved in several ways, and not only by
using a single fitness value for each individual. These algorithms
have allowed researchers to stop tuning weights of complex, aggre-
gated fitness functions and thus to focus on the content of the ob-
jectives [46]. They have also paved the way to helper objectives,
which are adjunct objectives used to improve the performance of
an evolutionary process [92, 90]. The second advance is Novelty
Search [104, 106], which has demonstrated that guiding evolution
with objective functions is not the only possibility. These two sci-
entific advances have led several teams to call into question the
dogma of a purely user-defined fitness function to guide an evolu-
tionary algorithm. These two lines of work have thus renewed in-
terest in some of the most fundamental questions of evolutionary
robotics, like: what should be the driver of an artificial evolutionary
process? Is the evolutionary process necessarily driven by a task-
performance criterion? or what are the alternatives to performance
objectives?

Overall, there are now dozens of papers in evolutionary robotics
that are explicitly focused on selective pressures. Modifications of
fitness functions have, however, always been present in the evolu-
tionary robotics literature (e.g., fitness shaping or incremental evo-
lution). The goal of the present paper is to analyze all these selective
pressure modifications in a common framework.

Previous work on fitness functions for evolutionary robotics fo-
cused on the amount of prior knowledge included in the fitness
function [134, 141]. Hence, Nolfi and Floreano proposed a clas-
sification of fitness functions with respect to three dimensions:
explicit/implicit (measuring the way the goal is achieved versus
measuring the level of attainment of the goal), external/internal
(measuring fitness through an external observer versus measur-
ing it internally with the robot), and functional/behavioral (re-
warding a particular working modality versus the quality of the
behavior)[141]. Nelson et al.[134] focused on a single axis that rep-
resents the amount of a priori knowledge incorporated in the fit-
ness function. Both classifications rely on the same reasoning: ex-
ploiting prior knowledge helps ER to find solutions quickly, but it
prevents discovering original solutions; to make fair comparisons
between approaches, therefore, both the performance and the level
of autonomy of the evolutionary process must always be taken into
account. Nevertheless, experiments with Novelty Search show that
prior knowledge can be misleading [104, 106]. In addition, the re-
cent literature contains many examples of fitness modifications that
do not depend on the targeted task, that is, modifications that can-
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not be distinguished on a “prior knowledge” axis. Last, prior knowl-
edge is difficult to quantify precisely.

The present review is focused on the issues addressed by modi-
fying the fitness function (why?) and on the techniques proposed
(how?). We divide selective pressures modifiers into goal refiners
and process helpers. Goal refiners alter the search space so that so-
lutions with classic issues are avoided. Consequently, they change
the maximum of the fitness function. For instance, goal refiners
have been proposed to avoid behaviors that work in simulation but
not on the real robot [98], or to improve the reactivity of evolved
controllers [103]. Process helpers alter the search process, most of
the time by changing the method used to identify the most promis-
ing solutions. For example, process helpers can mitigate premature
convergence by encouraging behavioral diversity [131], or guide the
process by providing intermediate goals, like in many incremental
evolution experiments [81, 40, 95]. Goal refiners and process helpers
can both be task-specific, that is they can include knowledge on how
to reach the goal, or task-agnostic, that is, the same code can be used
for several tasks.

We first describe the specificities of evolutionary robotics and
therefore what generic knowledge can be exploited by algorithms.
We then identify the main challenges of evolutionary robotics. The
classification of techniques found in the literature is then per-
formed, first by the kind of approach (e.g., goal refiner or process
helper), the status with respect to the task (specific or agnostic), the
challenges it addresses and lastly the family of approaches it belongs
to (e.g. multi-objective optimization).

2 What is common to evolutionary robotics
experiments?

2.1 Common features

A robot is a system that receives information from its environment.
It can move and modify the environment through its actions. It ex-
hibits particular dynamics influenced (or not) by its current state, by
some control outputs u, and by external factors e like, for instance,
environment conditions or the actions of other robots. Its dynamics
can be modeled with a differential equation as follows:

ṡ =G(s,u,e) (1)

where s denotes the state of the robot and where G(.) models the
physical laws governing the interaction between the robot and its
environment.

As a first approximation and to simplify the model, this equation
can be expressed in discrete time as follows:

s(t +1) =G(s(t ),u(t ),e(t )) (2)

Designing a robot behavior through evolutionary algorithms
means looking for u1 to reach trajectories of the system that have
desirable features. The evolutionary process relies on one or more
fitness objectives fi evaluating the performance of a genotype g .
These fitness objectives will depend on the system’s trajectory:

fi (g ) = Fi (s(i )
0 , s(i )(1), ..., s(i )(T (i )), x(i )) (3)

where T (i ) is the evaluation length associated with fi , x(i ) repre-

sents other factors that the fitness objective may depend on, and s(i )
0

is the initial state of the robot when starting the evaluation of fi . s(i )
0

is a parameter of this evaluation. s(i )(1), ..., s(i )(T (i )) are iteratively
computed with equation 2.

To sum up, every ER experiment requires evaluating the behavior
of a robot once or several times. Besides u and G , each evaluation i
relies on:

1At this modeling level, it can be hypothesized that the morphology can be included
in u.

• s(i )
0 : the initial state;

• T (i ): the evaluation length;

• e(i ): the external conditions.

Exploiting any of these features makes an ER algorithm leave the
category of black-box optimization algorithms (fig. 1).

2.2 Specific challenges

2.2.1 Premature convergence

The search space explored by a typical ER experiment is large and
even unbounded, in particular when evolving neural network struc-
tures. The evaluation of a solution results from the observation of a
dynamical system. As for any dynamical system, a small change in
the parameters may result in a bifurcation [11], i.e., in a sudden and
drastic change of behavior. When evolving robots, a small change in
the controller parameters may make the robot collide with some ob-
stacles and thus completely change its behavior. Likewise, a robot
engaged in a locomotion task may fall or not. Bifurcations are thus
not rare when evolving robots and create discontinuities in the fit-
ness values. Fitness plateaus are common in ER [166]. Typical ER
fitness landscapes are then large, at least partly rugged and include
plateaus. They are not easy to explore, which results in a clear symp-
tom: the search often gets trapped in local optima. The generated
solutions do not satisfy the expectations of the user, even if the
search is allowed to go on for a large number of generations. We
will refer to this phenomena as the premature convergence challenge
[68, 56]. It has also been called the bootstrap problem [129].

Another phenomenon can actually explain premature conver-
gence. The fitness function has two different roles: defining the goal
and guiding the search. A fitness function may well describe what is
expected, but it may also drive the process in the wrong direction.
Such a fitness function is called deceptive. Lehman and Stanley ar-
gue that most, if not all, goal oriented fitness functions exhibit such
deceptive properties and that they should thus not solely be taken
into account during the search [106].

Premature convergence may thus be due to many different fac-
tors such as the lack of gradient, a deficient exploration or a decep-
tive fitness function. The challenge of overcoming this problem is
not specific to ER and generic solutions have been proposed (see
[56] for a review). This problem is a critical challenge in ER and this
article will focus only on solutions that are specific to ER or that have
been tested on an ER experiment.

2.2.2 Fitness definition

How can we quantitatively describe the behavior that is expected to
emerge from the evolutionary process? This question may, in cer-
tain cases be particularly difficult to answer. Even in simple cases,
defining a fitness function leading to an expected behavior is chal-
lenging. To design a robot that avoids obstacles, simply minimizing
the number of collisions is not sufficient as it will generate robots
that do not move at all. Likewise, if the robot is forced or encour-
aged to move, the risk is that it blindly follows a circular trajectory
in a place where there is no obstacle. The behavior is then the one
expected, but if the robot is put in front of an obstacle, it will not be
able to avoid it. In this case, the evaluation process is not an appro-
priate way to check the desired property and there are unfortunately
no theoretical tools nor frameworks to guide this tedious trial-and-
error evaluation design process. Furthermore, designing an adapted
evaluation process requires technical skills. It would be interesting
therefore if an autonomous behavior design method could remove
these needs so that non experts, like children, could use it [116].

Living creatures subject to natural selection have no “goal” other
than transmitting their genes. The selective pressures exerted on
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them will depend on their ecological niche, which is local and may
change over time. In light of the open-ended property of natural
evolution, we may question the validity of driving artificial evolution
mainly by maximizing a constant task-based objective function.

The fitness definition challenge will refer to the problem of de-
signing a fitness function together with the conditions of the eval-
uations, to reach some expected behavior. Works that replaces any
need for an analytical function to evaluate the performance of the
solutions being tested, and thus bypass this problem will also be
considered as addressing this challenge.

Formally, this challenge corresponds to the design of f and every-
thing it depends on, i.e. F , s0, T and e.

2.2.3 Reducing evaluations

The natural selection process took several billions of years to cre-
ate complex creatures like humans. Even the simplest multi-cellular
creatures have required billions of years to appear. Algorithms in-
spired from natural selection are also slow as they require evaluating
the performance of a large number of potential solutions. Finding
how to reduce the time devoted to evaluations is thus a critical issue,
in particular when robots with complex morphologies and behav-
iors are searched for. This problem can be tackled from two different
and complementary points of view: either by trying to reduce the
number of evaluations or by trying to reduce the evaluation length
T (which may vary from one evaluation to another). Both aspects
will be grouped together into a single challenge: reducing evalua-
tions.

2.2.4 Reality gap

Evolutionary robotics experiments can be run directly on real robots
[61], but the required number of evaluations and the risk of damag-
ing the robots encourages minimizing evaluations on real robots.
The availability of fast simulators like ODE2 or Bullet3 has allowed
ER researchers to rely, at least partly, on simulations. The advan-
tages are numerous: simulations are generally faster than real time;
they allow a parallelization of evaluations, which is particularly in-
teresting when using modern clusters; and all problems related to
repeating a robotic experiment a large number of times are avoided
(mechanical fatigue, motor or sensor failures, etc). When the target
is a real robotic platform, the inevitable discrepancies between the
simulated robot and the real one introduce a new problem: con-
trollers generated in simulations will be adapted to the simulation
but not necessarily to the real robot. If they exploit a feature that is
specific to the simulation, the behavior on the real robot will be less
effective or maybe completely ineffective, thus leading to the reality
gap problem [89, 97, 98].

In the proposed formalism, this corresponds to situations in
which G changes. If Gs describes the behavior of the simulated
robot and Gr the behavior of the real robot and ss (t ) and sr (t ) the
respective corresponding states, the problem consists of ensuring
that the difference of fitness between the two situations remains, as
much as possible and at least locally, consistent:

F (s(1)
s (0), . . . , s(1)

s (T )), x > F (s(2)
s (0), . . . , s(2)

s (T ), x)

⇒ F (s(1)
r (0), . . . , s(1)

r (T ), x) > F (s(2)
r (0), . . . , s(2)

r (T ), x)

Furthermore, for practical reasons, it is interesting that the differ-
ence between the fitness values associated with the same genotype
in simulation and in reality remains bounded and as small as possi-
ble:

|F (ss (0), . . . , ss (T ), x)−F (sr (0), . . . , sr (T ), x)| < ε

There may be different ways to address this challenge. We will fo-
cus here on algorithms and methods that change the selective pres-
sure.

2http://www.ode.org/
3http://bulletphysics.org/wordpress/

2.2.5 Generalization

During an ER experiment, the potential solutions are evaluated on

a set of evaluations defined by an initial state s(i )
0 , a finite evaluation

length T (i ) and external conditions e(i ). Consequently, only a lim-
ited number of different situations will be encountered by the robot
during an evaluation and thus taken into account in the fitness. A
solution optimizing the fitness meets the expectations in these situ-
ations, but nothing can be said for other situations and performance
drops are often observed [48]. If ER is to be used in real and prac-
tical situations, end users will expect the evolved behavior to be ro-
bust to variations in the environment. Any evolved controller whose
behavior will be specific to the initial conditions and the particular
environment used during evolution will be useless in practice. Fur-
thermore, as T (i ) is a critical factor with regard to the duration of
an experiment, it is generally chosen to be as short as possible. The
challenge is then to define methods to generate a controller with
only few evaluations while ensuring that it is successful in different
and new contexts [154]. This will be called the generalization chal-
lenge. This issue is not specific to ER and holds for many machine
learning algorithms [1], but we will focus here only on methods that
(1) have been applied to ER experiments and (2) rely on selective
pressure adaptation.

3 How to influence selective pressures?

Evolutionary algorithms rely on the Darwinian principle of variation
and selection of the fittest. Any aspect that may influence this selec-
tion process is referred to as a selective pressure. In the following,
different categories of approaches aimed at influencing the selective
pressures are presented. It should be noted that these approaches
are not exclusive and can, for some of them at least, be combined.

Mono-objective EA In mono-objective evolutionary algorithms,
a single scalar fitness function is used to drive the evolutionary
search process. This approach corresponds to the most classical
EA. Genetic algorithms [83], evolution strategies [162], evolution-
ary programming [66] and genetic programming [99] were all mono-
objective EAs when they were first proposed.

Multi-objective EA While mono-objective EAs aim to find the op-
timal solution of a unique function, multi-objective EAs are de-
signed to generate a set of optimal trade-offs between several objec-
tives [46]. Trade-offs are optimal with respect to ordering relations
specifically designed for multi-objective spaces, often the Pareto
dominance relation, defined as follows:

Definition 3.1 (Pareto dominance.) A solution x∗ is said to domi-
nate another solution x, if both conditions 1 and 2 are true:

1. the solution x∗ is not worse than x with respect to all objectives;

2. the solution x∗ is strictly better than x with respect to at least
one objective.

This dominance relation is not a strict ordering. This is why mul-
tiple trade-off solutions exist: some solutions can have very differ-
ent objective values and yet neither dominate nor be dominated one
by the other. Multi-objective problems can be turned into mono-
objective problems with an appropriate aggregating function – like
a weighted sum, for instance. Aggregating functions require param-
eters – e.g. objective weights – or some knowledge about the objec-
tive space – e.g., the extremum values of each objective. One ad-
vantage of multi-objective algorithms is that they do not need such
parameters. Another advantage is that, as the search will advance
along a front of non-dominated directions instead of along a single
direction, it can lead to a better convergence rate [93].
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Coevolution Coevolutionary algorithms are EAs in which the fit-
ness of a particular individual depends on other individuals, which
are also evolved [150]. These approaches are closer to what happens
in the living world, where the selection process depends on the eco-
logical niche of a particular species, including other evolving species
(predators or prey, for instance). This leads to fitness functions that
are relative [2], and that may be based on competition or on coop-
eration, within the same species or between different species.

Ad hoc EAs Most work on selective pressures uses a standard EA
and investigates the modification of one of its components (the fit-
ness, the selection operator, the ranking strategy, etc.); some papers,
however, propose modifications of the evolutionary loop itself, for
instance by alternating between two independent EAs. These pa-
pers propose new EAs motivated by ER needs. They will be assigned
the label “Ad hoc EAs”.

Evaluation conditions The evaluation of the fitness objectives re-

lies on the initial state of the robot (s(i )
0 ), on the evaluation length

(T (i )) and on external conditions (e(i )). Any modification or adapta-
tion of these has an impact on the fitness values and on the selection
process. An approach that proposes to modify any of these aspects
will be assigned the “evaluation conditions” label.

Fitness shaping The fitness objectives are critical in driving the
selection process. The selection algorithm will mostly rely on these
objectives to decide which individual will survive or be used as a
genitor of new individuals. Besides the most straightforward de-
scription of the expected robot behavior, new terms refining these
properties can be added to the fitness objectives in order to avoid
undesired behaviors – e.g. avoiding obstacle by standing still – or to
help the search – e.g. walking on its legs requires making legs move.
This process will be referred as “fitness shaping”, which corresponds
to modifications of fi (g ).

Staged evolution An ER experiment in which several EA experi-
ments are sequentially launched will be referred to as staged evo-
lution. The best individuals of one particular EA run will feed the
next one and successive EAs will rely on different selective pressures
(typically different fitness functions or evaluation conditions).

Interactive evolution In a typical EA, individuals are evaluated on
the basis of fitness objectives. These are analytic functions imple-
mented in the EA to automatically evaluate each new individual.
Interactive evolution consists of relying on evaluations made by hu-
mans [173], with the idea that human intuitions may be difficult to
capture in a single and static analytic fitness function.

4 A classification

The fitness objectives classicly serves two different roles: defining
the goal and guiding the search. Based on this assertion, the litera-
ture on selective pressures has been split in two different categories:
goal refiners and process helpers (fig. 2).

Definition 4.1 (Goal refiner) A goal refiner aims at changing the op-
timum (or optima) of the fitness function by adding new require-
ments.

In the current literature, goal refiners mostly address the issues that
stem from the reality gap (section 2.2.4), generalization (section
2.2.5) and fitness definition (section 2.2.2).

Jakobi’s work on the reality gap [89, 88] is a typical example of a
goal refiner. Jakobi realized that evolved neural networks critically
relied on irrelevant details of the simulation, whereas he aimed to
find more general and robust solutions. He therefore designed a

strategy wherein solutions could not rely on such details: he added
noise in the simulator, hiding details in an “envelope of noise”. By
doing so, he modified the optimum of the fitness function to avoid
attractive optima that were not robust enough to work on the real
robot. Put differently, he added a principled, general requirement
that was not present in the initial formulation of the task, but which
is implicit in many tasks.

Definition 4.2 (Process helper) A process helper intends to increase
the efficiency of the search process without changing the opti-
mum(optima) of the fitness function4.

In the current literature, process helpers mostly address issues
with premature convergence (section 2.2.1) and fitness definition
(section 2.2.2). For instance, behavioral diversity [130, 129, 131] is
a process helper: the diversity of the population is encouraged by
adding an objective [46] that rewards the originality of each behav-
ior with regard to the current population; such a diversity preser-
vation aims at avoiding the premature convergence of the EA, that
is, at improving the performance of the evolutionary process. This
approach does not change the optimum of the fitness function be-
cause the diversity objective is discarded at the end of the evolution-
ary process and, as a result, final solutions are only ranked by their
fitness value.

Goal refiners and process helpers can exploit some knowledge
specific to the task or not. Each category is then further split in two
subcategories: task-specific and task-agnostic.

Definition 4.3 (Task-specific) Task-specific goal refiners/process
helpers incorporate knowledge on how to solve the task.

One of the main characteristics of task-specific approaches is that
they cannot be transferred to other tasks without adaptations. Much
of the early work on selective pressures is task-specific because it
requires an analysis of the task by the experimenter. For instance,
staged evolution [40, 81] proposes splitting the final task into sev-
eral intermediate sub-tasks and solving each of them sequentially.
When this split is not automatic, the quality of the results critically
depends on the task and on the expertise of the experimenter.

Definition 4.4 (Task agnostic) Task agnostic goal refiners/process
helpers do not exploit knowledge about how to solve the task.

In contrast to task-specific approaches, task-agnostic approaches
can easily be transferred to other tasks with limited or even no mod-
ification at all. Behavioral diversity, for instance, is a task-agnostic
helper because the same helper can be used for several related tasks.
For example, a behavioral diversity objective based on the position
of the robot at the end of each evaluation has been used for maze
navigation [106, 131], biped locomotion [106, 110] and hexapod lo-
comotion [51, 52]. No approach is, however, fully task-agnostic. For
instance, the end position of one robot is irrelevant in a multi-robot
setup, therefore the helper would have to be modified to take sev-
eral robots into account. Likewise, in a ball-collecting task, the end
position of the robot can be replaced by the end position of the balls
to capture more precisely behavioral features [51, 131, 52].

4.1 Goal refiners

Goal refiners are listed in table 1 (an up-to-date version of this table
is available online at: http://pages.isir.upmc.fr/selective_
pressures/).

4Some process helpers may have side effects and change the optimum of the fitness
function, whereas it was not the intent of its authors. They are here considered to
be helper processes as long as such optimum modifications are not straightforward
and have not been clearly identified.
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Fig. 2. Illustration of modifications of selective pressure, for a 1-dimensional function to be maximized. (A) Goal refiner: the optimal solutions
are changed by adding new requirements. Goal refiners can remove fitness peaks and add new ones. (B) Process helpers: optimal solutions
are not changed, but the search process is modified.

4.1.1 Task-specific

Behavioral consistency [146, 147] is a method for defining a selec-
tive pressure that consists of rewarding solutions that behave the
same (or differently) in different scenarios. The goal is to force the
robustness and generalization ability of generated solutions by en-
suring that the corresponding behavior is the same in the presence
of noise or distractors, for instance, [146]. Likewise, by encourag-
ing exhibiting a similar behavior in different situations, it can re-
ward the appearance of a circuit able to detect and memorize some
states, i.e. a memory [147]. This approach was applied to a delayed
response task in which a robot had to choose a branch to follow in
a T-maze depending on a previously-received signal. The behav-
ioral consistency relies on a dedicated objective to be optimized in a
multi-objective context. It is considered to be task-specific because
it requires defining several different scenarios for which the behav-
ior should be similar or different. This approach requires expertise
about the task. Behavioral consistency has been used to validate hy-
potheses on the impact of noise and occlusion on the emergence of
internal representations [144] in a robot navigation task. A signifi-
cant correlation was identified in this work between generalization
ability and internal representation. It is thus considered here as ad-
dressing this challenge.

4.1.2 Task-agnostic

A significant number of studies can be attributed to this category.
We have chosen to present them with regard to the challenge they
address.

Reality gap As evolutionary algorithms require a large number of
evaluations, they are often run, for practical reasons and at least
partly, in simulation. Due to the opportunistic property of EAs, fea-
tures specific to the simulation can be exploited, and generated so-
lutions may thus not transfer to reality: this is the reality gap. This
challenge has drawn a lot of attention with approaches aimed at
modifying the features of generated solutions, i.e. goal refiners, so
that generated solutions are effective on the real robot. We have re-
grouped the approaches tackling this challenge with selective pres-
sures in three different categories: constant simulation, robot-in-
the-loop and adaptive simulation.

Simulation-based approaches rely only on the simulation and
adapt the algorithm so that solutions robust to the transfer between
simulation and reality are found. In these approaches, the simu-
lation is constant during the evolutionary experiment. Jakobi pro-
poses to evaluate individuals in a minimal simulation [88]. As a
simulation can hardly accurately model every single physical phe-
nomenon, he proposes to build minimal simulations that accurately
model only a selected subset of robot-environment interactions.
Other aspects are hidden in an envelope of noise, so that no solu-
tion can exploit them. The approach was applied to a T-maze navi-

gation task with a Khepera robot, and to a visual discrimination task
on a gantry robot. Other authors also propose to add noise while
evaluating a solution in order to reduce the reality gap [121, 75]5,
for both a Khepera robot obstacle avoidance task and a double pole
balancing task. Boeing and Braunl propose a different approach:
instead of evaluating in a single simulation, solutions are evaluated
in several different simulations at the same time [12]. The fitness
is the normalized average value of the performance as measured in
the set of available simulations. Coping with simulations variability
is expected to promote the robustness of controllers. All these ap-
proaches define specific evaluation conditions – either with noise
or with different simulations – in order to help crossing the reality
gap. It was tested on a wall following task for an autonomous un-
derwater robot. Lehman et al. propose a completely different ap-
proach. Their hypothesis is that a reactive agent will also be robust
and will thus more easily cross the reality gap [103]. They propose to
use mutual information to measure the statistical dependence be-
tween the magnitude of changes on a robot’s sensors and effectors.
An objective is thus defined and optimized in a multi-objective EA
alongside other objectives to promote the reactivity of the generated
controllers and the approach is applied to maze navigation tasks.

While still keeping a constant simulation, another approach con-
sists of evaluating several solutions directly on the real robot [98,
97, 133, 142]. Relying on the hypothesis that reasonably good sim-
ulators do indeed exist, the approach proposes learning a model of
behavior discrepancies between simulation and reality in order to
avoid the most unrealistic behaviors. The evaluations on the real
robot are used to learn a model of the transferability of a particular
solution between simulation and reality. The transferability model
predicts how similar a particular behavior will be between simula-
tion and reality. This predicted transferability is used as a new objec-
tive in a multi-objective EA alongside other objectives so that gener-
ated solutions tend to behave the same in simulation and in reality.
The approach has been applied to a quadruped [98, 97] and biped
[142] locomotion tasks as well as to a T-maze navigation task [98].
As the number of evaluations on the real robot is reduced, this ap-
proach is considered to also address the reducing evaluation chal-
lenge.

With the hypothesis that the reality gap comes from discrepan-
cies between simulation and reality, experiments on real robots can
be used to design or improve simulations. In the following, the sim-
ulation model is no longer constant but is adapted on the fly or even
learned from scratch: the evaluation conditions then change during
a run. Most of this work relies on co-evolution or on ad hoc evo-
lutionary algorithms that allow the evolution of both simulations
and robot controllers. Bongard et al. propose an approach based
on co-evolution, the Exploration-Estimation algorithm, in which
a population of simulations co-evolves with a population of con-

5In these studies, a model of the robot is learned before launching the evolutionary
algorithm. It was put in this category as, after the initial training – independent from
the evolutionary algorithm –, the simulation model was not updated.
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Task-specific

Behavioral consistency [147, 146] • • •
Noise occlusion [144] • • •
Task-agnostic

Back to reality [187–189] • • •
Breeding robotics [116, 115] • • •
Co-evolution models/tests [44, 96] • • • •
Embodied evolution [182] • • •
Empowerment [91] • •
Enveloppe of noise [88] • • •
Fitness based on information theory [155, 167, 168,
47]

• •

GSL [57] • • •
Interactive evolution [78, 137, 54] • • •
MONEE [79] • •
Model-based neuroevolution [75] • • •
Multiple simulators [12] • • •
NA-IEC [186] • • •
Novelty search w. local comp. [37, 107] • • •
ProGAb [154] • • •
Reactivity [103] • • • •
Sampling & noise [121] • •
Self-modeling [15, 26, 23–25, 13] • • •
Transferability [97, 142, 98, 133] • • •
mEDEA [27] • •

Table 1. Goal refiners. Each line corresponds to an article or set of articles about a similar topic (with respect to selective pressures). The
first five columns describe the addressed challenges and the remaining ones the way they have been addressed.
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trollers [25]. It has been used in particular for damage recovery on
quadruped and hexapod robots [23]. Simultaneously, Zagal et al.
proposed the back-to-reality algorithm [189, 188, 187], a similar ap-
proach that consists in performing an optimization in simulation,
transferring some selected solutions to reality and exploiting the
corresponding data to improve the simulation before optimizing in
simulation again. These different steps are repeated until the behav-
ioral requirements are met. The approach has been used for a loco-
motion task on a quadruped robot [189, 188] and on a humanoid
robot [187]. Farchy et al. propose a similar approach with a choice
made by the experimenter on which parameters to focus on for the
next optimization [57]. This approach was applied to a Nao hu-
manoid robot locomotion task. Bongard et al. propose an extension
of the co-evolution approach in which actions are explicitly sought
to challenge current candidate models [26]. It was later shown that,
besides model disagreement, looking for actions avoiding bifurca-
tions is important for generating reliable models [13]. Extensions to
multiple robot were done in [15]. Koos et al. propose a similar co-
evolution approach, but implemented in a multi-objective EA [96]:
models are evaluated on their ability to reproduce observed data,
and controllers are evaluated with three objectives: their ability to
discriminate between models, how close they are to the desired be-
havior, and how stable they are. The stability is evaluated as the vari-
ance of behaviors observed between slightly mutated versions of the
controller. The approach was applied to trajectory following tasks
on a quadrotor. Embodied evolution goes further and proposes to
rely only on real robots [182]. In this case, the reality gap no longer
exists and the decentralized features of embodied evolution allows
the parallelization of the approach and the scaling to a large number
of robots.

Generalization A solution optimizing a fitness function ensures
that the corresponding behavior matches the expectations in the
contexts used for evaluation. Some methods try to ensure that gen-
erated solutions will meet these expectations in new and unfore-
seen contexts. The reality gap can be considered as a special case of
the generalization challenge: the solutions should meet the expec-
tations in reality after being evolved in simulation. Much less work
has been devoted to this challenge, although some of the work on
the reality gap can be applied to the generalization challenge. This is
the case of the previously mentioned work of Lehman et al. on reac-
tivity [103]. Several authors propose methods based on coevolution
with the idea of having evaluation conditions that are automatically
adapted to the performance of current solutions. Berlanga et al.
propose “Uniform Coevolution”, a method of evolving the weights
of a neural network controller and the evaluation conditions simul-
taneously (more precisely the initial state s(i )

0 ) [10, 9]. This method
was applied to a robot navigation task.

For a similar application, Sakamoto and Zhao likewise use coevo-
lution and compare it to incremental evolution in which new con-
ditions are incrementally added to the evaluation process [158]. Co-
evolution was revealed to be a better solution, provided that it is
exploited in the right manner. Pinville et al. propose a different
approach based on the assumption that testing the generalization
ability is time-consuming as it requires performing multiple evalu-
ations. Inspired by the transferability approach [98], they propose
learning a surrogate model of how a behavior will generalize to new
evaluation conditions [154]. Several solutions are tested on a large
set of conditions, thus better evaluating their generalization ability.
All solutions are tested on a limited set of conditions and a surro-
gate model is built in order to predict, out of the behavior on the
limited set of conditions, to what extent the corresponding behav-
ior will generalize. This is used as a new objective to be optimized in
a multi-objective EA alongside other objectives, and tested on ball-
collecting and T-maze tasks. As for the transferability approach, the
number of evaluations is reduced thanks to the surrogate model.

This approach is thus considered to also address the reducing eval-
uation challenge.

Fitness definition Transforming expectations of the robot behav-
ior into an analytical function that can evaluate generated solu-
tions is often a difficult task. In some approaches, no explicit, goal-
directed fitness function is used: the selection pressure is applied
by other means. We distinguish three families of approaches: (1)
interactive evolution, (2) information theoretic approaches, and (3)
implicit fitness functions, in which the selection emerges from the
interaction between the agents and their environment.

Interactive evolution relies on humans to estimate the perfor-
mance of solutions. It has been used, for instance, to design pictures
[163] or 3D objects [34]. Interactive evolution relaxes the expertise
required in creating or programming a robot, and it even allows chil-
dren to program robots [116, 115]. Gruau and Quatramaran used
interactive evolution in conjunction with cellular encoding to de-
sign an octopod walking controller [78] and Nojima et al. use it for
robot hand trajectory generation [137]. Evolutionary algorithms re-
quire numerous evaluations which, when performed by a human,
may result in significant fatigue that can impede the performance
of the search. In a robot behavior design experiment, Dozier pro-
posed to learn a model of user preferences and to use it for further
evolution, thus reducing human fatigue for a Khepera navigation
task [54]. Woolley and Stanley proposed to associate it with novelty
search (section 4.2.2) to exploit both the searching ability of nov-
elty search and human insights on potential stepping stones. They
demonstrated the technique in the deceptive maze navigation do-
main [186]. Interactive evolution has also been used to help mit-
igate premature convergence (see section 2.2.1, paragraph “semi-
interactive evolution")[22, 31].

Fitness functions based on Shannon’s theory of information have
been investigated by several authors because they may provide a
task-independent way to evaluate the “interestingness” of a be-
havior. Such fitness functions rely on the assumption that inter-
esting behaviors are those that correspond to rich experiences in
the environment, which should translate to high-entropy sensory-
motor streams. These approaches are related to Novelty Search
(section 4.2.2) because both approaches aim to maximize inter-
estingness; however, they historically differ in their goal: informa-
tion theoretic approaches aim at proposing a task-independent fit-
ness function, whereas Novelty Search is more designed to miti-
gate deception. In addition, information theoretic approaches are
individual-centered, because the interestingness of an individual
does not depend on the other solutions, whereas Novelty search is
process-centered, because the interestingness of an individual de-
pends on what has already been discovered by the evolutionary pro-
cess. Among those who investigated fitness based on information
theory, Sporns and Lungarella [168] showed that the maximization
of the information structure of the sensory states experienced by
embodied and situated agents can lead to the development of use-
ful behavioral skills in a simplified virtual agent, like the ability to
foveate and to touch a moving object. Klyubin et al. [91] focused on
the information contained in the sensory stream, because “the more
of the information about the sequence of actions can be made to ap-
pear in the sensor, the more control or influence the agent has over
its sensor”. They propose a utility function called “empowerment”,
defined as the information-theoretic capacity of an agent’s actua-
tion channel, and show how maximizing empowerment influences
the evolution of both sensors and actuators. In a less abstract setup,
Prokopenko et al. [155] showed that fast locomotion of a snake-like,
simulated robot can be achieved by maximizing the generalized cor-
relation entropy (a lower bound of Kolmogorov-Sinai entropy) com-
puted over a multivariate time series of the actuatorsâĂŹ states. In
collective robotics, Sperati et al. [167] showed that mutual informa-
tion in state and time between the motor states of wheeled robots
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leads to the evolution of various coordinated behaviors. Last, Delar-
boulas et al. [47] combined ideas from information theory with an
on-board (1+1)-ES and compared their approach to Novelty Search
in a maze navigation task. They conclude that both approaches
have their merits.

No explicit fitness function drives natural species’ selection pro-
cess. Being able to propagate its genes implies surviving long
enough to reproduce [38], which in turn implies having the required
skills to reach this goal in the ecological niche the creature lives in.
This metaphor can be directly imported into ER without the need
to make the fitness function explicit. Bredeche and Montanier pro-
pose mEDEA, a minimal Environment-Driven Evolutionary Algo-
rithm, to implement these ideas in an ER context [27]. In this ap-
proach, genomes are broadcast to every encountered robot. The
genome controlling a robot is periodically changed and drawn from
mutated versions of the genomes that the robot received. To survive,
robots should navigate and find food items. Haasdijk et al. build
upon this idea and propose MONEE (Multi-Objective aNd open-
Ended Evolution), an implementation of these principles in which
the environment-driven pressure is associated with a task based
pressure [79]. This pressure is built on the value of credits that a
robot can amass during its lifetime while performing tasks (collect-
ing pucks of different colors). Each task is associated with a particu-
lar kind of credit and a market mechanism is defined to avoid robots
concentrating on the easiest task. The more credits a genome has,
the higher its chance of being selected. [109] follow a different per-
spective. In the living world, all living creatures do not compete to-
gether. The competition is local to a niche. Letting niches appear
and accumulate increased evolvability [109]. A search simulating
niches and local competition was implemented by associating nov-
elty search with local competition for generating diverse morpholo-
gies and controllers of robots [107].

4.2 Process helpers

The vast majority of process helpers aim to mitigate premature con-
vergence (table 2, an up-to-date version of this table is available on-
line at: http://pages.isir.upmc.fr/selective_pressures/),
that is why they are analyzed here with respect to the technique in-
vestigated and the results obtained.

4.2.1 Task specific

Incremental evolution Several early pieces of work in ER showed
that many tasks are too hard to be solved with a basic EA and a
high-level fitness function [81, 180, 74, 127]. For instance, Urzelai
et al. [180] found it hard to evolve a light-seeking behavior in an
arena without having previously evolved an obstacle-avoidance re-
flex [180]. From a selective pressure point of view, this issue is an
instance of premature convergence (section 2.2.1). From an engi-
neering point of view, one solution is to break down the problem
into simpler sub-problems that can be solved sequentially. Follow-
ing this classic methodology in engineering, many authors inves-
tigated incremental evolution processes in which evolution occurs
in stages. The target task is split into ordered sub-tasks and a fit-
ness function is designed for each sub-task. The population is first
evolved using the first fitness function. After a user-defined number
of generations or if the population has reached a sufficient perfor-
mance level, the fitness function is replaced by the one that corre-
sponds to the following sub-task. Task splitting is produced by the
experimenter after having analyzed the task and potentially some
preliminary experiments. The change of selective pressure is there-
fore task-specific.

De Garis is, to our knowledge, the first author to have employed
staged evolution for an evolutionary robotics experiment [40]; he
called his process “behavioral memory”. In his experiments, he
evolved a neuro-controller for a simulated “walking stick biped” us-

ing three successive fitness functions: (1) moving the legs in a “step-
like” motion, (2) making as many steps as possible and (3) covering
the maximum distance. Harvey et al.’s work on the Gantry robot [81]
followed a similar approach but for a different task: tracking a tar-
get. Three stages were used, from locating a large immobile target to
tracking a smaller, moving one. Parker [151] followed a similar incre-
mental strategy to evolve gaits for a hexapod robot; Barlow et al. [8]
did the same for controllers of simulated UAV, but using a MOEA in-
stead of a mono-objective EA; Barate and Mazanera [7] employed
two phases to evolve vision algorithms for mobile robots, where the
first phase was based on behavior imitation and the second one on
goal-reaching evaluations.

Instead of replacing the fitness function with a new one at each
stage, some authors propose to keep the same fitness function but
gradually modify the evaluation conditions, usually from simple
conditions to challenging ones. These authors called these ap-
proaches “behavioral complexification”[74, 128], “behavior chain-
ing” [14], “dynamic scaffolding”[18] or “incremental shaping” [3,
18]. Gomez et al. [74] thus worked on a prey-capture task that
was parameterized with the prey speed and the delay before start-
ing the pursuit; they defined ten ordered sub-tasks of increasing
difficulty. Bongard et al. investigated automatic difficulty tuning
with a task in which a simulated legged robot has to grab an ob-
ject and lift it [14, 3, 19, 18]. They proposed two different algo-
rithms: a hill climber in which difficulty is decreased when too
many individuals fail and increased when they often succeed [14, 3],
and a variant of the Age-Layered Population Structure (ALPS) algo-
rithm [86, 84, 21, 18]. Bongard et al. highlighted that the order in
which behaviors are evolved critically impacts the performance of
the evolutionary process [14, 3]. They also noted that starting with
changes in the morphology (morphological scaffolding) can syner-
gize with changes in the environment (environmental scaffolding),
but only if they occur in this specific order [19].

Another popular variant of staged evolution is to use the best
result of stage N − 1 as a component to build the candidate solu-
tions of stage N , whereas many staged evolution processes keep the
same population and only change the fitness function. This vari-
ant of staged evolution is sometimes referred as “modular decom-
position” [180], “behavioral decomposition” [128] or “hierarchical
evolution” [55]. When evolving a controller for a hexapod robot,
Lewis et al. [111] first evolved a neural oscillator. In the second stage,
they evolved a network of neural oscillators to allow the robot to
walk. Also working on a hexapod robot, Kodjabachian et al. [95] first
evolved a walking neuro-controller. In a second stage, they copied
the best walking controller to each individual of a new population,
froze it, and evolved a second neuro-controller, connected to the
walking controller, to allow the robot to follow a gradient (e.g. an
odor). In the last stage, they evolved a third neuro-controller, also
connected to the walking controller, to allow the robot to avoid ob-
stacles. Urzelai et al. employed a similar approach [180] to evolve
neuro-controllers for a Khepera robot that has to move in an arena,
avoid obstacles and periodically recharge its battery at the recharg-
ing station. De Nardi [45] also relied on a behavioral decomposi-
tion process to evolve a neuro-controller for a helicopter. Duarte
et al. [55] divided a “robotics rescue” task into three different sub-
tasks: (1) exit the room and enter the maze, (2) solve the maze to find
the teammate, and (3) guide the teammate to the safe room. They
evolved three independent neuro-controllers, then combined them
using additional evolutionary runs. Lee [102] followed a similar idea
for a box-pushing robot; Mouret et al. [132] combined this kind of
incremental strategy with a MOEA to evolve a simulated flapping
wing robot with heading control.

Fitness shaping Fitness shaping is an alternative to incremental
evolution that also intends to guide the evolutionary process with
sub-goals. Instead of switching fitness functions, fitness shaping
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consists of designing a single fitness function that rewards interme-
diate behaviors. For instance, Nolfi et al. evolved a neuro-controller
for a robot that had to navigate in an arena, pick up objects and
drop them outside of the arena [138]. Nolfi et al. designed a fitness
function that was increased each time the robot had an object in
the gripper and each time it released an object outside of the arena.
They managed to obtain working controllers because they inserted
a “hint” in the fitness function.

Fitness shaping can be damaging for the evolutionary process
when the hint is misleading: because it aggregates the rewards for
all the sub-behaviors in a single function, fitness shaping imposes
to obtain the maximum reward for all the sub-goal, and therefore
changes the optimum of the fitness function by imposing. Hence, if
a simple behavior exists that was not foreseen by the experimenter,
this behavior may be sub-optimal according to the fitness function,
whereas it might solve the target task in a more efficient way than
the one that obtains the best possible fitness score. While the intent
of the authors was to design a process helper, fitness shaping could
therefore be considered as a task-specific goal refiner. Another im-
portant issue with fitness shaping is that combining all the sub-
goals in a single fitness function requires weighting them, which is
often difficult without many preliminary experiments.

Multi-objective evolutionary algorithms have been exploited to
overcome both of these issues – deceptive hints and weighting – to
lead to “multi-objective fitness shaping” [127]. When each sub-goal
is an objective in a Pareto-based multi-objective evolutionary algo-
rithm, the Pareto-optimal set is made of the best individual for each
sub-task, but also of all the other Pareto-optimal trade-offs, that
is, of all the individuals that have a unique combination of partial
skills. In this situation, a Pareto-based multi-objective evolution-
ary algorithm will therefore simultaneously optimize all the poten-
tially fruitful combinations of sub-tasks to reach the goal task. This
Pareto-based approach does not impose any order for the sub-tasks,
nor make every sub-task mandatory or require weighting each of
them. Mouret and Doncieux [128] illustrated these features with a
light-switching task in which a simulated mobile robot had to switch
lights on in a predefined order to switch on a “goal light”. Two se-
quences were possible and one involved a shortest path to the goal
light. Multi-objective fitness shaping allowed Mouret and Doncieux
to successfully find working neuro-controllers following the short-
est path. A similar multi-objective fitness shaping approach was re-
cently employed to evolve the gait of a humanoid robot [143].

The knowledge used to shape a fitness function can be automat-
ically extracted from a previous experiment on a simpler version of
the task [49]. Two different approaches were tested in variants of
the ball collecting tasks: a multi-objective one in which an objective
was dedicated to the shaping and an approach in which the shap-
ing term was aggregated to the fitness with a sum. Both approaches
lead to similar results [49]. This corresponds to a more agnostic ver-
sion of fitness shaping than that was previously mentioned, but as
it implies to consider different versions of the same task, it still re-
quires some knowledge about the task and can be considered a task-
specific approach.

4.2.2 Task agnostic

Competitive co-evolution When two species compete, for in-
stance predators and prey, each species change the selection pres-
sure on the other one [39]. This situation may give rises to an “evo-
lutionary arms race” in which each population drives the other to
increasing levels of complexity. From the selective pressure point of
view, such arm races correspond to a self-regulating adaptation of
the task difficulty.

Many authors have investigated variants of the “predator-prey”
task [77, 63, 140, 64, 65, 29, 148, 28, 139], sometimes called “pursuit-
evasion” [122, 32, 33, 136]. In this task, a population of Khepera
robots, the prey, interact by tournaments with other Khepera robots,

the predators. Prey and predator robots differ: prey are faster than
predators but only predators have a vision system. In the original
studies, only the weights of the neuro-controllers were evolved. In a
follow-up study [29, 28], the features of the sensor systems of both
prey and predators could also be modified by the evolutionary algo-
rithm. Other authors investigated similar tasks in which Khepera-
like robots compete, for instance a game of “capture the flag” [135],
a “duel” in which each robot must collect more energy than its op-
ponent and collide with it [172], or a simplified soccer game [148].

Results of these experiments indicate that co-evolution can pro-
duce a never-ending evolution of strategies and counter-strategies,
but that the co-evolutionary process easily enters a limit cycle in
which the same strategies are abandoned and rediscovered over and
over again [64, 139]. Stanley and Mikkulainen [172, 170], however,
noted that this issue is mitigated when evolving neuro-controllers
with an encoding that progressively complexifies networks, in this
case NEAT [171].

The “red queen effect”6 [181] is another classic issue with experi-
ments in co-evolution [32, 63]: because the fitness landscape is ever
changing, tracking progress is difficult, and so is avoiding retrogres-
sion.

It may be challenging to formulate all evolutionary robotics tasks
in the form of a predator-prey task. An alternative is to replace the
predator-prey co-evolution by “candidate solution”-“test case” co-
evolution [82, 41]. In this case, the success of each robot (or robot
controller) in the population is measured as their success with re-
gard to the population of test cases. This population of test-cases is
co-evolved and the success of each test case depends on how many
robots fail the test: a test that is failed by all the candidate solu-
tions is too hard, and one that is passed by all of them is too easy.
This approach has been used several times to improve simulators.
For instance, Bongard et al. employed model-test co-evolution to
find a simulator of their quadruped robot [25, 13, 26] and Nardi et
al. [44] to find an accurate simulator of a quadrotor; Koos et al. [96]
extended this approach to Pareto co-evolution [41] and also applied
it to a simulated quadrotor. Berlanga et al. [9, 10] used a similar
strategy to increase the generalization abilities of neuro-controllers
evolved in a Khepera navigation task. In a similar setup, Sakamoto
and Zhao [158] compared co-evolution to incremental evolution;
they concluded that co-evolution can be better than incremental
evolution.

Behavioral diversity The most popular approach to mitigating
premature convergence in evolutionary computation is undoubt-
edly to foster the diversity of the population [68, 159, 117, 67, 42,
174, 171]. Diversity is typically encouraged in the genotype space,
but such an approach is computationally expensive for many geno-
types used in evolutionary robotics and, in particular, for neural net-
works whose topology is evolved [171, 131]. NEAT [171] introduces
a computationally cheap mechanism to encourage diversity in the
genotypic space when evolving neural networks, but this technique
does not solve the general problem of computing the similarity of
two weighted graphs. Encouraging diversity in the space of geno-
types ensures a good exploration of this space, but another space is
actually involved in fitness evaluation: the space of behaviors.

An alternative line of thought has thus emerged during the last
few years: whatever is evolved, the goal in evolutionary robotics is
ultimately to find a behavior [104, 175, 176, 126, 129, 130, 73, 124,
104–106, 110, 51, 131, 52, 177]. This behavior results from the in-
teraction of the robot with its environment, and is thus influenced
by the robot controller—whether it is a neural network or anything
else—and its morphology—whether it is evolved or not. By compar-
ing behaviors instead of genotypes or phenotypes, the previously

6The term “red queen effect” is a reference to a statement made by the Red Queen to
Alice In Lewis Carrol’s Through the Looking-Glass [30]: “Now, here, you see, it takes
all the running you can do, to keep in the same place.”
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Task-specific

Behavioral decomposition [55, 102, 180, 111, 45] • • •
Behavioural memory [40] • • • •
Concurent layered learning [183] • • • •
Environmental complexification [74] • • • •
Fitness shaping [138] • • •
Incremental MOEA [8] • • • •
Incremental evolution [81, 184, 151, 7, 6] • • • •
Layered learning [87] • • • •
MO-ER [125] • • •
Multi-objective shaping [127] • • •
SGOCE [58, 95, 94] • • • •
Scaffolding [14, 5, 4, 19, 18] • • • •
Semi-interactive evolution [31, 22] • • •
Shaping with transfer [49] • • • •
Staged MOEA [132] • • •
Task-agnostic

Behavior-based speciation [175–177] • •
Behavioral diversity [129, 143, 51, 124, 52, 131, 145] • •
Co-evolution environment/controllers [158, 10, 9] • •
Competitive co-evolution [33, 28, 172, 77, 29, 65, 122,
136, 139, 32, 170, 140, 178, 62, 64, 63, 135, 148]

• •

Diversity w. behavioral distance [73] • •
Minimal criteria NS [105] • •
Novelty search (NS) [70, 104, 72, 106, 108, 100] • •
Novelty-based multiobjectivization [126, 156, 110] • •
Novelty-fitness aggregation [36, 69] •
Prog. minimal criteria NS [71] • •
Two-population novelty search [112] • • •

Table 2. Process helpers. Each line corresponds to an article or set of articles about a similar topic (with respect to selective pressures). The
first five columns describe the addressed challenges and the remaining ones the way they have been addressed.
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described problems of comparing structures disappear and the di-
versity of behavior can be explicitly encouraged.

Behavioral diversity techniques rely on a behavioral distance, that
is, a way to compare the behavior of individuals given one or sev-
eral simulations. The first studies used Euclidean distances between
task-specific behavior descriptors [129, 130]. Gomez [73] binarized
the sensory-motor stream, which is more generic than task-specific
descriptors, and compared streams using the normalized compres-
sion distance. In a ball-collecting task, Doncieux and Mouret [51]
tested three generic behavior similarity measures, all based on the
sensory-motor stream (Hamming distance, Fourier distance, state
count) and a distance based on the trajectory of the robot in the
arena; the Hamming distance led to the best result and is quick to
compute. Gomes [69] successfully used a similar measure in two
swarm robotics domains. Last, Doncieux and Mouret proposed to
randomly switch between behavioral similarity measures, so that
there is no need to choose between similarity measures; they bench-
marked this approach in a ball collecting-task and in a hexapod
locomotion task and concluded that this “dynamic similarity mea-
sure” improves the overall efficiency of behavioral diversity [52].

In a large benchmark, Mouret and Doncieux [131] investigated
how to improve behavioral diversity in three different tasks (decep-
tive maze [106, 104, 110], sequential light switching [127], and ball
collecting [51, 145, 154, 52]), with two different encodings (weight
encoding and graph-based direct encoding), three different diver-
sity mechanisms methods (multi-objective diversity [42, 174, 130,
129], fitness sharing [68, 159, 117], and multi-objective fitness shar-
ing), and three different distances (genotypic distance, task-specific
distance and distance based on the sensory-motor stream). They
concluded that, no matter the encoding or the task, (1) encouraging
diversity helps mitigate premature convergence, (2) multi-objective
diversity mechanisms outperform fitness sharing, (3) behavioral
diversity outperforms genotypic diversity, (4) the generic stream-
based distance can be as effective as a task-specific distance. These
conclusions are consistent with those of other authors who have in-
vestigated humanoid locomotion [143], a behavioral distance to re-
place the genotypic distance in NEAT [175–177, 124], and behavioral
crowding in the tartarus domain [73].

Novelty search When the fitness function is highly deceptive [68],
it may misdirect the search process towards dead-ends instead of
guiding it [104, 106]. Lehman and Stanley argue that, in these cases
at least, it may be useful to get rid of the fitness function and only
search for novel behaviors. They also argue that this radical depar-
ture from objective-based search may be a better abstraction of how
natural evolution continuously “discovers” new lifeforms. Lehman
and Stanley exploited this idea in “novelty search” [104, 108, 106],
an evolutionary process in which solutions are compared accord-
ing to their behavior, like in behavioral diversity, and are ranked ac-
cording to their novelty with regard to all the behaviors that have
been discovered before. Two properties of evolutionary robotics ex-
periments make novelty search different from exhaustive search.
First, many genotypes lead to the same behavior [131]; therefore
finding novel behaviors is very different, and potentially more ef-
ficient, than finding novel genotypes, which would be closer to ex-
haustive search. Second, an encoding like NEAT [171] starts with
simple neural networks and progressively complexifies them. As a
consequence, looking for novel behaviors with NEAT implies the ex-
ploration of simple behaviors first.

Lehman and Stanley first illustrated this technique in the “decep-
tive maze” domain, in which a simulated mobile robot has to take
a large detour to reach the end of a small maze [104, 126]. They
subsequently showed that novelty search is an effective algorithm
to find neuro-controllers for bipedal walking [106]. Other authors
have confirmed that novelty search is a promising alternative to
objective-based search. For instance, Risi et al. showed that novelty

search is capable of circumventing the deceptive trap of “learning to
learn” when evolving plastic neural networks [156], Krčah success-
fully applied it to body-brain co-evolution [100], and Gomes et al. to
swarm robotics [71].

Novelty search highlights that black-box objective-based search
is not the only possible abstraction of evolution in evolutionary
robotics. However, as noted by several authors [36, 105, 110, 126],
novelty search does not scale well to spaces in which there are many
possible behaviors, in particular because the assumption that many
genotypes will lead to the same behavior does not hold any more.
One way to mitigate this issue is to change the behavior distance
(see the previous section); another one is to combine novelty and
objective-based search (see the next section). Lehman and Stanley
proposed a third idea, called “minimal criteria novelty search” [105],
in which individuals must meet domain-dependent criteria to be
selected for reproduction. They concluded that this approach can
lead to better results than simple novelty search in a deceptive maze
navigation task. This idea has been extended by Gomes et al. [71],
who proposed to make the criteria dependent on the success of the
current population. They illustrated their approach with a swarm
robotics task [71].

Combining novelty and objective-based search Novelty search
can be combined with objective-based search thanks to multi-
objective evolutionary algorithms: one objective is the traditional
fitness function, the other the novelty score used in novelty search.
In effect, this approach is a variant of multi-objective behavioral
diversity in which diversity is computed thanks to an archive in
addition to the population [126, 161]. Mouret investigated such a
“novelty-based multi-objectivization” in the same deceptive maze
as Lehman and Stanley [126]. He concluded that the multiob-
jectivization is better at fine-tuning behaviors than basic novelty
search while requiring a comparable number of iterations to con-
verge; the novelty-based multi-objectivization was also faster to
converge than basic behavioral diversity. Lehman and Stanley stud-
ied the efficiency of a similar multi-objectivization when the task
difficulty increases. They compared it to age-based diversity [161],
novelty alone, fitness alone, fitness & NEAT-like speciation, novelty
& NEAT-like speciation and novelty+age, in the bipedal locomotion
domain and in variants of the deceptive maze navigation task. They
showed that, as difficulty increases, methods including a novelty
objective perform better than methods without such an objective.
Moreover, in the bipedal domain, the most effective approach is op-
timizing novelty and fitness together.

An alternative to multi-objective optimization is to combine a
novelty and a fitness objective using a weighted sum. Cuccu and
Gomez tested this approach in the Tartarus domain [36]; Gomes et
al. used it in swarm robotics [69]. In both cases, the authors report
that combining fitness and novelty worked better than novelty or fit-
ness alone. Compared with novelty-based multiobjectivization, an
obvious limitation of these techniques is that they require balanc-
ing the weight given to the novelty objective. Cuccu and Gomez, for
instance, report large variations in performance when they changed
this weight [36].

Semi-interactive evolution When an evolutionary process is
trapped in a local optimum, a sensible option is to ask for help
from the user. Celis et al. [31] investigated this idea in a system in
which the user demonstrates what he or she prefers, in a quadruped
robot locomotion and in an obstacle avoidance task. Using a simi-
lar task, Bongard and Hornby also introduced a multi-objective ap-
proach in which a surrogate user (which stands for the user) deflects
the search away from local optima and a traditional fitness function
leads the search toward the global optimum [22].
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5 Conclusion and discussion

Selective pressures are of an increasing importance in ER. We
have reviewed this literature while separating techniques aimed
at changing final solution features (goal refiners) and techniques
aimed at increasing search efficiency (process helpers). We have fur-
ther divided these categories into two sub-categories: task-specific
and task-agnostic approaches.

The main lessons from this review can be summarized as follows:

1. selection pressures have a critical importance in ER, as exem-
plified by the work on novelty search [106] and behavioral di-
versity [131], for instance;

2. including task-specific knowledge does not necessarily help
[106];

3. taking into account exploration in the space of behaviors is im-
portant [131, 177, 106, 73, 104, 129];

4. multi-objective approaches offer a convenient way to combine
selective pressures [131, 129, 127, 126, 110];

5. changing morphological or environmental complexity helps
[16, 19, 18, 14].

Overall, this literature review shows that interesting results can be
generated when ER is not considered purely as black-box optimiza-
tion. The question can be put a bit differently: in retrospect, is ER an
optimization problem? What questions are raised by this perspec-
tive? Are there alternatives? What questions do they raise? All these
questions concern what the evolutionary process looks for and then
the selective pressures that will favor some solutions at the expense
of others. They suggest future work on ER.

Considering the evolutionary design process as an optimization
problem requires precisely defining the goal, the associated fitness
function(s), and the evaluation processes. If “intelligent behaviors”
are to be generated, how should intelligence be defined and how it
be tested? What about efficient locomotion, manipulation or per-
ception skills? What tasks should be considered? Besides the defi-
nition of these goals and related evaluations per se, the difficulty of
reaching it through an evolutionary search raises other questions. Is
it possible to generate such complex systems without going through
specific stepping stones? For intelligent systems endowed with cog-
nitive abilities, counting may be a stepping stone [80], as well as
having a memory [147] or internal representations [144]. These
questions suggest a trend of research in which, for a goal recog-
nized to be important, e.g., a robot with significant cognitive, motor
or perception abilities, the corresponding stepping stones are pro-
posed and studied. An alternative would be to study the main fea-
tures of stepping stones in the hope of finding discriminative non-
functional properties, like the evolvability they confer to the process
for instance. It would open new perspectives as looking explicitly
for these properties would be less task-specific and would then be
closer to the goal of building an automated design process.

From an optimization perspective, it is common practice to de-
fine and use benchmarks to compare different approaches. Bench-
marks are problems on which there is a common agreement that
solving them more efficiently means that a significant progress has
been made. In the context of ER seen as an optimization process,
what would be the benchmarks to use?

A second point of view is possible: considering the evolutionary
search process as an open-ended creative process. Instead of find-
ing the best design to perform a particular task, a creative process
aims at exploring original designs. In this case, a run will be suc-
cessful if designs with a “good” potential are found and goes on to
be found as long as the process is not stopped. It raises new ques-
tions: how do we drive a creative process? What criteria do we use
for the selection process? How do we make it open-ended? Novelty

search [106] is a possible starting point, but it raises a new question:
in what space do we measure novelty? Another approach is to define
and formalize interestingness and define a curiosity-driven search
process [160, 149] or to rely on more indirect selective pressures as
in co-evolution [172, 64, 65] or environment-driven pressures [27].
Considering the search process as a creative process also raises an-
other important question: on what scientific method do we rely?
For research on optimization, normal science [101] relies on bench-
marks. Can we define benchmarks for a creative process? Is this
a good idea? If not, what alternative can we follow for normal sci-
ence in this field? Proof-of-concepts, in which new and innovative
approaches are shown, are useful to demonstrate potential, but a
more rigorous and formalized definition is required to permit com-
parisons.

A historical perspective on ER and on the use of prior knowledge
shows an encouraging trend. The very first studies on evolution-
ary robotics included a lot of prior knowledge in the fitness func-
tion or in the evaluation. The hypothesis was that including knowl-
edge helps, no matter what knowledge is included and how. A task-
agnostic approach was then assumed to be less effective than a task
specific approach. The experimenter chose the level of knowledge
to be included as a trade-off between efficiency and desired auton-
omy. Nelson et al. have reviewed the literature on ER with this point
of view [134]. Recent work shows a more complex picture. Including
knowledge can be completely misleading [106], and must therefore
be handled with care. When properly done, the gain may be signif-
icant [19, 17, 18, 4, 5, 146, 147], but more and more task agnostic
methods have been proposed that also have a significant impact on
ER efficiency [79, 72, 103, 131, 177, 106]. These new techniques are
very encouraging and allows us to think about a future with a truly
automated behavior design method.
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putation (GECCOâĂŹ11), pages 211–218, 2011.

[108] J. Lehman and K. O. Stanley. Novelty search and the problem
with objectives. Genetic Programming Theory and Practice IX,
pages 37–56, 2011.

[109] J. Lehman and K. O. Stanley. Evolvability is inevitable: in-
creasing evolvability without the pressure to adapt. PloS one,
8(4):e62186, January 2013.

[110] J. Lehman, K. O. Stanley, and R. Miikkulainen. Effective di-
versity maintenance in deceptive domains. In Proc. of the In-
ternational Conference on Genetic and Evolutionary Compu-
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