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Abstract Particle Filter (PF) is a method dedicated to pos-
terior density estimations using weighted samples whose el-
ements are called particles. In particular, this approach can
be applied to object tracking in video sequences in com-
plex situations and, in this paper, we focus on articulated
object tracking, i.e., objects that can be decomposed as a
set of subparts. One of PF’s crucial step is a resampling
step in which particles are resampled to avoid degeneracy
problems. In this paper, we propose to exploit mathematical
properties of articulated objects to swap conditionally inde-
pendent subparts of the particles in order to generate new
particle sets. We then introduce a new resampling method
called Combinatorial Resampling that resamples over the
particle set resulting from all the “admissible” swappings,
the so-called combinatorial set. In essence, Combinatorial
Resampling (CR) is quite similar to the combination of a
crossover operator and a usual resampling, but there exists a
fundamental difference between CR and the use of crossover
operators: we prove that CR is sound, i.e., in a Bayesian
framework, it is guaranteed to represent without any bias the
posterior densities of the states over time. By construction,
the particle sets produced by CR better represent the density
to estimate over the whole state space than the original set
and, therefore, Combinatorial Resampling produces higher
quality samples. Unfortunately, the combinatorial set is gen-
erally of an exponential size and, therefore, to be scalable,
we show how it can be implicitly constructed and resam-
pled from, thus resulting in both an efficient and effective
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resampling scheme. Finally, through experimentations both
on challenging synthetic and real video sequences, we also
show that our resampling method outperforms all classical
resampling methods both in terms of the quality of its results
and in terms of computation times.
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1 Introduction

In computer vision, the increase in the quality of data (e.g.,
the resolution of video sequences) as well as their diversity
and the multiplicity of their sources (multiple cameras, mul-
tiple modalities, etc.), stimulated people to increase as well
the quality of their object models, leading to more precise
models but also to higher-dimensional state spaces. As a
consequence, solving problems defined in high-dimensional
observation and/or state spaces has become of crucial im-
portance. In this article, we consider the problem of sequen-
tial estimation of non parametric and multimodal densities
evolving with time, by using the recursive Bayesian filter-
ing framework. In particular, our goal is to track articulated
structures with accuracy and within a reasonable time. This
is considered as a challenging problem due to its high com-
plexity. Actually, the state space of such a problem is in-
evitably high-dimensional and the estimation of the state of
an object thus requires that of many parameters.

When the dynamics of the objects are linear or lineariz-
able and when the uncertainties about their position are Gaus-
sian or mixtures of Gaussians, tracking can be performed
analytically by Kalman-like Filters [15]. Unfortunately, in
practice, such properties seldom hold and people often re-
sort to sampling to approximate solutions of the tracking
problem. The Particle Filter (PF) methodology [28] is pop-
ular among these approaches and, in this paper, we focus on
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it. PF consists of estimating the density over the states of
the tracked object using weighted samples whose elements,
called particles, are possible realizations of the object state.
PF and its variants all use a resampling step to avoid a de-
generacy problem, i.e., the case where all but one of the par-
ticle’s weights are close to zero [22]. In such cases, although
the sample maintains a diversity, the particles are too widely
distributed, most of them being located on the tails of the
density over the object states, hence implying that the major-
ity of the particles are not representative for the estimation
of this density. Without a resampling step that essentially
substitutes the low-weight particles by particles of higher
weights, hence concentrating the particles on the peaks of
the density, this problem would necessarily occur [23].

A few resampling algorithms are classically used, e.g.,
multinomial [28], residual [49], stratified and systematic re-
samplings [42]. However, these methods have not been de-
signed specifically to deal with high-dimensional spaces, in
particular for multiple or articulated object tracking and, as
such, they do not exploit the features of such problems. In
this paper, we propose to improve the articulated object track-
ing, both in terms of tracking accuracy and computation
time, by improving the particle filter’s resampling step and
making its role central. For this purpose, we introduce a new
resampling algorithm called Combinatorial Resampling that
exploits dynamic Bayesian networks independence proper-
ties to swap conditionally independent subparts of the par-
ticles, thereby producing particles nearer to the modes of
the density to estimate. In essence, such swapping is simi-
lar to a crossover operator but, unlike the latter, it is guar-
anteed mathematically to unalter the estimation of the den-
sity. The swappings considered by Combinatorial Resam-
pling produce new samples of exponential size from which
resampling is actually performed. To be scalable, those are
only implicitly created and resampled from. To the best of
our knowledge, no work has addressed the tracking problem
from this point of view with a soundness guarantee.

The paper is organized as follows. Section 2 recalls the
basics of PF, its use for articulated object tracking and the
partitioned sampling framework. Section 3 gives an overview
of the resampling methods. Section 4 is dedicated to our new
resampling method, that relies on dynamic Bayesian net-
works, and to its mathematical correctness. Section 5 pro-
vides experimental results both on challenging synthetic and
real video sequences. Those highlight the efficiency of our
method in terms of both the quality of its results and com-
putation times. Finally, we give concluding remarks and per-
spectives in Section 6. All proofs are given in an appendix.

2 Particle Filter for Object Tracking

In this paper, object tracking consists of estimating a state
sequence {xt}t=1,...,T from observations {yt}t=1,...,T . From

a probabilistic point of view, this problem amounts to esti-
mate, for any t, the posterior density p(xt|y1:t) where y1:t

denotes tuple (y1, . . . ,yt). This can be computed iteratively
using Eq. (1) and (2), which are referred to as a prediction
step and a correction step respectively.

p(xt+1|y1:t) =

∫
p(xt+1|xt)p(xt|y1:t)dxt (1)

p(xt+1|y1:t+1) ∝ p(yt+1|xt+1)p(xt+1|y1:t) (2)

where p(xt+1|xt) and p(yt+1|xt+1) represent the transition
and the likelihood functions respectively.

2.1 Particle Filter (PF)

PF [28] approximates Eq. (1) and (2) using weighted sam-
ples {x(i)

t+1, w
(i)
t+1}, i = 1, . . . , N , where each x

(i)
t+1 is a pos-

sible realization of state xt+1 called a particle. In its predic-
tion step (Eq. (1)), PF propagates the particle set {x(i)

t , w
(i)
t }

using an importance function q(xt+1|x(i)
t ,yt+1) which may

differ from p(xt+1|x(i)
t ) (but, for simplicity, we will assume

they do not); in its correction step (Eq. (2)), PF weights the
particles using a likelihood function, so that

w
(i)
t+1 ∝ w

(i)
t p(yt+1|x(i)

t+1)
p(x

(i)
t+1|x

(i)
t )

q(x
(i)
t+1|x

(i)
t ,yt+1)

,

with
∑N
i=1 w

(i)
t+1 = 1. The particles can then be resam-

pled: those with the highest weights are duplicated while
the others are eliminated. The estimation of the posterior
density p(xt+1|y1:t+1) is then given by: p(xt+1|y1:t+1) ≈∑N
i=1 w

(i)
t+1δx(i)

t+1
(xt+1), where δ

x
(i)
t+1

are Dirac masses cen-

tered on particles x(i)
t+1.

As shown in [52], the number of particles necessary for a
good estimation of the above densities grows exponentially
with the dimension of the state space, hence making PF’s ba-
sic scheme unusable in real-time for articulated object track-
ing. Theoretical frameworks have been proposed to solve the
problem, using specific likelihood models [69], prior infor-
mation [14] or optimization-based local search [57,7].

2.2 The Problem of Articulated Object Tracking with
Particle Filter

Articulated objects are defined as objects that can be decom-
posed as a set of subparts linked by articulation joints and
articulated object tracking consists of tracking all the sub-
parts. For instance, for behavior analysis, one may wish to
track all the body subparts of the person represented in Fig. 1
which consists of a torso (subpart 1), a left arm (subparts 2
and 3), a right arm (subparts 4 and 5) and the head (subpart
6). As a consequence, state xt is the tuple of the states of all
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these subparts. Let xjt represent the state of the jth subpart at
time t, then xt = (x1

t , . . . ,x
6
t ). More formally, let X and Y

represent the state and observation spaces respectively and
assume they can be partitioned as X = X 1 × · · · × XP
and Y = Y1 × · · · × YP respectively, i.e., the object is
decomposed into P different subparts. Then, states xt and
observations yt are tuples (x1

t , . . . ,x
P
t ) and (y1

t , . . . ,y
P
t )

respectively. By abuse of notation, in the rest of the paper,
for any set J = {j1, . . . , jk} ⊆ {1, . . . , P}, xJt will denote
the tuple (xj1t , . . . ,x

jk
t ), which corresponds to the states of

the subparts in J . Similarly, x(i),J
t will denote the tuple of

the parts in J of the ith particle.
Despite significant advances in the last years, the prob-

lem of articulated object tracking still remains unsolved in
its full extent. Yet, this open problem has both a strong theo-
retical and practical interest. Particle filter-based approaches
have addressed this problem in different ways. Here, we
only consider works that model the object using a skele-
ton, i.e., using a model where the object is represented as
a set of subparts linked by articulation joints. But there also
exist model-free methods [46]. One can find a good and re-
cent review of articulated object tracking as well as pose
estimation approaches in the chapter 2 of de Campos’ PhD
thesis [20]. The skeleton-based approaches can be roughly
divided into two classes. In the first one, the estimation pro-
cess is performed in the whole-dimensional state and obser-
vation spaces X and Y but the algorithms try to restrict the
search locally in the neighborhood of some locations, either
by adapting the prediction step to the non linear and/or fast
motions, or by improving the focusing capacity of the cor-
rection step. In the second class, the approaches decompose
the state or observation spaces into smaller ones and apply
on them propagations and corrections sequentially. As these
spaces are smaller, these algorithms achieve better accuracy
while being at the same time faster. The tracking algorithm
we propose in this paper belongs to this second class.

2.2.1 Working in the whole state and observations spaces

A first way to solve efficiently a specific articulated object
tracking problem is to add mathematical constraints to the
particles’ propagation model. The aim is to narrow the search
for the tracking solution. In many papers, this is achieved by
introducing into the tracking model the physical constraints
of the articulated objects [11,56,70,48]. For example, for
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Fig. 1 An articulated object.

human tracking, in [71], the constraints are introduced dur-
ing the simulation step, while in [10,35] they are included
into the importance function. Other approaches include ob-
ject priors [33,16,34], exploit knowledge about the object’s
behaviors [17], about how the objects should look [13] and
about their interactions with the environment [43]. Recently,
an original idea was proposed in [34]: unlike previous ap-
proaches, the motion prediction is expressed in terms of spa-
tial positions rather than in terms of joint constraints. Pri-
ors are then expressed in spatial coordinates and projected
into the space of joint angles using an inverse kinematics
model. One can also learn with time and then refine the pre-
diction step. For example, in [30] the pose is learnt and its
estimation at each time step is used to propagate particles.
In [17], activities are learnt and used to better search in the
state space. All these approaches are very effective on spe-
cific articulated object tracking since they take advantage of
the features of the object or of its motion to adapt its model.
Unfortunately, they are dedicated to specific object tracking
and require a remodeling to be adapted to other ones.

The stochastic nature of particle filtering and the combi-
natorial size of the articulated object state spaces never guar-
antee the filter to produce particle sets nearby the modes of
the densities. Consequently, combining the filter with local
search techniques can significantly improve it by better fo-
cusing the particles on those modes. This explains why op-
timization approaches are also popular among the commu-
nity working on improving the correction step. Many other
optimization methods were introduced into PF (e.g., scatter-
search [58], stochastic gradient-based descents [36], new
stochastic meta-descent approaches [8], leading to an ef-
ficient Smart Particle Filter [9]), but the most famous op-
timization approach that has been introduced into particle
filter is simulated annealing, leading to Annealed Particle
Filter (APF) [21]. APF consists of adding pseudo anneal-
ing layers to PF’s correction step in order to better diffuse
particles in the state space. APF is one of the best algo-
rithms for tracking in high dimensional spaces. However, all
these methods and their variations [60] have in common that
they rely on a subtle compromise between the quality of the
approximation of the density they try to estimate and their
speed of convergence. Actually, by their local nature, they
converge quickly in the neighborhoods of their starting point
but they require much more time to escape these neighbor-
hoods and converge with guarantee toward the modes of the
densities. Note that, even if it is based on a model-free repre-
sentation (i.e. not the articulated representation we consider
here), Basin Hopin Monte Carlo [46] sampling seems to be
a promising approach that avoids falling into local minima.
To avoid such problems, some of these approaches include
hierarchical search strategies, in which the search spaces are
refined progressively, starting from a coarse description of
the state space and ending up into the complete descrip-
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tion of state space. The Progressive Particle Filter [12] is
an example of such a strategy. Particle Swarm Optimiza-
tion has also been used in conjunction with PF [39,72,62,
40,44]. Here, the idea is to apply evolutionary algorithms
inspired from social behaviors observed in wildlife (birds,
fishes, bees, ants, etc.) to make the particles evolve follow-
ing their own experience and the one of their neighborhood
(for a complete review on this topic, see [19]). Most of these
approaches rely on heuristics, whose convergence and tech-
nical correctness cannot be guaranteed. Moreover, they of-
ten require “tuning” using some parameters whose role is
difficult to understand and their values hard to justify.

The aforementioned methods often suppose that all the
needed observations are available at each time slice, which
may not necessarily be the case in practice. Moreover, their
main drawback is to require strong priors about the object
to track, that prevent them to be extensible to general artic-
ulated object tracking problems.

The next subsection deals with approaches that decom-
pose the state and observation spaces into a set of subspaces
of reasonable sizes where PF can be applied.

2.2.2 Decomposing the state and observation spaces

Among the approaches that exploit the fact that, in many
problems, both the system dynamics and the likelihood func-
tion are decomposable over small subspaces, Partitioned Sam-
pling (PS) [51] is probably the most popular. The key idea,
that will be detailed in Section 2.3, is to substitute the appli-
cation of one PF over the whole state space by a sequence
of applications of PF over these small subspaces, thus sig-
nificantly speeding-up the process. However, despite recent
improvements [65,26,73], PS still suffers from numerous
resampling steps that increase noise and decrease the track-
ing accuracy over time. The same kind of decomposition is
exploited in [41] in the context of a general PF for Dynamic
Bayesian Networks (DBN). Here, the importance functions
of the prediction step are decomposed as the product of the
conditional distributions of all the nodes of the current time
slice in the DBN. The prediction step is then performed iter-
atively on each node of the network (following a topological
order of the DBN) using as the proposal distribution the con-
ditional probability of the node given its parents in the DBN.
In [61], the sampling idea of [41] is combined with the re-
sampling scheme proposed in [51] in order to create a PF
algorithm well-suited for DBNs. This algorithm can be seen
as a generalization of PS. By following a DBN topological
order for sampling and by resampling the particles each time
an observed node is processed, particles with low likelihood
for one subspace are discarded just after the instantiation
of this subspace, whereas particles with high likelihood are
multiplied. This has the same effect as weighted resampling
in PS. Another approach inspired from the Bayesian net-

work community is the nonparametric Belief Propagation
algorithm [66,38]. It combines the PF framework with the
well-known Loopy Belief Propagation algorithm [59,74] for
speeding-up computations (but at the expense of approxima-
tions). It has been successfully applied on many problems of
high dimensions [67,64,4,37,47]. The Rao-Blackwellized
Particle Filter for DBN (RBPF) [24] uses a decomposition
of state space X as the Cartesian product of the state spaces
of two subparts X 1 × X 2 that fulfill the following condi-
tion: the conditional posterior distribution of the second sub-
part given the first one p(x2

1:t|y1:t,x
1
1:t) can be estimated

using classical techniques such as Kalman filter. The joint
posterior distribution p(x1:t|y1:t) can then be estimated by
first estimating the marginal posterior distribution of the first
subpart p(x1

1:t|y1:t) using PF and, then, the conditional pos-
terior p(x2

1:t|y1:t,x
1
1:t) using Kalman filter. As the dimen-

sion of the state space of the first subpart is smaller than that
of the whole state space, the sampling step of particle filter
for the first subpart needs fewer particles and the variance of
the estimation can be reduced. Though RBPF is very effec-
tive at reducing the high dimension of the problem, it can-
not be applied on all DBNs because the state space cannot
always be decomposed into two subparts fulfilling the con-
dition. The framework introduced in [5] is a parallel PF for
DBNs that uses the same decomposition of the joint proba-
bility as that of the DBN to reduce the number of particles
required for tracking. The state space is divided into several
subspaces that are in some respect relatively independent.
The particles for these subspaces can then be generated in-
dependently using different importance densities. This ap-
proach offers a very flexible way of choosing the impor-
tance density for sampling each subspace. However the def-
inition of the different subspaces requires the DBN to have
a particular independence structure, limiting the generaliza-
tion of this algorithm. In our paper, we address more general
problems where no such independences hold. We focus on
PS [51,52] for its simplicity and generalization potential.

Among the algorithms that exploit the decomposition of
the state and observations spaces into a set of subspaces, we
shall also mention those that use crossover operators to im-
prove the particle sets, see, e.g., [21,45,18]. The key idea is
to select pairs of particles, say the ith and jth ones in the par-
ticle set, and to swap their values x(i),K

t and x
(j),K
t on some

set K of subparts. Using adequate rules for selecting triples
(i, j,K), it has been shown empirically that the number of
particles needed for tracking can be significantly reduced.
However, it is important to note that such algorithms are no
more mathematically sound, i.e., they are not proved to esti-
mate correctly the posterior density. Actually, as Deutscher
and Reid point out, the application of crossover operators
are “done in the hope that when highly fit building blocks
are brought together they will have a good chance of form-
ing a very fit complete individual”.
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The literature exploiting decomposition to enhance track-
ing is large and we cannot be exhaustive. As a last exam-
ple on MCMC-based methods, let us cite the work in [27],
where conditional independences among the object’s sub-
parts are taken into account to parallelize sampling while
guaranteeing unbiasedness. Decomposition of observation
spaces has also received attention, notably through the fu-
sion of multiple observations in principled ways [31].

2.2.3 A comparison with the proposed approach

In this paper, which is an extension of [25], we propose
an efficient general articulated object tracking framework
which differs from the above works in several ways. First,
unlike those mentioned in Subsection 2.2.1, we rely neither
on specific knowledge about the object nor on its behavior or
on any motion prior. We can of course include such knowl-
edge into our framework to enhance its accuracy, but this is
not compulsory. Unlike optimization-based approaches, we
propose a model whose unbiased convergence toward the
posterior density is guaranteed. To achieve performances as
good as optimization methods like APF, our method heav-
ily relies on the decomposition of the state and observation
spaces. In this class, we significantly outperform PS and
its variants in terms of tracking accuracy, of computation
times and of reduction of the noises induced by resamplings
(we actually perform much fewer resamplings). There ex-
ist other methods that exploit dynamic Bayesian network’s
(DBN) independences (e.g., RBPF) but those either assume
strong hypotheses on the distributions of the random vari-
ables in subspaces (e.g., in RBPF, p(x2

1:t|y1:tx
1
1:t) can be

estimated by a Kalman filter), or strong hypotheses on the
independence structure of the DBN. In our model, we do not
and, therefore, it can be used in more general situations. Our
exploitation of decomposition relies on processing several
parts of the articulated object simultaneously, which is close
to parallelizing the tracking. But, unlike [27], our purpose
here is not to speed-up computations but rather to increase
the quality of tracking as this simultaneous processing opens
the path to our new resampling scheme that significantly in-
creases tracking accuracy. This one is close to crossover op-
erators but, unlike the latter, it is guaranteed to never alter
the estimation of the posterior density.

2.3 Partitioned Sampling (PS)

PS’s key idea is to exploit a natural decomposition of the
system dynamics w.r.t. subspacesX 1, . . . ,XP of state space
X (see Fig. 1) in order to apply PF only on those subspaces.
As subspacesX j are usually much smaller thanX , the num-
ber of particles needed for tracking can be significantly re-
duced. PS uses a tailored sampling scheme, called “weighted
resampling”, which ensures that the particle sets resulting

from the sequential applications of PF actually represent the
joint distribution of the whole state space and are focused on
its peaks [50]. So, assume thatX and Y can be partitioned as
X = X 1×· · ·×XP andY = Y1×· · ·×YP respectively and
that the dynamics of the system follows this decomposition,
i.e., xt = ft(xt−1,n

x
t ) = fPt ◦ fP−1t ◦ · · · ◦ f1t (xt−1,nx

t ),
where ◦ is the usual function composition operator, nx

t is a
noise, and each function f it : X 7→ X modifies the particles’
states only on subspace X i 1. Then PS propagates iteratively
each subpart xit using importance function f it , it applies its
correction step followed by a “weighted resampling” that fo-
cuses particles on the peaks of the posterior density. When
the likelihood function decomposes as well on subspacesYi,
i.e., when: p(yt|xt) =

∏P
i=1 p

i(yit|xit), where yit and xit
are the projections of yt and xt on Yi and X i respectively,
weighted resampling can be achieved by first multiplying
the particles’ weights by pi(yit|xit) and, then, by perform-
ing a usual resampling. Note that such decomposition natu-
rally arises when tracking articulated objects. This leads to
the condensation diagram given in Fig. 2, where operations
“∗f it ” refer to propagations of particles using proposal func-
tions f it defined above, “×pit” refer to the correction steps
where particle weights are multiplied by pi(yit|xit), and “∼”
refers to usual resamplings. MacCormick and Isard showed
the mathematical soundness of this diagram [52].

∗f1
t ×p1t

∗fP
t ×pPt p(xt|y1:t)

∗f2
t ×p2t

p(xt−1|y1:t−1)

· · ·

∼

∼

Fig. 2 Partitioned Sampling condensation diagram.

Although PS has been designed to process object sub-
parts sequentially, it can be described as part of a more gen-
eral class of particle filters that process several object sub-
parts simultaneously. More formally, let K denote the num-
ber of steps of such particle filters. In the rest of the paper,
for any step j ∈ {1, . . . ,K} of the particle filter, let:

– Pj be the set of object subparts processed simultane-
ously by the particle filter at its jth step,

– Qj =
⋃j
h=1 Ph be the set of object subparts processed

up to (including) the jth step,
– Rj =

⋃P
h=j+1 Ph be the set of object subparts still to be

processed by the particle filter.

In addition, for simplicity of notations, let Q0 = RK = ∅.
Then, PS can be described as Algorithm 1, where K is set
to P , the number of subparts in the tracked object, and each
Pj is a singleton.

1 Note that, in [50], functions fi
t are more general since they can

modify states on X i × · · · × XP . However, in practice, particles are
often propagated only one X j at a time.
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Input: A particle set {x(i)
t , w

(i)
t } at time t, an image I

Output: A particle set {x(i)
t+1, w

(i)
t+1} at time t+ 1

Q← ∅; R← {1, . . . , P}
foreach Pj in {P1, . . . , PK} do
Q′ ← Q; R′ ← R
foreach k in Pj do
Q′ ← Q ∪ {k}; R′ ← R′\{k}
{(x(i),Q′

t+1 ,x
(i),R′

t )} ← propagate subpart k of

({x(i),Q
t+1 ,x

(i),R
t })

{(w(i),Q′

t+1 , w
(i),R′

t )} ← correct

({(x(i),Q′

t+1 ,x
(i),R′

t ), (w
(i),Q
t+1 , w

(i),R
t )}, I)

Q← Q′; R← R′

{(x(i),Q
t+1 ,x

(i),R
t ), (w

(i),Q
t+1 , w

(i),R
t )} ← resample

({(x(i),Q
t+1 ,x

(i),R
t ), (w

(i),Q
t+1 , w

(i),R
t )})

return {x(i)
t+1, w

(i)
t+1}

Algorithm 1: Partitioned Sampling PS.

3 Resampling Methods

PF and its variants all use a resampling step to avoid a prob-
lem of degeneracy of the particles, i.e., the case when all
but one of the particle’s weights are close to zero. Note that,
without this step, this problem would necessarily occur. Sev-
eral resampling schemes are classically used, that we shall
review briefly now. Comparisons of their pros and cons can
be found in [22]. Note that weighted resampling has already
been presented in Subsection 2.3.
Multinomial resampling consists of selecting N numbers
ki, i = 1, . . . , N , w.r.t. a uniform distribution U((0, 1]) on
(0, 1]. Then, sample S = {x(i)

t , w
(i)
t }Ni=1 is substituted by

a new sample S ′ = {x(D(ki))
t , 1

N }
N
i=1 where D(ki) is the

unique integer j such that
∑j−1
h=1 w

(h)
t < ki ≤

∑j
h=1 w

(h)
t

[28]. In most implementations, the complexity of multino-
mial resampling is in O(N logN), where N refers to the
sizes of samples S and S ′. However, in [53], it is shown
how it can be implemented in an O(N) algorithm.
Stratified resampling differs from multinomial resampling
by selecting randomly the ki’s w.r.t. the uniform distribution
U(( i−1N , iN ]) [42]. Its complexity is in O(N).
In systematic resampling, a real number k is drawn w.r.t.
U((0, 1

N ]) and, then, the ki’s are defined as ki = i−1
N + k

[42]. Its complexity is also in O(N).
Residual resampling [49] is performed in two steps. First,
for every i ∈ {1, . . . , N}, n′i = bNw

(i)
t c duplicates of par-

ticle x
(i)
t of S are inserted into S ′. The R = N −

∑N
i=1 n

′
i

particles still needed to complete theN -sample S ′ are drawn
randomly according to the multinomial distribution Mult(R;
Nw

(1)
t − n′1, . . . , Nw

(N)
t − n′N ). The complexity of this

method is in O(N +R logN).
Weighted resampling also samples indices k1, . . . , kN

to construct S ′ and its complexity follows that of the ki’s
resampling. In our experiments, these were computed by

multinomial resampling, hence our weighted resampling’s
implementation is in O(N logN).

Except weighted resampling, all the above resampling
schemes assign weight 1/N to all the particles in S ′. Next,
we propose a new resampling method that exploits the struc-
ture within articulated objects to improve drastically the ef-
ficiency of particle filtering while being competitive in terms
of computation times.

4 Combinatorial Resampling Particle Filter

The particle filter we propose in this paper relies on Algo. 1
with carefully chosen sets of object subparts P1, . . . , Pk (see
page 5) and, most importantly, and this is the main contribu-
tion of the paper, a new resampling scheme called Combina-
torial Resampling specifically designed for tracking objects
modeled by several subparts. More precisely, Combinato-
rial Resampling exploits probabilistic independences among
sets of object subparts P1, . . . , PK to permute condition-
ally independent particles’ subparts, thereby producing bet-
ter quality samples while guaranteeing that the estimation of
the posterior density p(xt|y1:t) is unaltered.

4.1 Identifying Parallelizable Sets P1, . . . , PK

To be sound mathematically, sets P1, . . . , PK shall be such
that all the object subparts in any set Pj are conditionally in-
dependent given the subparts in∪j−1h=1Ph. Bayesian networks
(BN) [59] and dynamic Bayesian networks (DBN) [54] pro-
vide an efficient way to determine these independences.

Definition 1 (Bayesian network (BN) [59]) A Bayes net
is a pair (G,P) where G = (V,A) is a directed acyclic
graph, each node X ∈ V corresponds to a random variable2

and arcs (X,Y ) in A represent probabilistic dependences
between variables X and Y . P = {p(X|Pa(X)) : X ∈ V}
is a set of conditional probabilities, where Pa(X) is the set
of parents of X in G. The joint probability p(V) is then
equal to

∏
X∈V p(X|Pa(X)).

BNs can model the uncertainties inherent to object track-
ing. Let xjt ∈ X j denote the state of the jth subpart of the
tracked object. When V is the set of states {xjt} and ob-
servations {yjt}, BNs [59] are an attractive alternative to
Markov chains for representing the uncertainties in object
tracking (see Fig. 3). Actually, by decomposing the joint dis-
tribution over (xt,yt) into a product of (low-dimensional)
conditional distributions, they enable the exploitation of in-
dependences among sets of random variables xjt ,y

j
t , thereby

2 By abuse of notation, since there is a one-to-one mapping between
nodes in V and random variables, we will use interchangeablyX ∈ V
to denote a node in the BN and its corresponding random variable.
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Fig. 3 An unrolled OTDBN.

reducing the complexity of tracking. For instance, Fig. 3 rep-
resents part of a BN tracking the person of Fig. 1. Essen-
tially, the articulation joints correspond to arcs in the BN.
But BNs do not involve any time dimension, so, for ob-
ject tracking, DBNs, which are an extension of BNs includ-
ing this feature, are preferable. In this paper, we will not
present general DBNs [54] but rather focus on their defini-
tion adapted to tracking that we called object tracking DBNs:

Definition 2 (Object Tracking DBN – OTDBN) An OT-
DBN is a pair (B1, B→) of BNs. B1 is the BN defined over
{xi1,yi1}Pi=1 and represents the joint probability p(x1,y1),
where xi1 and yi1 represent the state and observation of ob-
ject subpart i in time slice 1. BN B→ defines the transition
between consecutive time slices p(xt,yt|xt−1,yt−1). The
unrolled BN of the OTDBN over time slices 1 to T is ob-
tained by appending to B1 (T − 1) times the generic BN
B→. In addition, OTDBNs satisfy the following properties:

1. inside every time slice t, each node xit can have at most
one parent, i.e., for every subpart i and every time slice
t, there exists at most one arc xjt → xit;

2. for every time slice t > 1, node xit has one and only one
parent in time slice t − 1, which is xit−1, i.e, for every
subpart i and every time slice t > 1, there exists an arc
xjt−1 → xit iff j = i;

3. for each state node xit, there exists an observation node
yit whose only parent is xit;

4. nodes yit have no children.

Fig. 3 represents an unrolled OTDBN: B1 and B→ are
the BNs in the first and second time slices. The properties
of Definition 2 can be easily justified: within a time slice,
dependences among random variables should reflect those
in the skeleton of the object; as in practice, most are tree-
shaped, Property 1 follows. This property is not compulsory
for our approach but it simplifies the proofs given in the ap-
pendix. As for Property 2, if the state of object subpart i
depends on that of subpart j, this is probably due to an artic-
ulation joint between them. In this case, xit should depend on
xjt rather than on xjt−1. Properties 3 and 4 assert that state xit
is observed through a dedicated random variable yit. As can
be seen, the four above properties are rather mild for object

tracking and they hold in most applications. They actually
do in Fig. 3. One of the key properties of BNs and OTDBNs
is their independence model, which is called d-separation:

Definition 3 (d-separation [59]) Two nodes xit and xjs of
an unrolled OTDBN are conditionally dependent given a set
of nodes Z iff there exists a chain, i.e., an undirected path,
{c1 = xit, . . . , cn = xjs} linking xit and xjs in the unrolled
OTDBN such that the following two conditions hold:

1. for every node ck such that the arcs in the path are of
type ck−1 → ck ← ck+1, either ck or one of its descen-
dants is in Z;

2. none of the other nodes ck belongs to Z.

Such a chain is called active (else it is blocked). If there ex-
ists an active chain linking two nodes, those are dependent
given Z and are called d-connected, otherwise they are in-
dependent given Z and are called d-separated.

In our body tracking problem, given the position of the
torso up to the current time, both arms are independent, which
is precisely what the OTDBN of Fig. 3 encodes. More for-
mally, this OTDBN encodes that x4

t and x5
t are conditionally

independent of x2
t and x3

t given x1
1:t.

3

Let us now explain how OTDBNs and their d-separation
can be exploited to process simultaneously several objects
subparts without introducing any bias in the estimation of
the posterior density. Let Xt denote a generic node of an
OTDBN G in time slice t (so either Xt = xit or Xt = yit
for some i). Let Pa(Xt) and Pat(Xt) denote the set of par-
ents of Xt in G in all time slices and in time slice t only
respectively. For instance, in Fig. 3, Pa(x2

t ) = {x1
t ,x

2
t−1}

and Pat(x2
t ) = {x1

t}. Assume that the tracked object’s state
space X is decomposed as X = X 1 × · · · × XP and that
the probabilistic dependences between all random variables
xit and yit, i = 1, . . . , P , are represented by OTDBN G. Let
{P1, . . . , PK} be a partition of {1, . . . , P} defined by:

– P1 = {k ∈ {1, . . . , P} : Pat(xkt ) = ∅};
– for any j > 1, Pj = {k ∈ {1, . . . , P}\

⋃
h<j Ph :

Pat(xkt ) ⊆
⋃
r∈Pj−1

{xrt}}.

In other words, P1 represents the set of nodes in time slice
t that have no parent in time slice t. As such, they should
be the roots of the object’s tree skeleton. For instance, in
Fig. 3, P1 = {1} corresponds only to the torso. P2 is the
set of subparts whose parents are in P1, i.e., P2 corresponds
to the object subparts that have an articulation joint with the
torso. In our example, P2 = {2, 4, 6} (head and upper arms).
Finally, P3 = {3, 5} corresponds to the forearms, which are
connected to the upper arms.

3 Note however that (x2
t ,x

3
t ) and (x4

t ,x
5
t ) are not independent

given x1
t because, for instance, chain {x2

t ,x
2
t−1,x

1
t−1,x

4
t−1,x

4
t} is

active. Considering that (x2
t ,x

3
t ) and (x4

t ,x
5
t ) are independent given

x1
t is a common mistake.
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It is not hard to see that, by d-separation, all the nodes xkt
of a given Pj are conditionally independent given their par-
ents Pa(xkt ). Hence, PS can propagate/correct these nodes
simultaneously and produce a correct estimation of the pos-
terior density p(xt|y1:t). This justifies the condensation di-
agram of Fig. 4 where, for every j ∈ {1, . . . ,K}, Pj =

{i1Pj
, . . . , i

kj
Pj
}. Its correctness follows from Proposition 1.

Proposition 1 The particle set resulting from Algorithm 1,
with sets Pj defined as above, setsQj =

⋃j
h=1 Ph andRj =⋃K

h=j+1 Ph, represents p(xt|y1:t).

4.2 Particle’s Substate Permutations

There are two major differences between the diagrams of
Fig. 2 and Fig. 4: the latter performs fewer resamplings, thus
it introduces less noise in the particle set but, more impor-
tantly, it enables to produce better fitted particles by swap-
ping their conditionally independent subparts. Actually, con-
sider again our body tracking example and assume that we
processed object subparts P1 and P2, i.e., all subparts except
the forearms have been processed. Assume we generated the
3 particles x

(i)
t = (x

(i),1
t ,x

(i),2
t ,x

(i),3
t−1 ,x

(i),4
t ,x

(i),5
t−1 ,x

(i),6
t )

shown in Fig. 5.a where the shaded areas represent the ob-
ject’s true state (ground truth). Remember that subpart 1 is
the torso, subparts 2,4,6 are the left and right upper arms and
the head respectively, and subparts 3 and 5 are the left and
right forearms. As shown in the proof of Proposition 1, af-
ter processing the subparts of sets P1 and P2, (a.k.a. Q2 =

{1, 2, 4, 6}) the particle set represents the conditional den-
sity p(xQ2

t ,xR2
t−1|y

Q2

1:t ,y
R2
1:t−1), with R2 = {3, 5}. Up to a

normalizing constant, this is equal to density
p(xQ2

t ,xR2
t−1,y

Q2

1:t ,y
R2
1:t−1). By the OTDBN of Fig. 3 and by

d-separation, (x2
t ,x

3
t−1,y

2
1:t,y

3
1:t−1) is conditionally inde-

pendent of the rest of the OTDBN given {x1
1:t}. The same

applies to (x4
t ,x

5
t−1,y

4
1:t,y

5
1:t−1) and to (x6

t ,y
6
1:t). Hence,

p(xQ2

t ,xR2
t−1,y

Q2

1:t ,y
R2
1:t−1)

=

∫
p(x1

1:t−1,x
Q2

t ,xR2
t−1,y

Q2

1:t ,y
R2
1:t−1) dx

1
1:t−1

=

∫
p(x1

1:t,y
1
1:t)p(x

2
t ,x

3
t−1,y

2
1:t,y

3
1:t−1|x1

1:t)

p(x4
t ,x

5
t−1,y

4
1:t,y

5
1:t−1|x1

1:t)p(x
6
t ,y

6
1:t|x1

1:t) dx
1
1:t−1.

(3)

.....

.....
.....

∗f
i1P1
t

∗f
i
k1
P1

t

∗f
i1PK
t

∗f
i
kK
PK

t

×p
i1P1
t

×p
i
k1
P1
t

×p
i1PK
t

×p
i
kK
PK
t

∼

∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Fig. 4 Multiple-parts simultaneously processed PS condensation dia-
gram. Differences from PS (Fig. 2) are highlighted in red.

Intuitively, subparts 2, 3 of the particles estimate density
p(x2

t ,x
3
t−1,y

2
1:t,y

3
1:t−1|x1

1:t), subparts 4, 5 estimate density
p(x4

t ,x
5
t−1,y

4
1:t,y

5
1:t−1|x1

1:t). So, for fixed values of x1
1:t,

permuting the values onX 2×X 3 among the particles cannot
alter the estimation of p(x2

t ,x
3
t−1,y

2
1:t,y

3
1:t−1|x1

1:t) because
density estimations are insensitive to permutations within
samples. Similarly, any permutation of the values on X 4 ×
X 5 of particles that have the same value of x1

1:t cannot alter
the estimation of p(x4

t ,x
5
t−1,y

4
1:t,y

5
1:t−1|x1

1:t). A fortiori,
these permutations cannot alter the estimation of the joint
posterior density as defined in Eq. (3).

This can be exploited to improve the quality of the parti-
cle set. Indeed, consider the 3 particles of Fig. 5.a: those are
represented by unfilled ellipses and the ground truth by gray
areas. Assume that particles x

(1)
t and x

(2)
t have the same

value x1
1:t. Then, by the preceding paragraph, their right (or

left) arms can be permuted, hence resulting in the new par-
ticle set of Fig. 5.b. Remark that we just substituted 2 par-
ticles, x(1)

t and x
(2)
t , which had low weights due to their

bad estimation of the object’s right or left arm states, by
one particle x′t

(1) with a high weight (due to a good estima-
tion of all the object’s subparts) and another one x′t

(2) with
a very low weight. After resampling, the latter will most
probably be discarded and, therefore, swapping will have
focused particles on the peaks of the posterior density. Note
however that not all permutations are allowed: for instance,
none can involve particle x

(3)
t because its torso differs from

that of the other particles. This leads to the improved filter
described in the diagram of Fig. 6, where operations “
Pj ”
refer to the particle subpart swappings briefly described. Re-
mark that, after the resampling operation on subparts Pj , the
particles with high weights will be duplicated, which will
enable swapping when processing the next subparts Pj+1

(which are their children).

x′t
(2) x′t

(3)x′t
(1)x

(1)
t x

(2)
t x

(3)
t

b)a)

Fig. 5 The particle swapping scheme: a) before swapping; b) after
swapping.
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∼
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Fig. 6 A Partitioned Sampling scheme improved by simultaneous
multiple-parts processing and swapping. Differences from PS (Fig. 2)
are highlighted in red.
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To guarantee that swapping operations 
Pj do not al-
ter the estimated distributions, it is not sufficient to permute
only the subparts in Pj . The reason why can be easily under-
stood intuitively: if an upper arm is swapped between two
particles, their forearms should be swapped as well. More
formally, as shown below, when swapping part xkt among
particles, it is also necessary and sufficient to permute all the
nodes that are descendants of xkt in time slice t, as well as
the weights of these subparts, to guarantee the unbiasedness
of the estimations. In Algo. 1, for any set of subparts Ph,
upon completion of Ph’s processing, a resampling is per-
formed that assigns equal weights 1/N to all the particles.
Therefore, after the simultaneous propagation and correc-
tion steps on set of subparts Pj , up to scaling constant 1/N ,
the weight of the ith particle is equal to the product of the
weights assigned to each subpart r ∈ Pj , i.e., p(yrt |x

(i),r
t ).

Let us call such weights w(i),r
t . Then, just before the resam-

pling step on subparts Pj , the weighted particle set is equal
to {(x(i),Qj

t ,x
(i),Rj

t−1 ),
∏
r∈Pj

w
(i),r
t }Ni=1. The next proposi-

tion justifies which permutations can be performed on this
set without altering the posterior density.

Proposition 2 Let {(x(i),Qj

t ,x
(i),Rj

t−1 ),
∏
r∈Pj

w
(i),r
t }Ni=1 be

the particle set obtained after the propagation and correc-
tion step of subparts in Pj by Algo. 1. Let k ∈ Pj and let
Desct−1(xkt−1) be the set of descendants of xkt−1 in time
slice t− 1 (including both state and observation nodes). Let
σ : {1, . . . , N} 7→ {1, . . . , N} be any permutation such
that x(i),h

s = x
(σ(i)),h
s for all the nodes xhs ∈ ∪ts=1Pas(xks).

Then, the weighted particle set resulting from the applica-
tion of σ on the subparts of {(x(i),Qj

t ,x
(i),Rj

t−1 )} correspond-
ing to {xkt } ∪ Desct−1(xkt−1), as well as on their corre-
sponding weights, still estimates p(xQj

t ,x
Rj

t−1|y1:t−1,y
Qj

t ).

The above proposition considers permutations only over
particles that have the same trajectories over all time slices
for the parents of the kth object subpart, i.e., ∪ts=1Pas(xks).
Such permutations are called admissible. Due to d-separation,
this requirement is theoretically compulsory to ensure that
the estimation of the posterior density is unaltered and any
non-admissible permutation will necessarily alter this esti-
mation because it will modify conditionally dependent sub-
parts as if they were independent. However, in practice, state
spaces X k are continuous, e.g., they represent the object’s
position, its orientation, its scale, etc., that are all real-valued.
As such, densities p(xkt |Pa(xkt )) are also usually continuous
functions (e.g., mixtures of Gaussians). Hence, it is highly
unlikely that the propagation/correction step of the particle
filter produces two particles with precisely the same state
xkt . As a consequence, two particles having the same state
xkt are most likely duplicates of another particle resulting
from a resampling step. As such, they thus have the same
trajectory ∪ts=1Pas(xks). So, for tracking, it is only a very

mild approximation to allow permutations taking into ac-
count only the values of parents at time t instead of over
time slices 1 to t. This suggests tracking in practice using
“almost admissible permutations”:

Definition 4 (Almost admissibile permutations) A permu-
tation σ is almost admissible if and only if it satisfies the hy-
potheses of Proposition 2 except that x(i),h

s is required to be
equal to x

(σ(i)),h
s only for s = t.

The advantage of using almost admissible permutations
over admissible permutations is clearly that this enables the
particle filter to work with a limited history (only that at time
t), hence making it time and memory efficient. But it must
be stressed that, in theory, almost admissible permutations
cannot guarantee that the estimation of the posterior density
remains unaltered. Nevertheless, by dealing with continuous
spaces, those biases are very unlikely to occur.

We next show how these permutations can be exploited
at the resampling level to improve samples.

4.3 Our Resampling Approach

All the permutations satisfying the conditions of Proposi-
tion 2 can be applied to the particle set without altering the
estimation of the posterior density. In addition, the latter is
unaffected by duplications of all the particles within the par-
ticle set. This suggests Combinatorial Resampling:

Definition 5 (Combinatorial Resampling) Let S be the par-
ticle set at the jth step of Algo. 1. For any k ∈ Pj , let Σk

be the set of permutations w.r.t. the kth subpart satisfying
the conditions of Proposition 2. Let Σ =

∏
k∈Pj

Σk, i.e., Σ
is the Cartesian product of all the admissible permutations
over all the object subparts of Pj . Let S ′ = ∪σ∈Σ{particle
set resulting from the application of σ to S}. Combinatorial
resampling consists of applying any resampling algorithm
over the combinatorial set S ′ instead of over S.

To illustrate combinatorial resampling, consider three
particles of the OTDBN of Fig. 3: let x(1)

t = 〈1, 2, 3, 4, 5, 6〉,
x
(2)
t = 〈1, 2′, 3′, 4′, 5′, 6′〉 and x

(3)
t = 〈1′′, 2′′, 3′′, 4′′, 5′′, 6′′〉,

where each number, j, j′, j′′, corresponds to a distinct value
of state xjt . Assume that S = {x(1)

t ,x
(2)
t ,x

(3)
t } at the 2nd

step of Algo. 1, i.e., the object subparts just processed are
P2 = {2, 4, 6}. Subparts {2, 3}, {4, 5} and {6} can be per-
muted in x

(1)
t and x

(2)
t because the value of their torso, i.e.

1, are identical, hence S ′ is the union of the result of all such
permutations over S and is thus equal to:
S′ = { 〈1,2 ,3 ,4 ,5 ,6 〉

〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4′,5′,6′〉

〈1,2′,3′,4′,5′,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4 ,5 ,6 〉

〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ1)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ2)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ3)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ4)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ5)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ6)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 (permut. σ7)
〈1′′,2′′,3′′,4′′,5′′,6′′〉 } (permut. σ8)



10 Christophe Gonzales, Séverine Dubuisson
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Fig. 7 Sets Sh and Sk
h . Each row represents a particle and each number a value of the subpart of the particle.

Note that there exist particles, like x
(3)
t , that are dupli-

cated several times within S ′. Constructing S ′ in extension
is impossible in practice because |Σ| tends to grow expo-
nentially with N , the number of particles, and with |Pj |, the
number of subparts processed in parallel.

Fortunately, we can sample over S ′ without actually con-
structing it. Consider the resampling at the jth step of Algo. 1,
i.e., when subparts Pj have just been propagated and cor-
rected. Our key idea is simply to use a two-step resampling
scheme: first, randomly draw values for the subparts inQj−1
and, then, conditioned on these values, choose those for the
Pj’s and their descendants. Actually, by the hypotheses of
Proposition 2, once the values of the subparts in Qj−1 are
known, all the parents of the subparts in Pj are known as
well and, thus, for each k ∈ Pj , the set of particles, say
S(k), that have the same value on Pa(xkt ) as that chosen at
the 1st step for xQj−1

t , can be linearly determined. In addi-
tion, by d-separation, subpart k is independent of the other
subparts in Pj and, thus, can be dealt with independently.
Hence, to guarantee that the posterior density is unaltered, it
is sufficient to draw randomly from S(k) w.r.t. the weights
w

(i),k
t of the particles in S(k). So, the main issue is to select

the subparts in Qj−1 without altering the posterior density.
But, as we will see, this just amounts to compute a weight
for each value of xQj−1

t .
For this purpose, let i1, . . . , iR be a partition of {1, . . . , N}

such that, for any h, h′ ∈ {1, . . . , R}, all the particles in
{x(i)

t }i∈ih have the same value on x
Qj−1

t and this one dif-
fers from those of any particle in {x(i)

t }i∈ih′ . Let S1 . . . ,SR
be the corresponding particle sets. For instance, Fig. 7.a dis-
plays 5 particles of the OTDBN of Fig. 3, where each row
represents a particle and values r, r′, r′′ represent distinct
states of object subpart r. Assume that our particle filter just
propagated subparts Pj = {3, 5}. ThenQj−1, the set of sub-
parts propagated at previous steps, is equal to {1, 2, 4, 6}.
Therefore, the 5-element particle set S can be partitioned
into the three sets S1,S2,S3 of Fig. 7.a. Actually, as high-
lighted by the gray areas, the first two particles have the
same values on subparts 1, 2, 4, 6 and the values of the other
particles differ on at least one of those subparts. Clearly, se-
lecting a value for the object subparts in Qj−1, as does the
first step of our resampling method, is equivalent to select-
ing one of the sets Sh as defined above. Let N1, . . . , NR
denote the respective sizes of sets S1, . . . ,SR.

For any particle set Sh ∈ {S1, . . . ,SR} and any subpart
k ∈ Pj , we denote by Skh the subset of the particles in S
that have the same value on subpart Pat(xkt ) as the parti-
cles in Sh. For instance, Fig. 7.b shows subsets S3h, related
to object subpart k = 3 (remember that, by the OTDBN
of Fig. 3, Pat(x3

t ) = {x2
t} and, therefore, sets S3h are the

sets of particles whose values in the gray column are identi-
cal). Similarly, Fig. 7.c shows subsets S5h. Remark that Skh is
not necessarily a subset of Sh (see, e.g., S32 ). Once a value
for subparts Qj−1 has been selected by the first step of our
resampling algorithm, i.e., once a set Sh has been chosen,
any value of subpart k (and its descendants) of the parti-
cles in Skh can be concatenated to that chosen for subparts
Qj−1 in order to produce a new particle. As shown below,
the resulting particle set still estimates correctly the poste-
rior density. To finish with notations, for each set Skh , let
ikh ⊆ {1, . . . , N} denote the indices w.r.t. S of the particles
of Skh . For instance, on Fig. 7.b, i32 = {3, 4, 5} because the
third, fourth and fifth particles in S have value 2′ on object
subpart 2. Let Nk

h denote the cardinal of Skh . Finally, for any
h ∈ {1, . . . , R}, letW k

h =
∑
i∈ikh

w(i),k, where w(i),k is the
weight assigned to subpart k of the ith particle in S. W k

h is
thus the sum of the weights assigned to the kth subpart of
the particles in Skh . Then, the following proposition holds:

Proposition 3 Assign to each set Sh an (unnormalized) weight
Wh defined by Wh =

∏
k∈Pj

Nh

Nk
h

×W k
h . Then, Algorithm 2

produces a particle set estimating the same posterior density
as that given in input.

Note that the complexity of Algo. 2 is not high: its first
step is to determine sets S1, . . . ,SR. This should be done
by sorting the particles in S w.r.t. their xQj−1

t values. But,
by the continuous nature of the state space, having identi-
cal values for xQj−1

t is equivalent to having identical values
for any xkt , k ∈ Qj−1. Therefore, we just need to sort the
particles in S w.r.t. their values in one subpart of Qj−1. As-
suming the size of a state xkt is bounded by X , determin-
ing sets S1, . . . ,SR can be done inO(XN logN). Comput-
ing the Nh can then be done linearly in O(N). Determin-
ing sets Skh can also be done by sorting w.r.t. each subpart
in Pj , hence in O(|Pj |XN logN). Computing all the Nk

h

and W k
h is then done in O(N). Computing Wh can then

be done in O(|Pj |). All these quantities can thus be com-
puted in O(|Pj |XN logN). Algo. 2 first samples the cen-
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Input: A particle set S = {(x(i),Qj

t ,x
(i),Rj

t−1 ), w
(i)
t }Ni=1

Output: A new particle set {(x′′(i),Qj

t ,x
′′(i),Rj

t−1 ), w
′′(i)
t }Ni=1

1 for i = 1 to N do
2 h← sample {1, . . . , R} w.r.t. unnormalized weights
3 W1, . . . ,WR

4 x
′′(i),Qj−1

t ← x
(z),Qj−1

t where z is any element in ih
5 foreach k in Pj do
6 ikh ← sample set ikh w.r.t. unnormalized weights

7 {w(r),k
t }r∈ik

h

8 x
′′(i),k
t ← x

(ik
h
),k

t

9 x
′′(i),Desct−1(x

k
t−1

)

t−1 ← x
(ik

h
),Desct−1(x

k
t−1

)

t−1

10 return {x′′(i)t , 1/N}Ni=1

Algorithm 2: Efficient combinatorial resampling over S ′.

tral parts of the particles (lines 2–4), which can be done in
O(|Qj−1|XN) using, for instance, systematic resampling.
Then, all the subparts in Pj are selected, which can be done
inO(|Pj |XN), and their descendants are also added. Hence,
overall, sampling complete particles is done in O(PXN).
Therefore, the overall complexity of combinatorial resam-
pling over subparts in Pj isO(|Pj |XN logN+PXN) and,
iterating over all subparts, is inO(PXN logN+KPXN).
By comparison, the complexity of sampling with multino-
mial resampling iteratively over each subpart (as done by
partitioned sampling) is O(PN logN + P 2XN).

We shall now provide experiments highlighting the ef-
fectiveness and the efficiency of our resampling scheme and
its corresponding particle filter framework.

5 Experimentations

In this section, we test our resampling method and com-
pare it to multinomial, systematic, stratified, residual and
weighted resamplings in terms of estimation error and com-
puting time. We also compare our tracker to APF, which
is one of our best competitors for articulated object track-
ing. Here, it should be noted that all the compared meth-
ods are integrated into the classical PS framework, i.e., that
which processes the object subparts one by one. We could
have also integrated them into a framework that processes
in parallel each set Pj like our method does. But the re-
sult of such trackers would be an absolute disaster: actu-
ally, assume that Pj = {1, . . . , k}, i.e., k subparts are pro-
cessed in parallel, then there is only a slight chance that
some particles resulting from the processing of Pj have high
weights on all these k subparts. Therefore, most particles
will fail to track some subparts of the object and, after re-
sampling, there is not much chance that the surviving parti-
cles correctly track all the subparts of the object. As a con-
sequence, such tracker quickly fails to track the object. Our
method avoids this problem by introducing the swapping op-
eration. In our experiments, we first perform tests on syn-

thetic video sequences to study the robustness of the differ-
ent approaches with regards to several parameters. We then
perform tests on real video sequences to show that our ap-
proach is also the most competitive to tackle complex real
high-dimensional problems. All the results presented in the
next sections are a mean over 30 runs performed on a Mac-
Book Pro with a 2.66 GHz Intel Core i7.

5.1 Test Setup

Articulated objects are modeled by a set of P polygonal sub-
parts (or regions): a first set P1 contains the central subparts
(at least one polygon) to which are linked |Pj |, j > 1, arms
of length at most K − 1 (potentially, arm’s lengths can dif-
fer). See Fig. 8.(d) for two examples: single and multiple ob-
ject tracking. State vectors contain the parameters describ-
ing all the subparts and are defined by xt = {x1

t , . . . ,x
P
t },

with xkt = {xkt , ykt , θkt } for k ∈ P1 and xkt = {θkt } for
k 6∈ P1, where (xkt , y

k
t ) is the center of subpart k, and θkt

is its orientation, k = 1, . . . , P . This model results from the
fact that subparts in Pj , j 6= 1, are linked to those of Pj−1
by articulation joints. Overall, we have |X | = P + 2|P1|.
A particle x

(i)
t = {x(i),1

t , . . . ,x
(i),P
t }, i = 1, . . . , N , is a

possible spatial configuration, i.e., a realization, of one or
several articulated object(s). The polygons are manually po-
sitioned in the first frame, and the articulated object’s joint
distribution is then always estimated starting from its central
subpart P1. Particles are propagated using a random walk
whose variances σ2

x, σ2
y and σ2

θ have been empirically fixed.
Of course, for the subparts in Pj , j > 1, only σθ is used.
For all the synthetic tests, we fixed σx = σy = 2 pixels
for the subparts of P1 and σθ = 0.025 rad for all the P
subparts. For the real tests, we fixed σx = σy = 3 pix-
els for the subparts of P1 and σθ = 0.08 rad for all the P
subparts. Particle weights are computed by measuring the
similarity, using the Bhattacharyya distance [6] d, between
the distribution of pixels (8-bin histograms) in the regions
covered by the estimated object and that given by refer-
ence histograms. The particle weights are then computed by
w

(i)
t+1 = w

(i)
t p(yt+1|x(i)

t+1) ∝ w
(i)
t e−λd

2

, with, in our tests,
λ = 50 (empirically fixed).

We compare six different resampling approaches, plus
APF with one layer of simulated annealing. Multinomial,
systematic, stratified, residual and weighted resampling, as
well as the APF scheme, are integrated into PS. PS propa-
gates and corrects particles polygon after polygon to derive
a global estimation of the object. For combinatorial resam-
pling, the object’s arms are considered conditionally inde-
pendent given the central subpart and, thus, the |Pj | sub-
parts, j > 1, correspond to the jth joints of all the arms.
For weighted resampling, function g is set empirically to
g(x) = e20x to favor the selection of high-weighted par-
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ticles over low-weighted ones (this was set to get the best
estimation results).

Results are compared w.r.t. two criteria: resampling com-
putation times and estimation errors. The latter are given by
the sum of the Euclidean distances between each corner of
the estimated polygonal subparts and its corresponding cor-
ner in the ground truth. Qualitative results are given by su-
perimposing on the frames of the sequences a colored artic-
ulated object corresponding to the estimation derived from
the weighted sum of the particles.

5.2 Tests on Synthetic Video Sequences

We first performed experiments on synthetic data because
this enabled us to create sequences varying the criteria whose
impact on our algorithm’s efficiency are the most important,
namely the number of subparts processed in parallel and the
length of the object’s arms. As such, this resulted in a fine
picture of the different behaviors of our algorithm. We have
generated our own synthetic video sequences composed of
300 frames of 800× 640 pixels. Each video displays at least
one articulated object randomly moving and deforming over
time, subject to either weak or strong motions. Examples are
given in Fig. 8.(a-c). With various numbers of subparts, the
articulated objects are designed to test the ability of resam-
pling to deal with high-dimensional state spaces.

Figure 9 shows, for various numbers N of particles, the
plots of the estimation errors, frame by frame, resulting from
the six tested resampling approaches for tracking an object
defined with |Pj | = 3 and K = 3 (see the examples on

(a) (b) (c)

K = 4, |Pj | = 4 K = 6, |Pj | = 4 K = 4, |Pj | = 8
P = 13, |X | = 15 P = 21, |X | = 23 P = 25, |X | = 27

(d)

Fig. 8 (a-c) Excerpts of frames from our synthetic video sequences,
and the features of the corresponding articulated objects (number of
arms |Pj |, j > 1, length of arms K − 1, total number of subparts
P , and dimension of state space |X |). (d) Illustration of the notations
for two cases. On the left, single object tracking (P = 7): subpart
1 is first processed, then subparts of set P2 are computed in parallel,
then subparts of P3 (all the arms have the same length). On the right,
multiple object tracking (P = 20): subparts of sets Pj , j = 1, 2, 3,
are successively computed in parallel (lengths of the arms can vary).
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N Multi. Syst. Strat. Resid. Weight. Combi.

10
e 417 348 389 327 190 110
s 77 43 68 36 33 17

20
e 231 170 193 148 115 81
s 48 40 42 29 15 7

50
e 104 92 95 95 73 61
s 10 9 6 6 3 1

100
e 87 80 80 81 70 60
s 4 3 3 3 2 1

Fig. 9 First two rows: estimation errors (in pixels) in function of the
frame number resulting from the six resampling approaches on an ob-
ject with |Pj | = 3 and K = 3; from left to right, top to bottom,
N = {10, 20, 50, 100}. Third row: the corresponding average esti-
mation errors (e, in pixels) and their standard deviations (s, in pixels),
depending on N

Fig. 10). Average errors and standard deviations over the
whole video sequence are reported in the table of Fig. 9.
These first tests show different properties of our combinato-
rial resampling, that will be studied more deeply in the next
sections. We briefly discuss them below.

Estimation errors. Multinomial resampling seems to be the
worst approach, in particular in cases of divergence of the
filter (see for instance the errors during time intervals [60, 100]
and [120, 150] when N = 20). Systematic, stratified and
residual resamplings provide quite similar results, but can
also diverge, while weighted resampling performs better. How-
ever, frame by frame, the estimation errors of our approach
are always lower than or equivalent to those of the other
methods. In addition, as shown in the table at the bottom of
Fig. 9, our approach provides the smallest means over all
the video sequence of the estimation errors (for N = 100,
all methods did converge).
Stability. On all the graphs given in Fig. 9, our resampling
approach is the less diverging one. This shows the stability
of the proposed approach, compared to others. Standard de-
viations (see the table of Fig. 9) confirm this observation:
the lowest ones are always those of combinatorial resam-
pling. Here again, one can note that multinomial resampling
is the less stable approach.
Convergence. The table of Fig. 9 provides the average over
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Fig. 10 Qualitative estimation results (zooms) on image 64 of a sequence showing an articulated object with K = 3, |Pj | = 3 and N = 50, for,
from left to right: multinomial, systematic, stratified, residual, weighted and combinatorial resampling. Top row: the estimated object (particles’
average) is superimposed in yellow. Rows 2, 3 and 4: 10 best particles (i.e., those with the highest weights) are superimposed on, respectively, the
top, right and bottom arms.

all the video sequences of the estimation errors resulting
from all the approaches. One can see that our combinatorial
resampling with N = 20 particles induces estimation errors
equivalent to those of multinomial, systematic, stratified and
residual resamplings executed with N = 100 particles, and
is also equivalent to weighted resampling with N = 50 par-
ticles. This shows that, on this example, our approach con-
verges twice to 4 times faster than the other methods.
Accuracy. Fig. 10 shows zooms on qualitative estimation
results in frame 64 (N = 50). On the top row, the average lo-
cation of the particles (i.e., the estimated object) is superim-
posed in yellow on top of the ground truth. We can see that
the best qualitative results are given by weighted and com-
binatorial resamplings. The bottom rows show zooms on the
ten best particles (i.e., those with the highest weights), also
displayed in yellow. Here combinatorial resampling clearly
provides the best results because, unlike the other methods,
its ten best particles do not present a large discrepancy (for
instance, on the last row of this figure, all approaches but
combinatorial resampling have the ten best particles scat-
tered).

This first test shows some attractive features of our method,
but those need to be confirmed by performing more tests
varying different key parameters, such as the number N of
particles, the number |Pj | of arms, and their length K − 1.

The next subsections address the comparisons of the estima-
tion errors and resampling computation times depending on
these parameters, on synthetic and real video sequences.

5.2.1 Role of N (number of particles)

Estimation errors. Fig. 11 (first two rows) shows a con-
vergence study depending on the number N of particles for
estimating/tracking the three objects of Fig. 8. For all these
tests, combinatorial resampling outperforms all the other
methods: i) it converges faster since about only N = 100

particles are necessary to do so when the other methods of-
ten require 300 particles to converge; ii) combinatorial re-
sampling’s error at convergence is much lower than that of
the other methods. For instance, on the left column, com-
binatorial resampling reaches the convergence error of the
other methods (about 230 pixels) with only N = 20 parti-
cles and, with 100 particles, its error decreases to 204 pix-
els. When the length of the arms increases (middle column),
combinatorial resampling stays robust, whereas multinomial,
systematic, stratified and residual resamplings tend to fail
(estimation errors twice higher). Weighted resampling and
APF seem more stable, but give estimation errors 15% (resp.
22%) higher than those of combinatorial resampling. Finally,
when the number of subparts treated in parallel increases
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Fig. 11 Comparison of convergence w.r.t. N for different resampling approaches and APF: from top to bottom errors, standard deviation and
resampling times for the estimation of density of various articulated objects. From left to right with |Pi| = 4, K = 4 (Fig. 8.(a)), (b), with
|Pi| = 4, K = 6 (Fig. 8.(b)) and with |Pi| = 8, K = 4 (Fig. 8.(c)).

(right column), combinatorial resampling also stays stable:
its estimation error is 35% lower than weighted resampling,
40% lower than APF, and more than 82% lower that the
three other resampling approaches. Concerning standard de-
viations (middle row of Fig. 11), combinatorial resampling
appears to be more stable, especially when the dimension of
the state space increases (K or |Pj | higher). It seems that
weighted resampling is particularly perturbed when |Pj | in-
creases (see the right image of Fig. 11): this will be dis-
cussed in Section 5.2.3.

Resampling times. They are given in Fig. 11 (last row),
depending on the number N of particles used for estima-
tion. APF gives higher resampling times, due to its addi-
tional annealing layer involving more resampling steps. The
five other compared resampling approaches have equivalent
computation times. The best approach is combinatorial re-
sampling, especially when the number of particles is high
(600). When tracking the object of Fig. 8(a-c), the resam-
pling times are considerably lower with combinatorial re-
sampling than with the other methods: up to 2.8 times faster
for the object of Fig. 8(a), up 3.2 to faster for the object
of Fig. 8(b) and up to 6.9 faster for the object of Fig. 8(c).
This is due to the fact that our tracker performs fewer resam-
plings than the other methods (K instead of P resamplings).

Hence, even if performing combinatorial resampling once is
longer than performing another method, overall, combina-
torial resampling is globally faster. Note also that combina-
torial resampling’s computation times increase more slowly
with N than the other methods.

5.2.2 Role of K (length of arms)

When K increases, PS’s scheme makes the object subparts
computed at the end of the algorithm (those whose indices
are close to P ) more subject to noise that those computed
first. This impacts the estimation errors as well as resam-
pling times.

Estimation errors. Comparative results are given in Fig. 12,
depending on K (|Pj | = 4) and using N = 100 and N =

300 particles. Concerning estimation errors, we note that
weighted, APF and combinatorial resamplings give the best
results, while the other approaches give higher and equiva-
lent errors. Lower estimations errors are always given by the
proposed approach, using a small number (N = 100) or a
high number (N = 300) of particles. In particular, the gap
between the other approaches and ours increase with the di-
mension of the state space (i.e., withK): forN = 100 (resp.
N = 300), forK = 2, combinatorial resampling’s errors are
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Fig. 12 Estimation errors (left), standard deviations (middle) and resampling times (right), depending on K (length of arms), for |Pj | = 4 for a
tracking with N = 100 particles (top row) and N = 300 particles (bottom row).
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Fig. 13 Estimation errors (left), standard deviation (middle) and resampling computation times (right), depending on |Pj | (number of arms), for
K = 4 for a tracking with N = 100 particles (top row) and N = 300 particles (bottom row).

15% (resp. 12%) lower than those of weighted resampling
(and APF), and for K = 8, combinatorial resampling’s er-
rors are 20% (resp. 18%) lower than those of weighted re-
sampling (and APF). We also notice that the standard devia-
tions are more stable with our approach (i.e., they are always
lower and they increase slowly compared to the other ap-
proaches): this shows the stability of combinatorial resam-
pling, even for high-dimensional state spaces.

Resampling times. Comparative results depending on
K (|Pj | = 4) are given in the last column of Fig. 12. We can
see that all approaches have resampling times that increase
similarly with K, but our combinatorial resampling gives
lower resampling times, especially when K increases. Note

that APF’s resampling times increase faster withK: increas-
ing the arms’ length also increase the number of resampling
steps, because of the supplementary correction step of APF
due to the simulated annealing layer. Actually, with one an-
nealing layer and |Pj | = 4, each time K is increased by a
constant a (a ≥ 1), this adds 4 ∗ a resampling steps to APF.

5.2.3 Role of |Pj | (number of arms)

The number of arms is also a parameter that makes the state
space dimension increase. As such, it can have an impact
on resampling times and estimation errors. We recall that
in PS’ scheme, all the subparts in a set Pj are computed
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sequentially while, with our approach, they are performed
in parallel.

Estimation errors. Comparative results, depending on
|Pj | (K = 4) are given in Fig. 13: the graphs on the left
show the average estimation errors and the graphs at the cen-
ter show the average error’s standard deviations. Here again,
the lowest estimation errors result from our combinatorial
resampling, then from APF and, finally, from weighted re-
sampling. The other approaches give similar estimation er-
rors. The gap between the errors resulting from the other
approaches and ours also increases with the dimension of
the state space (i.e., with |Pj |): for N = 100 particles (resp.
N = 300), for |Pj | = 3, combinatorial resampling’s errors
are 20% (resp. 18%) lower than those of the second best ap-
proaches (APF and weighted resampling), and for |Pj | =
8, combinatorial resampling’s errors are 25% (resp. 20%)
lower than those of APF and weighted resampling. Com-
binatorial resampling’s standard deviations are more stable
and, as for previous tests, increase slowly, whereas those of
weighted resampling and of the other approaches increase
significantly with |Pj |. This shows that the latter are much
more dependent on the random generations of particles than
our approach.

Resampling times. Comparative results are given in the
right column of Fig. 13. As for previous tests, and for the
same reasons, we observe that APF is the slowest approach.
Multinomial, stratified, systematic and residual resamplings
are influenced equivalently by |Pj | (i.e., resampling times
increase linearly with |Pj | as do the number of subparts of
the object, here, and, thus, the number of resampling steps).
ForN = 100 andN = 300 particles, our approach is slower
than the other methods with |Pj | = 2, and it has equivalent
resampling times with |Pj | = 4. When |Pj | > 4, our ap-
proach becomes faster: for N = 100 (resp. N = 300) parti-
cles, it is from 1.7 to 2.6 (resp. from 2.3 to 3.3) times faster
than APF, and is from 1.2 to 1.7 (resp. from 1.2 to 2) times
faster than the other methods. These tests show the interest
of using our combinatorial resampling when many object
subparts can be processed simultaneously. In real-world ap-
plications, |Pj | is often high, which makes the resampling
times of our approach considerably low. For instance, track-
ing the two articulated objects (people) of Fig. 8.(d), |Pj |
can be as high as 10. Tests of multiple object tracking are
given in Section 5.2.4 for synthetic data and in Section 5.3
for a real video sequence.

5.2.4 The case of multiple articulated object tracking

In this section, we address the multiple object tracking prob-
lem. There are two general ways to deal with such a task: one
filter can be used for all the tracked objects but, then, this fil-
ter has to deal with very high-dimensional state spaces, e.g.,
for M objects, the dimension of the state space is multiplied

by M . We can also use one filter per object, and each such
filter just works in the reduced state space corresponding to
the object it tracks: it should actually need fewer particles
for an accurate tracking. The goal of this subsection is to
show that, with combinatorial resampling, we can use one
filter for all the objects, and be as efficient as using one PS
filter per object: this will demonstrate the capacity of our ap-
proach to deal with high-dimensional subspaces by taking
into account all the independences in the tracking problem.
In this test, we track M = 2 objects, each one being de-
fined with |Pj | = 4 and K = 3. These objects are moving
and deforming independently over time. When only one fil-
ter is used to estimate the two objects, we use N = 300 or
N = 600 particles, and when one filter is used per object,
we use N = 150 or N = 300 particles per filter. Table 1
provides comparative results concerning the estimation er-
rors, the standard deviations and the resampling times, that
are discussed below.

Estimation errors. First, note that the lowest estimation
errors result from combinatorial resampling (using either
one or two filters). Remark that, with the other approaches,
using two filters is more interesting than using only one for
all the objects. This holds for all the numbers N of particles
tested and it results from the fact that the “lower” the di-
mension of the state space, the more robust PS is known to
be. Conversely, for combinatorial resampling, the estimation
errors are equivalent or lower when using only one filter in-
stead of two. This follows from the fact that increasing state
space dimensions also increase the efficiency of swapping
(because the products of the best weights w(i),k

t also tend
to increase). This is an interesting result, that highlights that
our proposed resampling is particularly well-suited for high-
dimensional problems.

Resampling times. We observe that, for combinatorial
resampling, resampling times are equivalent when using one
or two filters (see columns N = 300 and N = 2 × 300 of
Table 1) because the two filters perform twice the number
of resamplings of the single filter but the latter are made in
a space twice larger than that used by the two filters. On the
contrary, for the other approaches, times are approximately
divided by two when dealing with one filter per object. This
follows from the fact that, although the number of resam-
plings is identical whether one or two filters are used, the di-
mension of the state space for the single filter case is twice
that of the multiple filter case. Resampling times for com-
binatorial resampling are lower than those of the other ap-
proaches. This is due to the treatment of the object subparts
in parallel (here |Pj | = 8) which compensates the overhead
due to the computations of weights W1, . . . ,WR. Our filter
converges with N = 2× 150 particles, when only weighted
resampling converges with N = 2 × 300 particles. Finally,
APF is still the slowest approach because of its supplemen-
tary annealing layer.
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Table 1 Comparison of estimation errors (e, in pixels), standard deviation (s, in pixels) and resampling times (t, in seconds) for the estimation of
the density of two articulated objects (K = 3 and |Pj | = 4 for each object), using: one filter per object (N = 2 × 150, N = 2 × 300) or one
filter for the two objects (N = 300, N = 600).

N Multi. Syst. Strat. Resid. Weight. Combin. APF

2× 150
e(s) 402(12) 373(10) 372(12) 382(14) 280(6) 237(6) 319(13)
t 0.88 0.84 0.85 0.84 0.8 0.9 1.61

300
e(s) 439(22) 417(19) 413(21) 434(18) 293(19) 212(6) 396(11)
t 3.94 3.64 3.75 3.81 3.11 2.14 7.27

2× 300
e(s) 383(8) 347(12) 355(11) 359(8) 261(8) 234(3) 291(10)
t 2.18 1.91 2.04 2.13 2.01 1.94 4.18

600
e(s) 423(13) 398(8) 404(10) 406(14) 280(9) 210(7) 367(14)
t 15.8 14.8 14.8 15.5 15.05 6.4 34.21

Fig. 14 Tracking results on JumpRope (N = 500, frames 10, 89, 121, 165) obtained with, row 1, weighted resampling, and rows 2, our
combinatorial resampling.

Overall, our approach produces more accurate results
than the other approaches and is also faster. In addition, from
the accuracy point of view, using one single filter with com-
binatorial resampling for all the objects is better than us-
ing one per object, both in terms of resampling times and
estimation errors. Moreover, it requires much fewer parti-
cles than the other approaches and can thus be significantly
faster. This can prove to be particularly useful when dealing
with large-scale state spaces.

5.2.5 Extending the objet’s representation

So far in the experiments, the size of the state space we con-
sidered was |X | = P + 2|P1|, where |P1| is the number
of central parts (i.e., it is related to the number of tracked
objects), and P the total number of parts (including the cen-
tral ones). Hence, the high dimension of the state space re-
sulted only from the number of objects and the multiplic-
ity of their subparts. But extending the object’s representa-
tion by including into it scales or other features is another
source of complexity that also results in high-dimensional
state spaces and we shall see its impact in this subsection.

As an illustration, we consider here adding scales, i.e., the
central subparts xkt , k ∈ P1, are modeled as quadruples
{xkt , ykt , θkt , αkt }, where αkt represents a scaling factor, and
the other subparts xkt , k 6∈ P1, are modeled as pairs {θkt , αkt }.
As a consequence, the new state space’s size is equal to
|X | = 2P + 2|P1|.

In this new setting, the efficiency of our method will cer-
tainly decrease but this decrease is not so much related to the
size of the state space of each subpart as to the “quality” of
the particles: if the scales are not too widespread around that
of the ground truth, then, among the particle set, there will
exist particles close to the ground truth and this is sufficient
for our method to outperform the others. On the contrary,
if all the particles are far from the ground truth, then our
method will be equivalent to the others because it will just
combine “bad” particles’ subparts with other “bad” parti-
cles’ subparts. As an illustration, we performed experiments
on an object with |Pj | = 4 (4 arms) and K = 3 (1 cen-
tral part and arms of length 2) and whose scale remains un-
changed over time (scale = 1). We added in our particle fil-
ter a scale feature whose importance function is a Gaussian
with mean 1 and standard deviation equal to 0, 0.1, 0.2 or
0.3 (σ = 0 corresponds to a model without scale changing).
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scale’s σ = 0 scale’s σ = 0.01

scale’s σ = 0.02 scale’s σ = 0.03

Fig. 15 Average errors for particle filters including a scaling feature in function of the number of particles.

The average over 20 runs are given on Figure 15. As can
be seen, the larger the σ value, the smaller the discrepancy
between our method and the others: this is due to the fact
that when σ is large, all the particle’s subparts are far from
the ground truth and, as a consequence, permutations almost
never provide “good” particles (when σ = 0.03, some scales
change by almost 10% from one frame to the next). On the
contrary, if σ is small (e.g., 0.1), for each subpart there exist
“good” subparticles and, after permutations, those produce
good overall particles.

As a consequence, even if each subpart is modeled by a
high dimensional space, whenever it is possible to guarantee
that some particles’ subparts will not be too far away from
the ground truth (by controlling appropriately the parame-
ters of the particle filter), our method will outperform the
others. The farther all the particles will be from the ground
truth, the smaller the discrepancy between combinatorial re-
sampling and the other resampling methods. Probably, the
only way to ensure accurate tracking when adding new fea-
tures is to increase the number of particles: as a matter of
fact, if the weights of the particles depend on the combi-
nation of all the features, it is useless to decompose these
features as several nodes in the dynamic Bayesian network
in order to increase the opportunities for permutations. But
this drawback also holds for all the other methods.

Finally, as far as the computation times are concerned,
compared to the other resampling algorithms, adding new
features does not have a significant impact. Actually, the

computation of the weights used for permutations is inde-
pendent of the number of features, it depends only on the
likelihood weights. In addition, with an efficient implemen-
tation, swapping particle’s subparts requires only swapping
pointers, which again does not depend on the number of fea-
tures. The only impact on computation time is when new
particle sets are created for the next time slice but this oper-
ation is exactly the same for all the resampling methods.

5.3 Tests on Real Video Sequences

5.3.1 UCF50 dataset

We tested our approach on sequences from the UCF50 dataset4,
to demonstrate the efficiency of our combinatorial resam-
pling to make the particle set better focus on the modes of
the densities to estimate. This feature holds even when there
are wide movements over time and when images have a low
resolution. We manually annotated these sequences to get a
ground truth in order to compute estimation errors.

Fig. 14 shows tracking results on the JumpRope se-
quence (containing 290 frames of 320 × 240 pixels) with
N = 500 particles. In this sequence, a person quickly moves
from left to right while jumping, and crossing/uncrossing his
arms and legs. For this test, we defined an articulated object

4 http://server.cs.ucf.edu/∼vision/data/UCF50.rar
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with P = 12 subparts, hence |X | = 14, and we compared
the estimations resulting from PS with a weighted resam-
pling (first row) with those resulting from our proposed re-
sampling approach (second row). As can be observed, our
approach produces better results: its estimations are more
stable along the sequence. For example, on the first images,
we can see that the estimation of the articulated object fails
with weighted resampling but is correct with our combina-
torial resampling. Estimation errors, error’s standard devia-
tions, as well as resampling times obtained for each of the
six compared approaches are reported on Table 2, depend-
ing on N . As for synthetic sequences, our test shows that
the higher the number of particles, the more our algorithm
outperforms the others in terms of computation times and
estimation errors. It is also always more accurate, and stable
(smaller error’s standard deviations).

Qualitative tracking results are given in Fig. 16 using
weighted and combinatorial resampling and N = 1000 for
the 242 320× 240 frames of the Fencing sequence of the
UFC50 dataset. This sequence is challenging because it con-
tains two articulated objects deforming and moving quickly
(see the relative positions of the fencers w.r.t. the gray line
on the floor). The fencers were modeled using P = 27 sub-
parts, resulting in |X | = 29. This sequence is well suited
to highlight the efficiency of our approach that processes in
parallel both the different objects and their independent sub-
parts. We compared single filters (one for the two objects)
and 2 independent filters (one per object). Here again, our
combinatorial resampling improves the tracking results. Ta-
ble 2 confirms this qualitative analysis, showing estimation
errors, error’s standard deviations and resampling times de-
pending on the number of filters used (one or two) and the
numberN of particles per object (500 or 1000). As observed
for synthetic sequences, our approach reduces both the esti-
mation errors and resampling times. Our tests also show that
results given by our approach (both in terms of total compu-
tation times and estimation errors) are equivalent whether
we use one filter for the two objects or one filter per ob-
ject. This shows its ability to correctly consider independent
subparts and work in the appropriate subspaces. Concerning
resampling times, the proposed approach is the less influ-
enced by N . In particular, for N = 2000, our approach is
6.6 times faster than APF (whose resampling times drasti-
cally increase with N ), and approximately 2.6 times faster
than the four other approaches.

Fig. 17 presents zooms on the sequence on which the
best 20 particles (i.e., those with the highest weights) are
superimposed on the video images for the six tested resam-
pling approaches (here N = 500). For the first four resam-
pling approaches, there is a discrepancy among the best par-
ticles and we can see that some of them fail to correctly es-
timate parts of the objects (see the torso and head of the

left fencer for multinomial resampling, or the left leg of the
right fencer for systematic resampling). For weighted and
combinatorial resamplings, we observe only one particle:
this means that the 20 best particles have been duplicated
by resampling from the same particle. But we can note that
this best particle is a better estimation for combinatorial re-
sampling (its global weight before resampling is 0.83, while
its value is 0.75 for weighted resampling). This shows that
combinatorial resampling better positions particles near the
modes of the estimated density.

All these results confirm those obtained for synthetic
video sequences. The only difference here comes from the
computation of the likelihood, which is much longer for
real video sequences (histograms are less empty). Note that,
for these tests, we did not use sophisticated likelihood, that
could take into account scale changes or occlusion, etc. This
explains why estimation errors can be higher sometimes.

In the next subsections, we quantitatively and qualita-
tively test the capacity for monocular tracking of our ap-
proach on more complex video sequences that present clut-
tered backgrounds and self-occlusions. For all these sequences,
we use a more sophisticated likelihood, namely the bi-direc-
tional silhouette-based likelihood function proposed by Si-
gal et al. in [63], which combines both silhouette and edge
informations. Tests in [63] have actually shown this likeli-
hood was achieving the best results. For our approach, the
tracker was manually initialized in the first frame. For the
other approaches, the results reported are those given by
their authors.

5.3.2 MoBo dataset

MoBo dataset [29] is a publicly available dataset that is used
to test human articulated body tracking [2,32], in partic-
ular for gait analysis. 25 subjects have been acquired un-
der 8 color camera while walking on a treadmill at differ-
ent speeds. A body silhouette is available for each image.
As this dataset is not provided with any ground truth, we
only give here qualitative results obtained in one of the se-
quences on two different views (front view: camera 3 and
semi-lateral view: camera 5). The human is modeled us-
ing P = 10 subparts, resulting in |X | = 12. Figure 18.(a)
gives tracking results obtained with our approach, and Fig-
ure 18.(b) those obtained with the classical PS approach
(with multinomial resampling). From our results, we can
see that self-occlusions do not perturb the tracking. This
can be observed in particular in the lateral view where an
arm passes through the body, or a leg is hiding another one.
Fig. 18.(b) shows that, unlike our approach, PS fails to cor-
rectly tracking in case of self occlusion: the combinatorial
resampling is more efficient to find the modes of the likeli-
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Table 2 Estimation errors (e, in pixels), standard deviations (s, in pixels) and resampling times (t in seconds), for objects of real sequences
JumpRope and Fencing, depending on the number of filters (one or two) and the number N of particles per filter.

JumpRope Fencing
N 100 200 500 500 2× 500 1000 2× 1000 2000 2× 2000

Multi. e 320 305 257 475 424 436 392 401 370
s 28 23 10 48 20 13 9 12 8
t 0.3 0.9 3 4.2 2.7 44.9 34.1 115.2 61.4

Syst. e 326 290 249 436 407 422 348 383 360
s 27 23 11 16 15 15 12 13 10
t 0.3 0.9 2.8 4 2.4 42.7 32.9 113.7 61.6

Strat. e 304 281 249 440 410 418 349 385 357
s 27 24 11 26 14 12 9 10 8
t 0.3 0.8 2.9 3.8 2.6 42.3 32.7 114.2 61.9

Resid. e 302 275 247 447 401 428 352 391 359
s 26 21 19 17 16 18 13 12 11
t 0.3 0.85 2.87 4.33 2.61 44.18 33.58 115.1 63.4

Weight. e 265 242 232 402 386 397 329 303 289
s 16 13 12 24 16 22 18 9 6
t 0.3 0.9 2.6 4.1 2.4 43.5 32.7 121.5 68.4

Combin. e 240 216 192 365 352 321 308 264 258
s 13 10 7 12 10 10 8 6 4
t 0.4 0.8 2.3 2.4 2.5 15.8 15 41 42.6

APF e 264 244 228 429 402 398 339 301 281
s 7 14 22 23 18 12 10 10 8
t 0.6 1.7 5.5 5.1 8.7 55.7 102.9 282.1 138

Fig. 16 Tracking results on Fencing sequence (N = 2000, frames 40, 80, 100 and 120) obtained with, weighted resampling in row 1, and our
combinatorial resampling in row 2.

hood, and thus to better estimate the position of the different
parts of the articulated model on the human body.

5.3.3 MOCAP dataset

The MOCAP dataset [3] includes three sequences of subjects
walking under different views. We have tested our algorithm
on the Lee walk sequence and we used Brown Univer-
sity evaluation software to provide monocular tracking er-
rors. Tracking results obtained by our approach are given in
Fig. 19: here again, despite the cluttered background and the
self-occlusions, our tracker achieves good qualitative perfor-
mances. A ground truth is provided with this dataset as well

as a protocol to compute tracking errors (by measuring the
difference of positions of the estimated joints of the articu-
lated model with those of the ground truth). We can thus give
quantitative results and compare those with other articulated
tracking approaches. These results are reported in Table 3.
We compared our approach with four others: a method that
decomposes the state space (PS), another that adds an opti-
mization step to perform a mode seeking (APF with 5 lay-
ers), a method relying on physical constraints on the human
body (Physics [70]) and finally an approach that includes a
hierarchical search strategy (HPSO [39]). Results show that
our approach gives results similar to the constrained-based
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Fig. 17 Qualitative estimation results (zooms) on image 64 of the Fencing sequence showing two articulated objects tracked with N = 500
particles. From left to right: multinomial, systematic, stratified, residual, weighted and combinatorial resampling. From top to bottom rows: the 20
best particles (i.e., those with the highest weights) are superimposed on respectively the left and right fencers.

(a) (b)

Fig. 18 Qualitative results on MoBo dataset [29] (Subject 4, top: camera 3, bottom: camera 5). Tracking results obtained, (a) with combinatorial
resampling, and (b) with PS (multinomial resampling). For both approaches, we used N = 500 particles.

Fig. 19 Qualitative results on the MOCAP dataset [3] (Lee walk se-
quence) obtained with our approach with N = 250 particles.

one, while being more stable. This once again shows the ef-
fectiveness of our combinatorial resampling.

Table 3 Comparison of estimation errors (e, in mm) and standard de-
viation (s, in mm) of different articulated object tracking algorithms on
the Lee walk sequence of the MOCAP dataset. Results correspond to
an average over several runs, with N = 250 particles for the first 4
approaches, and N = 10 for HPSO (see details in [39]).

Proposed PS APF Physics [70] HPSO [39]
e 37.8 62.3 48.2 36.3 52.5
s 6.9 45.7 43.2 9.0 11.5

5.3.4 TUD-Campus dataset

TUD-Campus dataset [1] shows people walking in a street.
We ran our algorithm to track three persons of the sequence
and qualitative results are given in Figure 20. Note that,
because we do not handle occlusion (only self-occlusion),
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Fig. 20 Qualitative on three person tracking results on TUD-Campus dataset [1], obtained by our approach with N = 800.

we manually indicate to our algorithm at each time interval
when one object (in yellow) is hidden by another (in red).
As can be seen, our approach succeeded in tracking simul-
taneously the three people modeled as articulated objects,
despite the high dimensional state space as well as the hard
outdoor conditions for tracking.

5.3.5 HumanEva dataset

HumanEva datasets [63] have been intensively used to test
2D or 3D articulated object tracking. They include an evalu-
ation software and a generic framework that allows compari-
son between different approaches. Because video sequences
have been acquired using the motion capture technology, a
ground truth is available to measure the quality of the es-
timated articulated object. In particular, an estimation er-
ror measure is proposed to evaluate tracking accuracy with
available estimated joints. These datasets are divided into
two sets: HumanEva-I and HumanEva-II, and each se-
quence shows a person performing a specific action (or a se-
ries of actions) from a point of view. In the first dataset, the
scene was acquired using 3 color cameras whereas 4 color
cameras were used for the second dataset.

In Fig. 21 we can see qualitative tracking results of com-
binatorial resampling on Box sequence of HumanEva-I
dataset, viewed from color camera 1 (front view), in which
the person is mimicking a boxing match. This sequence presents
self-occlusions, and, as can be seen in this figure, our tracker
is able to correctly estimate the articulated object.

Although it is difficult to compare our results with other
approaches based on particle filtering (the number of parti-
cles used vary, parameters can change - in particular, mo-
tion prior -, the tracking error is sometimes “adapted” from
the one proposed in this evaluation software), we report in
Table 4 comparative results between our estimations and
those of other approaches in different video sequences. In
our case, we always used the parameters as described in
Section 5.1, except that we increased the number of parti-
cles to N = 400 and only considered monocular tracking
(for the Walking sequence, we performed tracking when
the person is in quasi-frontal view). Depending on the tested
sequence, we compare our approach with other that consider
tracking in similar conditions as as ours (monocular track-
ing, tracking during interval times to get frontal views, etc.).
We compared with two PSO-based approaches [39,55], two
optimization based ones [60,21], two physical constraint-
based ones [48,68] (prior models) and the classical PS. As
can be seen, our approach achieves the best results for three
of the four tested sequences, and its results are similar to the
best ones for the fourth sequence. The standard deviation is
always lower, as observed for synthetic video sequences.

6 Conclusion

In this paper, we have introduced a new resampling method
called Combinatorial Resampling, whose mathematical cor-
rectness has been proven. From a given sample S, this algo-
rithm implicitly constructs a new sample S ′ exponentially
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Fig. 21 Qualitative results on HumanEva I dataset [63],Box sequence (view from color camera 1), obtained by our approach with N = 400.

Table 4 Comparison of estimation errors (e, in mm) and standard deviations (s, in mm) for the estimation of the density of articulated objects for
different approaches on different sequences (views from color camera 1, except for Walking sequence) of HumanEva-I dataset.

Proposed PS APF HAPSOPF [55] HPSO [39] GPAPF [60] CRBM [68] Li et al. [48]

S1 Gesture
e 81.1 99.4 105.2 95.1 101.2 - - -
s 5.6 11.1 13.8 6.0 9.2 - - -

S2 ThrowCatch1
e 65.2 134.7 107.6 212.3 232.8 - - 68.0
s 11.9 29.7 47.7 10.2 12.7 - - 22.1

S2 Box
e 74.2 123.1 107.6 - - - 75.3 70.0
s 6.5 29.1 34.0 - - - 9.7 22.7

S2 Walking
e 68.3 100.2 95.4 - - 86.3 70.5 68.6
s 10.9 21.0 34.7 - - 27.1 24.2 24.6

larger than S. By construction, S ′ is more representative
than S of the posterior density over the whole state space. It
actually creates many particles near the modes of this den-
sity while, at the same time, guaranteeing some diversity
among these particles. In addition, this resampling scheme is
integrated into a new Particle Filter framework that can pro-
cess several parts in parallel, thereby reducing the number of
resampling steps and, consequently, the noise introduced by
these steps. Such a framework can only be effective when it
includes swapping operations focusing the particles near the
modes of the distribution, as our approach does. Resampling
from S ′ produces much better results in terms of estimation
errors and computation times than resampling from S. This
is confirmed by our experiments. Those highlight the fact
that our approach outperforms the others compared in terms
of accuracy (mean estimation errors over all the sequences
are always lower with our resampling approach), but also
in terms of stability despite the stochastic nature of the filter

(error’s standard deviations are stable and lower) and of con-
vergence (fewer particles are needed to get the same tracking
errors).

We described combinatorial resampling in terms of sta-
tionary dynamic Bayesian networks, i.e., DBNs whose struc-
tures do not evolve over time. Of course, to take into account
occlusions, including self-occlusions, it may be wise to use
structure-evolving DBNs, which are known in the literature
as non-stationary DBNs. Combinatorial resampling can also
be exploited with such DBNs: it is sufficient to recompute
at each time slice the sets {P1, . . . , PK} that apply for this
time slice. By their definition, these sets can be computed in
time and space linear w.r.t. the number of arcs in the DBN
substructure at time slice t (by sweeping this substructure).
Combinatorial Resampling is also compatible with models
including physical constraints. For instance, there are some
between arms and forearms. As combinatorial resampling
only swaps forearm substates that have the same arm sub-
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time ttime t− 1

a) xk
t⊥⊥x

Rj

t−1 ∪ y1:t−1|Pa(xk
t )

time ttime t− 1

b) xk
t⊥⊥x

Pj\{k}
t−1 |Pa(xk

t )

time ttime t− 1

c) xk
t⊥⊥x

Qj−1
t \Pat(xk

t ) ∪ y
Qj−1
t |Pa(xk

t )

time t− 1

d) xk
t⊥⊥x

Pj\{k}
t |Pa(xk

t )

time t

Fig. 22 d-separation analysis for the proof of Proposition 1.

state, if the physical constraints were satisfied before swap-
ping, they necessarily also hold after swapping.

A Proofs

Proof of Proposition 1. Proof by induction on j. Assume that, be-
fore processing the object subparts in Pj , particles estimate density
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ). This is clearly the case for j = 1
since P1 are the first subparts processed. Remember that Pj , Qj , Rj

are the set of object subparts processed at the jth loop step, those pro-
cessed up to (including) the jth loop step and those still to be processed
respectively. We will now examine sequentially the densities estimated
by the particle set after applying the PF’s prediction step in parallel
over the subparts in Pj , then after applying PF’s correction step and,
finally, after resampling. Note that, for simplicity of notation, Algo. 1 is
stated slightly differently since it propagates and corrects each k ∈ Pj

one subpart after the other. But propagations are independent of the
weights of the particles, hence the result of Algo. 1 is equivalent to
first propagating all the particles in Pj and, then, correcting them.

1. Let us show that after the parallel propagations of the subparts in
Pj (prediction step), the particle set represents p(xQj

t ,x
Rj

t−1|y1:t−1,

y
Qj−1

t ). For instance, on Fig. 3, after propagating the subparts in P2,
the particle set estimates p(x{1,2,4,6}t ,x

{3,5}
t−1 |y1:t−1,y1

t ), i.e., only
the positions of the forearms still refer to time t − 1 and the only ob-
servation taken into account at time t is that of the torso (subpart P1).
As the transition function of each subpart k is equal to p(xk

t |Pa(xk
t )),

all these parallel prediction steps correspond to computing:∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )
∏

k∈Pj

p(xk
t |Pa(xk

t ))dx
Pj

t−1. (4)

By d-separation, a node is conditionally independent of all of its non
descendants given its parents5. Hence, for every k ∈ Pj , xk

t and
x
Rj

t−1 ∪y1:t−1 are conditionally independent given Pa(xk
t ) since the

nodes in x
Rj

t−1 ∪ y1:t−1 belong to time slice t − 1 and are there-
fore non descendants of xk

t . As an example, in Fig. 22.a, let xk
t be

the doubly-circled node, then Pa(xk
t ) corresponds to the striped nodes

and x
Rj

t−1 and y1:t−1 are the gray and black nodes respectively. For

the same reason, xk
t and x

Pj\{k}
t−1 are conditionally independent given

Pa(xk
t ). In Fig. 22.b, xPj\{k}

t−1 are represented by gray nodes. Simi-
larly, by definition of sets Pj and by Property 1 of Definition 2, for
any h, the ancestors in time slice t of any node in set xPh

t belong to
xP1
t ∪· · ·∪x

Ph−1

t = x
Qh−1

t . Therefore, xQj−1

t \Pat(xk
t ) and y

Qj−1

t

cannot be descendants of xk
t and are thus conditionally independent

of xk
t given Pa(xk

t ). In Fig. 22.c, yQj−1

t is represented by the black
node and x

Qj−1

t is its parent. For the same reason, xPj\{k}
t are non

5 This is the local Markov Property and is the core of BNs [59].

descendants of xk
t and are thus conditionally independent of xk

t given
Pa(xk

t ). They are represented by gray nodes in Fig. 22.d. Overall, xk
t

and (x
Qj−1

t \Pat(xk
t )) ∪ x

Pj\{k}
t−1 ∪ x

Rj

t−1 ∪ y1:t−1 ∪ y
Qj−1

t ∪
x
Pj\{k}
t are conditionally independent given Pa(xk

t ).
Denote by {k1, . . . , kh} the elements of Pj . Then, by the preced-

ing paragraph, for any r ∈ {1, . . . , h},

p(xkr
t |Pa(xkr

t )) = p(xkr
t |Pa(xkr

t ), (x
Qj−1

t \Pat(xkr
t )),x

Pj\{kr}
t−1 ,

x
Rj

t−1,y1:t−1,y
Qj−1

t ,xk1
t , . . . ,x

kr−1

t ).

By Properties 1 and 2 of Definition 2, Pa(xkr
t ) = Pat(xkr

t )∪{xkr

t−1}.
So, the above equation is equal to:

p(xkr
t |x

Qj−1

t ,x
Pj

t−1,x
Rj

t−1,y1:t−1,y
Qj−1

t ,xk1
t , . . . ,x

kr−1

t ).

By definition ofRj (i.e.,Rj is the set of subparts to be processed after
the jth loop step), we have Rj−1 = Pj ∪ Rj . Therefore, the above
equation is equivalent to:

p(xkr
t |Pa(xkr

t )) = p(xkr
t |x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ,xk1
t , ...,x

kr−1

t ).

Consequently, we have:

h∏
r=1

p(xkr
t |Pa(xkr

t ))

=
h∏

r=1

p(xkr
t |x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ,xk1
t , . . . ,x

kr−1

t )

= p(xk1
t , . . . ,xkh

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t )

= p(x
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t )

Consequently, the integral of Eq. (4) is equivalent to:∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )

p(x
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ) dx
Pj

t−1

=

∫
p(x

Pj

t ,x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ) dx
Pj

t−1.

As Qj = Qj−1 ∪ Pj and Rj−1 = Pj ∪ Rj , the above equation is
equivalent to p(xQj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t ).

2. Let us show that after applying the parallel correction steps on
thePj subparts, the particle set estimates p(xQj

t ,x
Rj

t−1|y1:t−1,y
Qj

t ).
These operations correspond to computing density

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t )×
∏

k∈Pj

p(yk
t |xk

t )

and, then, normalizing it. By d-separation, nodes yk
t are condition-

ally independent of the rest of the OTDBN given xk
t , so, if we denote

by {k1, . . . , kh} the elements of Pj , then, for any r ∈ {1, . . . , h},
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p(ykr
t |x

kr
t ) = p(ykr

t |x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj−1

t ,yk1
t , . . . ,y

kr−1

t )

since xkr
t ∈ x

Qj

t . Therefore:∏
k∈Pj

p(yk
t |xk

t ) = p(y
Pj

t |x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj−1

t ).

So, before normalization, the particle set estimates density

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t )× p(yPj

t |x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj−1

t )

= p(x
Qj

t ,x
Rj

t−1,y
Pj

t |y1:t−1,y
Qj−1

t ),

which, when normalized, is equal to density

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t ,y
Pj

t ) = p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t ).

Finally, as resamplings do not alter densities, at the end of the al-
gorithm, the particle set estimates p(xQK

t ,xRK

t−1|y1:t−1,y
QK
t ) =

p(xt|y1:t). �

Proof of Proposition 2. If j = 1, the proposition trivially holds since
σ is applied to all the nodes of the connected component of xk

t . As-
sume now that j 6= 1. Let Descxt (xk

t ) and Descyt (xk
t ) denote the

set of states and observation nodes respectively in Desct(xk
t ). We

shall now partition the object subparts as described on Fig. 23 to high-
light which subparts shall be permuted, which ones shall be identical
to enable permutations and which subparts are unconcerned by per-
mutations: let xD

t−1 = Descxt−1(x
k
t−1), x

k′

t = Pat(xk
t ), x

V
t =

x
Qj

t \({xk
t ,x

k′

t }) and xW
t−1 = x

Rj

t−1\xD
t−1. Thus, the permuted

subparts are xk
t ∪ xD

t−1 (see Fig. 23), the identical subparts are xk′

1:t,
and the subparts unconcerned by permutations are xV

t ∪ xW
t−1. Simi-

larly, yD
t−1,y

V
t ,y

W
t−1 denote their corresponding observation nodes.

Before permutations, the particle set estimates:

time t− 1 time t

xk
t

xV
t

xk′
t

x
Qj
t

xW
t−1xD

t−1

x
Rj
t−1

Fig. 23 d-separation analysis.

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t )

∝ p(xQj

t ,x
Rj

t−1,y1:t−1,y
Qj

t )

= p(x
{k,k′}∪V
t ,xD∪W

t−1 ,y
{k,k′}∪V
1:t ,yD∪W

1:t−1 )

=

∫
p(x
{k}∪V
t ,xk′

1:t,x
D∪W
t−1 ,y

{k,k′}∪V
1:t ,yD∪W

1:t−1 )dx
k′

1:t−1

Given {xk′

1:t}, S = {xk
t }∪xD

t−1∪yk
1:t∪yD

1:t−1 is conditionally in-
dependent of the rest of the OTDBN because, by Definition 3, no active
chain can pass through an arc outgoing from a node in a conditioning
set and, removing from the OTDBN the arcs outgoing from {xk′

1:t},
S is not connected anymore to the rest of the OTDBN. For the same
reason, xV

t ∪ xW
t−1 ∪ yV

1:t ∪ yW
1:t−1 is conditionally independent of

the rest of the OTDBN given {xk′

1:t}. Therefore, the above integral is
equal to:∫
p(xk′

1:t,y
k′

1:t) p(x
k
t ,x

D
t−1,y

k
1:t,y

D
1:t−1|xk′

1:t)

p(xV
t ,x

W
t−1,y

V
1:t,y

W
1:t−1|xk′

1:t) dx
k′

1:t−1.
(5)

For fixed values of xk′

1:t, permuting particles over subparts {xk
t } ∪

xD
t−1 as well as their weights induced by {yk

1:t} ∪ yD
1:t−1 cannot

change the estimation of density p(xk
t ,x

D
t−1,y

k
1:t,y

D
1:t−1|xk′

1:t) be-
cause estimations by samples are insensitive to the order of the ele-
ments in the samples. Moreover, it can neither affect the estimation of
density p(xV

t ,x
W
t−1,y

V
1:t,y

W
1:t−1|xk′

1:t) since xV
t ∪xW

t−1 ∪yV
1:t ∪

yW
1:t−1 and {xk

t ,y
k
1:t} ∪ xD

t−1 ∪ yD
1:t−1 are conditionally inde-

pendent given {xk′

1:t}. Consequently, applying permutation σ on sub-
parts {xk

t } ∪ Descxt−1(x
k
t ) = {xk

t } ∪ xD
t−1 as well as on their

weights cannot change the estimation of Eq. (5) and, therefore, of den-
sity p(xQj

t ,x
Rj

t−1|y1:t−1,y
Qj

t ). �

Proof of Proposition 3. Denote S = {(x(i),Qj

t ,x
(i),Rj

t−1 )}Ni=1 and
S′ its combinatorial set (see Def. 5). In lines 2–3, Algo. 2 selects which
central subpart Qj−1 particle x′′t should have. Subpart x(z),Qj−1

t ,
z ∈ ih, should be selected w.r.t. the sum of the weights of the particles
in S′ having the same central subpart Qj−1. Let us show that this is
achieved using weights Wh.

In Definition 5, Σk is the set of all the possible permutations of
the kth subpart of the particles in S. Clearly, within each set Sk

h , all
the Nk

h ! permutations of the kth subpart of the particles of this set
are admissible. They form the cycles within the permutations of Σk

and, as such, a given permutation σk
h over subset Sk

h of S may appear
many times within Σk. For instance, on the particles of Fig. 7.b, one
permutation σ ∈ Σ3 may swap subpart 3 of the first two particles
(belonging to S3

1 ) and leave all the other particles of S untouched, and
another permutation σ′ ∈ Σ3 may also swap subpart 3 of the first
two particles and, additionally, swap subpart 3 of the last two particles
(belonging to S3

2 ). As such, the permutation over S3
1 , i.e., over the

first two particles, appears in several permutations of Σ3 (at least in
σ and σ′). Let Sk denote the set of distinct sets Sk

h (for instance, in
Fig. 7.b, S3 = {S3

1 ,S3
2} = {S3

1 ,S3
3}). Then |Σk| =

∏
Sk

h
∈Sk N

k
h !

and, therefore, a given permutation σk
h over Sk

h appears |Σk|/Nk
h ! =∏

Sk
r
∈Sk N

k
r !/N

k
h ! times in Σk.

For the moment, consider only the permutations over the kth sub-
part. Each time a permutation is applied on Sk

h , this creates a new pack
of |Sh| = Nh particles whose values on Qj−1 are equal to those of
Sh. By definition, Sh ⊆ Sk

h and, usually, this is a strict inclusion. For
instance, on Fig. 7, S2 ⊂ S3

2 . Therefore, each aforementioned pack
of Nh particles appears several times in S′. For instance, on Fig. 7,
|S3

2 | = 3, hence this set induces 6 permutations, but |S2| = 1, hence,
applying the 6 permutations over S3

2 necessarily implies that all packs
in S′2 appear twice in this set (as a matter of fact, values 3, 3′ and 3′′

appear twice). Let us compute precisely how many times each pack ap-
pears. As |Sh| = Nh and |Sk

h | = Nk
h , there are ANh

Nk
h

different possi-

bilities to assign some k-part of Sk
h to the particles of Sh, whereAk

n =
n!/(n − k)! stands for the number of k-permutations out of n ele-
ments. Hence, there are ANh

Nk
h

distinct packs. As there are Nk
h ! permu-

tations within Sk
h , packs are repeated (Nk

h !/A
Nh

Nk
h

) times. In addition,

by the preceding paragraph, permutations within Sk
h were already du-

plicated
∏
Sk

r
∈Sk N

k
r !/N

k
h ! times inΣk, hence, overall, in S′ (where

only permutations over the kth subpart are performed), each pack shall
appear (

∏
Sk

r
∈Sk N

k
r !/N

k
h !) × (Nk

h !/A
Nh

Nk
h

) =
∏
Sk

r
∈Sk N

k
r !/A

Nh

Nk
h

times.
Now, select one particle, say x

(i)
t , in Sh. By symmetry, the afore-

mentioned permutations can assign any value of the kth subpart of the
particles of Sk

h to x
(i),k
t . So the sum of the weights of the resulting

particles over all those permutations is equal to Wk
h times the number

of times each value x
(z),k
t , z ∈ ikh, is repeated. There are Nh possi-

bilities to choose the particle x
(i)
t of Sh to which x

(z),k
t is assigned.

Once this is done, there remains ANh−1
Nk

h
−1

possibilities to fill the other
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particles. Overall, the weight induced by the permutations over the kth
object subpart on the Qj−1-central subpart of Sh is thus:

∏
Sk

r
∈Sk N

k
r !

A
Nh

Nk
h

×Nh×A
Nh−1

Nk
h
−1
×Wk

h =

 ∏
Sk

r
∈Sk

Nk
r !

×Nh

Nk
h

×Wk
h .

(6)

Let us now consider the permutations over all the subparts in Pj .
Let PN represent the set of all particle sets of size N . Similarly, let
2PN denote the set of sets of particle sets of size N . Finally, let f :
Pj × 2PN 7→ 2PN be the function which i) given k ∈ Pj and a sin-
gle particle set S returns the union of the particle sets resulting from
the application on S of all the admissible permutations w.r.t. subpart k;
and ii) given k ∈ Pj and a set {S1, . . . ,Sr} of particle sets, returns⋃r

i=1 f(k, {Si}). Let Pj = {k1, . . . , kd}. Clearly, the combinato-
rial set S′ can be obtained by a sequence of applications of f over
S:

S′ = f(kd, f(kd−1, . . . , f(k2, f(k1, {S})) . . .)).

By the preceding paragraphs, the sum of the weights w.r.t. k1 assigned
to the particles of f(k1, {S}) whoseQj−1-central subparts belong to
Sh is given by Eq. (6). By definition of function f , if f(k1, {S}) =
{S1, . . . ,Sr}, then f(k2, f(k1, {S})) =

⋃r
i=1 f(k2, {Si}) and,

by the preceding paragraphs, the sum of the weights w.r.t. subpart k2
assigned to the particles of f(k2, {Si}) whoseQj−1-central subparts
belong to Sh is also given by Eq. (6). Therefore, the sum of the weights
w.r.t. both k1 and k2 of the particles of f(k2, f(k1, {S})) whose
Qj−1-central subparts belong to Sh is the product over k1, k2 of the
formula given in Eq. (6). By induction, after the application of the all
the permutations over all the subparts of Pj , the weight assigned to the
particles whose central subpart belongs Sh is thus that equal to:

∏
k∈Pj

 ∏
Sk

r
∈Sk

Nk
r !

× Nh

Nk
h

×Wk
h


=

 ∏
k∈Pj

∏
Sk

r
∈Sk

Nk
r !

× ∏
k∈Pj

Nh

Nk
h

×Wk
h .

Note that the first product,
∏

k∈Pj

∏
Sk

r
∈Sk N

k
r ! =

∏
k∈Pj

|Σk|, is
independent of h. Therefore, up to a proportional constant, the weight
of the particles of S′ whose Qj−1-central subparts belong to Sh is
equal to

∏
k∈Pj

Nh

Nk
h

×Wk
h , which is precisely the quantityWh given

in the proposition.
Overall, lines 2–3 select correctly theQj−1 subpart w.r.t. the weight

they would have in S′. Once this is done, by d-separation, all the sub-
parts inPj are independent and should be sampled w.r.t. p(xk

t |Pat(xk
t )),

which is done in lines 5–8 since p(xk
t |Pat(xk

t )) is proportional to
weight w(i),k

t . Consequently, Algorithm 2 produces particle sets sim-
ilar to those resulting from a resampling on S′. Finally, as shown pre-
viously, S′ estimates the same distribution as S, hence Proposition 3
holds. �
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