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Abstract

Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these
behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the
acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the
acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still
unclear. While extensively studied independently, few models have been developed to account for these interactions. On
some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts
between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is
paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward.
Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative
consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the
pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key
light. We confronted a computational model that combines dual-learning systems and factored representations, recently
developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance
experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key
lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting
tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model
allows us to draw predictions that may be experimentally verified, which could help further investigate the neural
mechanisms underlying theses interactions.
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Introduction

Persistent maladaptive and suboptimal behaviours are com-

monly observed in animals, including Humans, and supposed to

result from possible constraints (e.g. energy versus efficiency trade-

off) solved by the interaction of neural mechanisms not clearly

identified yet. Breland and Breland [1] studied animals that

learned to retrieve rewards given some action (e.g. drop an object

to get food). They observed that, while successful at first, these

animals developed strange behaviours which blocked them in

achieving the rewarding action (e.g. paws kept clenched on the

food-predicting object). Hershberger [2] studied how chicks failed

to learn to run away from visible food to eventually get access to it.

Guitart-Masip et al. [3] showed that many humans have

difficulties to learn to withhold from acting to get rewarded in a

go/no-go task. These maladaptive behaviours have been suggested

to arise from the interactions between multiple decision systems in

the brain [4–7], namely Pavlovian and instrumental systems.

Pavlovian conditioning is the acquisition of responses associated to

initially neutral stimuli that have been paired with rewards while

instrumental conditioning is the acquisition of an active behaviour

in order to retrieve rewards or avoid punishments. However, the

respective mechanisms of these two types of conditioning and how

they interact are still unclear.

An example of such maladaptive behaviour was experimentally

investigated by Williams and Williams [8], whose initial goal was

to explore the properties of the pecks developed by pigeons in

procedures subsequently referred as autoshaping [9]. A classical

autoshaping procedure elicits a standard Pavlovian phenomenon.

It consists in pairing a conditioned cue (e.g. a light) with the

subsequent delivery of food and results in animals developing

robust conditioned responses (e.g. pecks) towards the conditioned

cue, even if these responses were unnecessary to be rewarded.

Actually, Brown and Jenkins [10] found autoshaping to be a more

effective way of getting animals to engage with objects for

subsequent instrumental experiments, such as pulling a chain or
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pressing a lever, than other training protocols. Williams and

Williams [8] developed another protocol, that was afterwards

referred as a negative automaintenance procedure, which consisted

in a setup identical to an autoshaping procedure, with the

exception that pecking the light turned it off and reward was

subsequently omitted. Unexpectedly, they observed that most of

their pigeons persisted, although to a lower extent, to peck the light

despite its negative consequence, losing during the process a

significant amount of reward. The phenomenon was further

investigated in both pigeons [11–14], and other species such as rats

[15–17] and rabbits [18] with similar results. However, in a more

recent study on pigeons with a slightly different negative

automaintenance procedure, Sanabria et al. [19] did not observe

as much sustained detrimental pecks as observed by Williams and

Williams [8], casting a shadow over the original results. While the

differences in the procedures might be one reason of such

conflicting results, the present paper develops an additional

possible reason.

According to multiple studies [4,16,19], negative automainte-

nance investigates the confrontation between Pavlovian processes

and instrumental ones. It is our interpretation that conditioned

responses develop because of the contingency between the

conditioned stimulus and the reward (Pavlovian conditioning)

and one would expect pigeons not to peck as it prevents them from

being rewarded (instrumental conditioning). Understanding the

underlying neural mechanisms that result in such behaviours is

also important to clarify the constraints and strategies developed

by years of evolutions for animals to survive in nature.

Killeen [13] and Sanabria et al. [19] have proposed compu-

tational models to account for the pecking behaviour described

above. However their models are very specific to the task and not

easily generalizable to the study of other phenomena. Dayan et al.

[4] proposed a more general computational model of interactions

between Pavlovian and instrumental conditioning and took

negative automaintenance as an illustration, focusing on the first

experiment of Williams and Williams [8] that introduces the

general phenomenon, but without investigating its subtleties

resulting from more specific subsequent experiments.

Initially inspired by this latter model, Lesaint et al. [20]

developed a computational model that accounts for a variety of

experimental results in rats undergoing an autoshaping procedure

[21], especially observed inter-individual variabilities of behaviours

within the population. In this study, some rats (sign-trackers) came

to approach and engage the conditioned stimulus (CS) itself more

and more avidly, whereas other rats (goal-trackers) learned to

approach and engage the location of food delivery upon CS

presentation, a variability also visible at the physiological and

pharmacological level.

In the present study, we show that the model of Lesaint et al.

[20], initially developed to account for autoshaping in rats, can

reproduce with barely no modifications the experimental data on

autoshaping and negative automaintenance in pigeons. Especially,

the model suggests as one of the plausible reasons regarding the

conflicting data of Williams and Williams [8] and Sanabria et al.

[19], that the variability of observed behaviours partially results

from the presence of sign-trackers and goal-trackers within

pigeons. It is also able to account for other experimental data

about the necessary properties of the cues to express negative

automaintenance [8]. Moreover, the model generates predictions

that may be tested with additional experiments. We further discuss

the interest of the combination of concepts on which the model

relies for the reproduction of experimental data on Palovian and

instrumental conditioning.

Methods

Model
The model from which the present results are generated is

described in depth in [20]. Here we describe the computational

mechanisms of the model that capture the experimental data in

pigeons. The model is based on a reinforcement learning (RL)

method, which describes how an agent should adapt its behaviour

to rewarding events. Reinforcement learning relies on Markov

Decision Processes (MDP) where the environment is described as a

set of states between which the agent can move by acting (see next

section). The model is composed of two distinct reinforcement

learning systems that collaborate, through a weighted sum

integration of values respectively computed by each system, to

select an action at each step of the experiment (Figure 1) [7]. One

system favours rational and optimal plans of actions while the

other leads to more impulsive choices.

The first system is a model-based (MB) system that learns the

long term consequences of actions by estimating an approximate

model of the world (a transition function T and a reward function

R) on which to build action plans. The model is sufficient to

anticipate the delivery of food subsequently to key lights

appearance and therefore the interest of being close to the

magazine even before its delivery. It is also sufficient to learn that

pecking leads to reward omission and should be avoided. This

system produces a goal-directed behaviour [22,23]. In our

implementation of this Model-Based process, the system infers

the advantage (A) of taking each action in each situation from its

model, given the classical following formulae:

Q(s,a)/R(s,a)zc
X

s’

T (s’Ds,a) max
a’
Q(s’,a’) ð1Þ

A(s,a)/Q(s,a){ max
a’
Q(s,a’) ð2Þ

where the discount rate 0ƒcƒ1 classically represents the

preference for immediate versus distant rewards and Q(s,a) is

the expected value of doing action a in state s (it corresponds to the

discounted accumulation of rewards expected from that moment if

subsequently following the assumed best plan of actions). At each

step, the most valued action is the most rewarding in the long run

(e.g. approaching the magazine to be ready to consume the food as

soon as it appears). Equation 1 reflects the prospective process by

which the simulated agent estimates the future consequences of

performing action a in state s. If action a is assumed to lead to a

reward R(s,a) or with a good probability T (s’Ds,a) to another state

s’ with a high quality action Q(s’,a’) then the agent will associate a

high Q-value to the state-action pair Ss,aT. Equation 2 deduces

the advantage of performing action a in state s by comparing its

Q-value with the maximal possible Q-value of all available actions

in the same state. Note that other implementations could be

possible.

The second system is model-free (MF). It does not learn an

internal model of the world but incrementally learns to associate

values to features of the environment, favouring actions towards

valued ones. As a result, this system produces a reactive behaviour

in a way similar to habits [24,25]. Without an internal model, it

cannot consider the consequences of an action and hence solely

bases its decision on the a priori expectation values it learns.

Accounting for Negative Automaintenance in Pigeons
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In traditional RL (e.g. the MB system), values are learned over

abstract states (e.g. arbitrarily defined as s1, s2… sx), such that

similarities between situations (e.g. presence of a magazine) are

ignored. The present system learns values (V) over features (e.g.

food, lever or magazine) and is further defined as the feature

model-free system (FMF). Using features reintroduces the capacity

to use and benefit from similarities between states. The

incremental learning of values relies on a reward prediction error

(RPE) signal d, and works as follows:

V(f )/V(f )zad ð3Þ

d/rzc max
f ’[s’
V(f ’){V(f )

where f is the feature that has been focused on by the action a in

state s. The max suggests that all the features f ’ of the new state s’
are considered and the most valued one is used to compute the

RPE, even if it might not be the feature focused by the next chosen

action. This update rule (Equation 3) may be paralleled with the

one of the classical Model-Free Q{Learning algorithm [26]

where Q{values are used in place of V{values. While very

similar, such rules can actually produce very different results and

patterns depending on the involved situations. The model embeds

a feature-function c : S|A?fkeylight(s),magazine,food,1g
that returns the feature the action a was focusing on in state s

(e.g. it returns the key light when the action was to engage with the

key light). In [20] we hypothesized that, similarly to classical

model-free systems, d parallels the phasic dopaminergic activity

(DA) [27]. This signal enables to revise and attribute values, seen

as motivational or incentive, to features without the need of the

internal model of the world used by the MB system. When an

event is fully expected, there should be no RPE as its value is fully

anticipated; when an event is positively surprising, there should be

a positive RPE [28]. The values learned bias the behaviour

towards actions that are directed towards the most motivational

features (e.g. engaging with the key light would be biased by the

general motivational value of the key light). This might lead to

favour suboptimal actions with regard to maximizing rewards (e.g.

engaging with the negative key light prevents pigeons from being

rewarded). The FMF system models the attraction developed by

reward-predicting stimuli in such experiments, i.e. incentive

salience [29–31].

The model does not base its decision on a single system at a

time. Rather, the values of the MB system (AMB) and the FMF

system (VFMF ) are integrated such that a single decision is made at

each time step. The values computed by these two systems are

combined through a weighted sum and transmitted to a softmax

action selection mechanism that converts them into probabilities of

selecting actions given a situation (Figure 1). The integration is

done as follows:

P(s,a)~(1{v)AMB(s,a)zv
0 if a~ngo

VFMF (f ) with f~c(s, a) otherwise

�
ð4Þ

where 0ƒvƒ1 is a combination parameter which defines the

importance of each system in the overall model. Pigeons may be

modelled with a particular v value, different v values producing

different characteristics of behaviour. The integration (Equation 4)

differs from the one suggested by Lesaint et al. [20] as the tasks

presented here introduce the new notion of refraining from
engaging. We hypothesize that refraining from engaging with a

stimulus does not benefit from the FMF bonus associated with

Figure 1. Model used for simulations. The model is composed of a model-based system (MB, in blue) and a Feature-Model-Free system (FMF, in
red) which provide respectively an advantage function A for actions ai given a state s and a value function V for each feature fi that compose the
given state. These values are integrated in P, prior to be used into an action selection mechanism. The various elements may rely on some
parameters (in purple).
doi:10.1371/journal.pone.0111050.g001
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such stimulus, hence the a = ngo condition in the second part of

the equation. This hypothesis is based on studies of go and no-go

learning [3,32] that suggest the presence of a bias for engaging

against withholding. Note that this modification could be

propagated to the previous studies [20,33] without any impact.

Indeed, the experiments already accounted for by the model do

not require to refrain from acting.

The model incrementally learns from experience at each step.

FMF and MB systems are updated according to the action a taken

by the full model in state s and the resulting new state s’ and

retrieved reward r.

Task modelling
Figures 2, 3 and 4 show the MDPs used to simulate the different

experiments of Williams and Williams [8] and Sanabria et al. [19].

We assume that each experimental trial can be simulated with a

finite horizon episode, that is by a single run in an MDP with an

initial and a terminal state. Furthermore, to comply with the MDP

framework, we assume that engagement is necessarily exclusive to

one or no stimulus and we do not model time, which is sufficient to

replicate the experimental data.

In Experiment 1 (Figure 2), the agent starts from an empty state

(s0) where there is nothing to do but explore. At some point the key

light is turned on (s1). The agent can either approach the key light

(s2), approach the magazine (s4) or keep exploring (s3,s6). If close to

the key light (s2), it can either engage with it which ends the trial

without reward (s0), or refrain from engaging until food is

eventually delivered (s5). If close to the magazine (s4), engaging

or not has no impact and leads to food delivery (s7). Finally, if the

agent is far from the magazine (s5,s6), it first needs to get closer (s7)

before consuming the food, hence retrieving the only available

reward in this trial (R). It ends in an empty state (s0) which

symbolizes the start of the inter-trial interval (ITI): no food, no

lever and an empty but still present magazine. Paths in red are

those that should be favoured by the FMF system, leading to the

potentially detrimental action of engaging with the key light. Paths

in blue are those that should be favoured by the MB system,

successfully leading to reward delivery.

Experiments 3 and 4 use additional key lights (irrelevant and

continuous). Each light extends the previous MDP with an

additional path as described in Figures 3 and 4. The main idea is

that animals can orient towards any key light (or magazine) and

subsequently engage with it. Based on the simulated protocols,

paths can be activated/deactivated during experiments, such that

only available actions are considered by the model in its decision.

In Experiment 3, the role of the keys (K and I) are reversed

multiple times during the experiment (Blocks A and B in Figure 3).

In Williams and Williams [8], the key light is immediately

turned off following a peck. In Sanabria et al. [19] protocol, the

key light is maintained for a fixed period, whatever the behaviour

of the pigeon. Food is then only delivered if no contacts with the

key light are made during that period. Pigeons could therefore

produce multiple pecks during a trial, hence the difference in

scales between both studies that is not replicated in our results.

Despite such difference in protocols, the MDP of Figure 2 is also

used to simulate the results by Sanabria et al. [19]. Consequently,

we mainly explain the difference of behaviours between the two

studies by an inter-individual variability in pigeons, simulated by

different parameter values, rather than by the difference in

protocols.

Inter-trial interval (ITI). While the MDP does not model

the ITI, we assume that the presence of a stimulus (key light or

magazine) during ITI degrades its values in the model. This

current hypothesis is simulated by revising the values of the

magazine and the continuous key light (if available) with the

following formulae:

V(M)/(1{uITI )|V(M)

V(C)/(1{ucITI )|V(C)
ð5Þ

where the parameters 0ƒuITIƒ1 and 0ƒucITIƒ1 reflect the

impact of the presence of the magazine and the continuous key

light during ITI on their acquired value in the FMF system. A low

value symbolizes a low impact and therefore a low revision of the

value associated to the stimulus.

Note that extending the MDP with a set of states to represent

this interval would have increased the complexity of the MDP,

introduced non-Markov aspects to the task and increased the time

required for simulations. Furthermore, while it might have led to

the same results, the interpretation would have been different from

our hypothesis, as downgrading the values would have required

engagement and not only the presence of stimuli.

Pre-training. No MDP was used to simulate the possible

autoshaping pre-training that underwent some of the pigeons in

the experiments, nor the necessary familiarization with the Skinner

box and the magazine mechanism. Rather, we initialize the model

Figure 2. Computational representation of the negative automaintenance procedure. MDP accounting for Experiment 1 in Williams and
Williams [8] and for the Brief PA protocol of Sanabria et al. [19]. States are described by a set of variables: K/F - negative Key light/Food is available
(Magazine is always available, hence it is not shown), cM/cK - close to the Magazine/negative Key light, Ka - Key light appearance. The initial state is
double circled, the dashed state is terminal and terminates the current episode. Actions are engage (eng) or refrain from engaging (ngo) with the
proximal stimuli, explore (exp), or go to the Magazine/Key light and eat. Only the eat action is rewarded (R), such that in this experiment, pigeons that
engage with the key light receive nothing during the trial. For each action, the feature being focused on is displayed within brackets.
doi:10.1371/journal.pone.0111050.g002
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Figure 3. MDP for simulation of Experiment 3 in Williams and Williams. Legend is as in Figure 2. The path involving an engagement with
the negative key light is highlighted in red. A new irrelevant key light (green), the associated paths and actions are added to the MDP of Figure 3. The
animal starts in block A. During the experiment, blocks can be switched without informing the animal, such that the contingencies are reversed
between keys.
doi:10.1371/journal.pone.0111050.g003

Figure 4. MDP for simulation of Experiment 4 of Williams and Williams. Legend is as in Figure 3. A new continuous irrelevant key light
(purple), the associated paths and actions are added to MDP of Figure 3 (Block A). Note that while not shown, as for the Magazine, the Continuous
key light is present in all states. Paths are activated/deactivated depending on the current phase of the current protocol (Table 1).
doi:10.1371/journal.pone.0111050.g004
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with values (Qi(s1,goK),Qi(s1,goM),Qi(s1,exp)) that simulate the

action-values acquired during such pre-training phases.

These values have no impact in the long run behaviours as they

are revised by incremental learning during the simulation. They

mainly help in reproducing the initial tendencies of pigeons to

interact with the experimental environment.

Model parameters and simulations
The model relies on a set of 8 parameters (a shared learning

rate, a shared discount rate, a selection temperature, an

integration parameter and 3 initial conditions) that need to be

tuned for simulations to reproduce experimental data. The

parameter values used were obtained by hand tuning. More

automatic tuning methods (e.g. fitting optimisation algorithms

[20]) were not possible without more precise numerical experi-

mental data. Hence we only tried to qualitatively replicate the

experimental results of Williams and Williams [8] and Sanabria

et al. [19].

Nevertheless, simulation results were generated with a single set

of parameter values for all experiments of Williams and Williams

[8] and Sanabria et al. [19], with the exception of v and

Qi(s1,goK) (see Table 2). Following the terminology used in

Lesaint et al. [20] to categorize rats, we can say that we simulated

sign-trackers (high v) and goal-trackers (low v) pigeons.

Varying the v parameter is sufficient here to reproduce the

experimental results. This was done here for parsimony, in order

to highlight the key important mechanisms to explain experimen-

tal data without giving the model too many degrees of freedom. It

is however almost certain that pigeons would not share the exact

same parameter values in reality. Especially, breeding procedures,

housing procedures and training procedures might have some

impact on the averaged neural mechanisms properties modelled

with these values.

Sanabria et al. [19] pigeons were divided into multiple groups

that underwent different protocols, with multiple mixed phases of

positive and negative training. Except for 3 pigeons, Williams and

Williams [8] did not train their pigeons on the key lights before the

main experiments. For a better comparison between these studies,

we only focus on the pigeons of Sanabria et al. [19] that were

briefly exposed to autoshaping before being confronted to negative

automaintenance (Brief PA protocol) and pigeons with no pre-

training in Williams and Williams [8], hence the difference of

value for the Qi(s1,goK) parameter.

Results

We applied the present model to the various MDPs to replicate

the results of Experiments 1, 3 and 4 of Williams and Williams [8]

and also to some results of Sanabria et al. [19] (Brief PA protocol).

Classical negative automaintenance
The central phenomenon that we intend to replicate with the

present computational model is the greater or lesser persistence in

pigeons to peck a key light that, while predictive of reward

delivery, leads to its omission in case of contact.

In the first experiment of Williams and Williams [8], pigeons

undergoing a negative automaintenance procedure failed to

completely stop pecking at the key light such that they missed a

consequent number of rewards. Only one pigeon (P19) retrieved

more than 90% of the available rewards. The model can replicate

the general behaviour of all other pigeons with one set of

parameter values, and P19 with a different set of values. The red

curve in Figure 5 shows pigeons that are unable to refrain from

pecking and lose almost half of the 50 possible available rewards

per session. This behaviour persists over time.

In a more recent study, Sanabria et al. [19] challenged these

results of Williams and Williams [8] as they ran a similar

experiment but observed a significant decrease in the detrimental

pecks at key light (similar to P19, which was assimilated to a

pigeon of Sanabria et al. [19] in simulations). They claimed that

remaining pecks did not differ significantly from those that can be

observed after a classical extinction procedure. Actually, in an

extinction procedure, the conditioned key light is subsequently

decorrelated from food delivery, which results in pigeons stopping

to emit conditioned responses, except from few exploration pecks.

The model is also able to replicate such results using the same

MDP despite a slight difference in the experimental protocols. The

blue curve in Figure 5 shows pigeons that start to peck (by

exploration or familiarization) but quickly learn to refrain from

pecking to retrieve rewards. We would consider P19 as part of

such pigeons.

Each time a simulated pigeon does not peck the key light, its

motivational value is reinforced as the key light is contingent to

reward delivery (Figure 2). This naturally increases the tendency,

promoted by the FMF system, to peck during subsequent trials. As

in Lesaint et al. [20], we assume that the presence of the magazine

during ITI makes it lose parts of its acquired motivational values

(A low uITI ), hence the magazine remains less attractive than the

key light and the pigeon never really focuses on it while key light is

active. The relative attractiveness of the key light is however

balanced by pecks, as the omission of rewards produces a decrease

in the key light motivational value.

The MB system solves the task by finding the shortest sequence

of actions until reward. As a result, it favours approaches to the

magazine, as this is the shortest path to reward (Figure 2). Note

that other paths would only delay reward delivery by one step and

hence are still positively evaluated (especially with a high c). When

close to the key light, it strongly favours refraining from pecking, as

this would prevent delivery of the subsequent reward.

Table 1. Experimental setups for Experiment 4.

Protocol Phase 1 Phase 2 Phase 3

A K K + C C

B K K + C + I C

C K + C K + C C

D K + C + I K + C + I C

Lists of keys activated during the different phases of protocols used in Experiment 4 of Williams and Williams [8]. K stands for the negative key, I for the (intermittent)
irrelevant key and C for the continuous (irrelevant) key.
doi:10.1371/journal.pone.0111050.t001
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To summarize, in the MB system, the values of all actions but

engaging with the key light increase until a convergence level,

which depends on how short is the following optimal path to

reward. The values then remain at that level until the end of the

experiment. The value of engaging the key light remains to 0 as it

leads to no reward. In the FMF system, the lever acquires a value

that keeps oscillating around a certain level, decreasing at key

pecks and increasing otherwise. The magazine value increases at

each trial but is partially reset during ITI, such that its value

remains at a low level.

When the model gives a high influence (large v) to the FMF

system in the decision process, it produces pigeons that persist in

pecking. The FMF system introduces a bias towards actions that

lead to approach and interact with stimuli that acquired

motivational values, in this case the key light. The resulting low

influence of the MB system cannot compensate for this bias. This

leads to the production of the expected maladaptive behaviour

observed in Williams and Williams pigeons, except for pigeon P19

(Figure 5, red curve).

When the model gives a low influence (small v) to the FMF

system in the decision process, it produces pigeons that quickly

learn to stop pecking after a few exploration pecks. Indeed, the

MB system favours behaviours that maximize cumulation of

rewards, that is behaviours that do not lead to peck the key light.

Pecks observed in such simulated pigeons are mainly due to

exploration. The FMF system is not able to bias the actions

enough to lead to a maladaptive behaviour and pigeons stop

pecking as in Sanabria et al. [19] study and for pigeon P19 of

Williams and Williams [8] (Figure 5, blue curve).

Given the provided equations, refraining from pecking does not

completely compensate for a prior peck and vice versa. Combined

with exploration, this mechanism leads to oscillations of the

behaviour of pigeons that are not a perfect alternation of pecks and

abstentions. Hence, from time to time, pigeons will stop pecking,

start accumulating food, and by this process reinstate the

attractiveness of the key light and the resulting subsequent

detrimental pecks.

Thus, the current model is able to account for these, at first

sight, contradictory results. With different parameter values (see

Table 2), the model can reproduce pigeons that fit those of

Williams and Williams [8] and those of Sanabria et al. [19]. It

explains the difference between their findings as a result of a

possible interindividual variability in pigeons. Some are more

prone to rely on the FMF system to guide their behaviours while

others rely on the MB system. We can define the pigeons of

Williams and Williams [8] as being mainly sign-trackers and those

of Sanabria et al. [19] as being goal-trackers.

It is important to note that the model describes the significantly

lesser amount of reward received by sign-trackers relative to goal-

trackers as a consequence and not a cause of their behaviour

(simulated by a different v parameter).

Avoidance strategies
Experiment 2 of Williams and Williams [8], using a different

protocol, only controlled that key lights had to be contingent to

some rewards to produce key pecks and was not simulated. In their

Experiments 3 and 4, Williams and Williams [8] further

investigated the properties of the sustained pecks, especially if

they could be oriented to alternative keys with different

contingencies (avoidance strategies). A model accounting for

negative automaintenance should reproduce these properties.

In Experiment 3, Williams and Williams [8] extended the

protocol with an additional key light. The new key light would

turn on and off at the same time as the previous one, but pecks
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would have no effect on it, hence named irrelevant key (I). While it

seems that pigeons are unable to refrain from pecking, they are still

able to orient their pecks towards the less prejudicial target. They

observed that in such procedure, a tendency to peck also

developed in pigeons, but favouring the irrelevant key, hence

maximizing accumulation of rewards. Furthermore, to study if

such tendency could be revised once trained, the effect of keys (K

and I) was reversed at some point without informing the pigeon,

i.e. pecks at the irrelevant key blocked reward delivery and pecks

at the negative one were without effect. They observed that

Figure 5. Simulation of Experiment 1 of Williams and Williams [8] and Brief PA protocol of Sanabria et al. [19]. (A) Cumulative pecks
towards negative key light made by 8 simulated GT pigeons (blue curve) and 8 simulated ST pigeons (red curve). The dotted grey curve simulated the
worse case scenario (if pigeons would have pecked at every trials). Data are expressed as mean 6 SEM. (B) Zoom of (A) for a better reading of the
blue curve (GTs). (C) Cumulative pecks for one ST pigeon by blocks of 50 trials. To be paralleled with Figure 1 of [8]. (D) Cumulative pecks for one GT
pigeon by blocks of 50 trials.
doi:10.1371/journal.pone.0111050.g005

Figure 6. Simulation of Experiment 3 of Williams and Williams [8]. (A) Cumulative pecks towards negative key (red curve) and irrelevant key
(green curve) over time made by 8 simulated pigeons. Vertical bar indicates reversals of effects between key lights. The dotted grey curve simulated
the worse case scenario (if pigeons would have pecked the negative key at every trials). Data are expressed as mean 6 SEM. (B) Cumulative pecks for
one pigeon by blocks of 50 trials. To be paralleled with Figures 5 and 6 of [8].
doi:10.1371/journal.pone.0111050.g006
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pigeons quickly learned to switch to the new irrelevant key (see

Figures 5 and 6 of Williams and Williams [8]).

With the same parameter values used to simulate Experiment 1

of Williams and Williams [8], the model is able to reproduce such

properties (Figure 6). Simulated pigeons learn to focus on the

irrelevant key (I), learn to avoid the negative key (K), and after an

unexpected reversal (I becoming negative and K becoming

irrelevant), quickly learn to reverse their behaviour.

The irrelevant key provides pigeons with an alternative path,

that is more favoured by the model. The rational MB system

favours equally well approaches towards the irrelevant and

negative keys as there exists a subsequent path of equal length to

reach rewards (classical reinforcement learning theory). Hence, the

action selected ultimately depends on the bias introduced by the

second system. The FMF system gives a higher value to the

irrelevant key relative to the negative one, as the irrelevant key is

always contingent to reward whereas the negative key is only

contingent to reward when no pecks are performed. As a result,

orienting towards the irrelevant key has a higher probability of

being chosen.

The effect of reversal is better explained through a concrete

example. Assuming that the key light K is negative in the current

block i, then V i(K)vV i(I) (Vi denotes the value during block i).
When switching to block i+1, I becomes irrelevant and V(I)
quickly lowers to the level of V i(K) while V(K) eventually

increases to the level of V i(I), such that after few trials,

V iz1(K)wV iz1(I). The preferred key alternates between each

blocks. Hence, the model nicely explains why pigeons cannot

refrain from pecking but are still able to orient pecks to a less

detrimental key.

In Experiment 4, Williams and Williams [8] extended the

protocol with another additional key light. The new key light

would never turn off and pecks would have no effect on it, hence

labelled continuous key (C). Note that while always lit on, the

position of the key (left/right/middle of the key lights panel) was

switched after each trial, such that contrary to the fixed magazine,

shifts in its position were predictive of a new possible reward. They

studied the relative power of the three keys to attract pecks by

combining a subset of them and activating them at different times

in different protocols (see Table 1).

They observed that all keys, presented alone produced sustained

pecks. The continuous key was ineffective in attracting key pecks

when an alternative key, either negative (Figure 7 A and C in

Williams and Williams [8]) or irrelevant (Figure 7 B and D in

Williams and Williams [8]) was presented. As in Experiment 3, the

irrelevant key was effective in attracting away pecks from the

negative key (Figure 7 B and D in Williams and Williams [8]).

The model is also able to explain these additional results

(Figure 7). The effectiveness of the irrelevant key to attract key

pecks has already been explained for Experiment 3. The

ineffectiveness of the continuous key results from its presence

during ITI. We hypothesize that the presence of a stimulus within

the ITI leads to a decrease of its motivational value. Hence, the

motivational value of such a stimulus is lower than those of the

alternative keys that are time-locked to reward delivery. Note that

for the continuous key to be the focus of pecks when presented

alone, its motivational value should however remain higher than

the value of the magazine. We do not use the same parameter

value to decrease the value of the magazine and the value of the

continuous key. A variability in the last parameter could explain

why in the experimental data, some pigeons did not engage with

this continuous key even presented alone.

Discussion

We applied the model of Lesaint et al. [20] to a new set of

experimental data on a negative automaintenance procedure and

showed that it is able to qualitatively reproduce different properties

of the resulting phenomenon. This model also provides a plausible

explanation, although maybe partial, for the conflictual observa-

tions between the studies of Williams and Williams [8] and

Sanabria et al. [19]. It suggests that negative automaintenance

arises from the competition of two reinforcement learning systems,

one of which relies on factored representations to use values over

features rather than states.

Pavlovian and instrumental interactions
In [20], the computational model was used to account for a

phenomenon described as only Pavlovian, hence one could see

both systems as different mechanisms of Pavlovian conditioning

[34]. Here, the same model is used to account for a Pavlovian and

instrumental interaction phenomenon and systems are rather seen

as each accounting for a different type of conditioning [4,35].

Hence, while using a similar Model-Based system for both studies,

it might actually reflect different systems in the brain which would

rely on similar principles. It is actually unclear if the whole

behaviour of rats undergoing autoshaping, from approach to

consumption-like engagement, should be classified as purely

Pavlovian [36–38]. Further experiments (e.g. outcome devalua-

tion) should be conducted to clarify this point. Extending from

studies on how Pavlovian conditioning affects instrumental tasks

[35,39] and studies on how instrumental conditioning can also

subsequently affect Pavlovian tasks [40,41], we suggest that many

conditioning tasks might present both Pavlovian and instrumental

aspects, with one possibly masking the sparse presence of the

other.

In the present case, a parallel can be made between Pavlovian

conditioning versus instrumental conditioning and the FMF

system versus the MB system. Pecks towards key lights arise

because of the values they acquire within the FMF system. These

motivational values developed solely by contingencies of key lights

with food delivery, independently of actions taken. Hence, the

FMF system is at the heart of the Pavlovian aspect in simulated

pigeons. It biases their actions towards attractive and predictive

stimuli, possibly leading to impulsive, and possibly detrimental

engagements. Refraining from pecking, on the other side, is

learned by the MB system as the appropriate action to get

rewarded. Hence, animals know how to act to optimize their

rewards. Therefore, the MB system is at the heart of the

instrumental aspect of the behaviour of pigeons. It allows them

to learn, to some extent, that they must refrain from acting to

retrieve food in specific situations, in this case from pecking. We do

not state that instrumental conditioning is Model-Based nor

Pavlovian conditioning is Model-Free. It has been shown that both

aspects are present in both type of conditioning [34,39,42]. In the

present work, only the Model-Based aspect of instrumental

conditioning and the Model-Free aspect of Pavlovian conditioning

are sufficient to replicate the data.

The computational model explains the behaviour of pigeons as

a combination of both systems. Each system provides valuation

informations regarding the current situation, which are further

integrated to eventually determine the action to be taken.

Moreover, information is not weighted equally but through a

pigeon specific weight (v) such that one system can have to assess a

situation as very detrimental to compensate for the weak positive

valuation of this situation attributed by the other system, and avoid

a maladaptive behaviour. This is exactly what happens in the

Accounting for Negative Automaintenance in Pigeons
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negative automaintenance procedure, as the Pavlovian system

records the key light as strongly motivational, whereas the

instrumental system records any engagement as detrimental.

Furthermore, the procedure is such that applying the strategy

favoured by one system subsequently reinforce the strategy

favoured by the other one. As a result, no system can forever be

dominant.

While we currently modelled our integration of MB and FMF

systems with a fixed v parameter, it might be possible, as

suggested in the work of Dayan et al. [4] that such weighting

parameter would fluctuate over time based on some yet unknown

and still debated criterion [43–45]. However, we would still expect

that subgroups of individuals would show different parameter

values and/or that such values would fluctuate differently. The

currently investigated data on pigeons cannot rule out an

alternative interpretation that, based on a dynamically computed

score (e.g. the difference of estimated uncertainty of each system

[43]), only one system might be active and guide the behaviour at

a time. However, based on the data about rats undergoing

autoshaping experiments simulated with the same model [20], the

full spectrum of observed behaviours ranging from STs to GTs

[46] and the consumption-like engagement of both STs and GTs,

explained by the permanently active FMF system, argues against

it.

Interestingly, the current model does not necessarily imply that

the two systems would favour conflicting policies. For example, in

the case of autoshaping [20] no rewards are lost while the policies

favoured are different. Furthermore, the system could even lead to

a fruitful collaboration if both systems would favour the same

actions, possibly increasing the rate at which the animal would

engage with some object and be rewarded accordingly (e.g. in

general Pavlovian-to-Instrumental Transfer procedures [3,37,47]).

We assume that these systems developed for collaboration rather

than competition, as negative automaintenance is not really

common in a natural environment. One system provides a rational

plan of actions while the other offers the opportunity to accelerate

it (e.g. reacting at the shadow of a prey rather than waiting for the

prey to be entirely visible). Further investigations will be required

to determine whether the collaboration between these systems

better explains a variety of animal conditioning behaviours than

competition.

Factored representations
Taking advantage of features that compose the environment is

not new in the study of Pavlovian conditioning [48–53]. It is

indeed central to account for phenomena when conflicts arise from

the presence of multiple stimuli (e.g. blocking [54] or overexpec-

tation [55]). However, the computational models accounting for

Pavlovian conditioning phenomena are usually not relying on the

classical RL framework (e.g. MDPs or temporal discounting).

Furthermore, they mainly tend to describe the varying intensity of

a unique conditioned response rather than the variations of

observed responses and they do not explain how an agent can

learn sequences of actions.

In traditional studies of instrumental tasks, working at the state

level is sufficient to reproduce and explain behavioural data

[4,43,44,56]. Tasks are defined as standard MDPs, and classical

algorithms cannot use the underlying structure to generalize

updates to states that share similarities. These models are mainly

used to study learning phases and adaptive capabilities in a

changing environment, when animals behave near optimally.

Classical algorithms are proven to converge to the optimal solution

[26]. In the current task, without relying on very distinct sets of

possibly unusual parameter values, two classical algorithms

combined in a model would eventually reach the same optimal

policy and hence would fail to explain the variability of observed

maladaptive behaviours [20].

Here factored representations used in one of the two simulated

systems but not the other enable these systems to propose different

complementary decisions and thus to explain the variety of

behaviours observed in the data. Such factored representations are

already present in the RL literature and mainly used to overcome

the curse of dimensionality [57], i.e. standard algorithms do not

scale well to high dimensional spaces and require too much

physical space or computation time. Value function approxima-

tions [56,58,59] or factored reinforcement learning [60–62] help

to build a compact value-function or infer the value of states from

values of features. These algorithms are only meant to optimize

computations but should not produce outputs that diverge from

traditional flat RL algorithms. Here, we use factored representa-

tion in a different way and make values over features compete in

the choice for the next action. The FMF algorithm generates an

output different from traditional RL systems.

The capacity of the model to replicate the maladaptive

behaviour of pigeons under negative automaintenance results

from the difference between the policies developed by the MB

system and the FMF system. Such difference is due to the way

factored representations are used by the latter system. While the

MB system associates value to general situations (states) and

favours an optimal policy, the FMF system associates value to

salient stimuli (features) biasing actions towards them and favours

a different sub-optimal policy (w.r.t. the MDP). The FMF system

develops an impetus towards triggering low-level ingrained

Pavlovian behaviours towards these salient stimuli as soon as they

are presented within a context associated with reward value [4]. In

other words, the FMF system and the MB system use different

heuristics (paying attention to the situation versus paying attention

to salient elements) to guide behaviour. Once combined, these

systems conflict in the current experimental setup leading to the

observed maladaptive behaviour.

It might be possible to use a factored implementation of the MB

system. In such case, we would assume that this system would still

assess situations rather than stimuli individually. Hence, it would

use factored representations in a traditional way, for computa-

tional optimization purposes that should not change the resulting

output of the system.

The capacity to attribute values to features also provides a

straightforward explanation for why the irrelevant key light

attracts most of the pecks in the presence of the negative key

light and/or the continuous key light, and why the negative key

light attracts most of the pecks in the presence of the continuous

key light. Having values over key lights allows for a direct

comparison, the development of a preference towards the most

valued one, and after its removal, a quick shift towards the second

most valued one. By using factored representations to attribute

values to features in the classical RL framework, we therefore

reunite concepts of the Pavlovian conditioning and instrumental

conditioning literature that are rarely combined together, to model

some Pavlovian-instrumental interactions.

One must note that the model of Dayan et al. [4] is also able to

replicate the results of the first experiments. It also uses a weighted

sum between a classical RL system and some impetus system, and

by varying the weight of the two systems, it can also produce

behaviours that may be paralleled to sign-tracking and goal-

tracking. However, in its current form, their model is unable to

reproduce the other experiments of Williams and Williams [8].

Their impetus system is designed to arbitrary bias the model

towards an action a priori defined as Pavlovian, in this case Go

Accounting for Negative Automaintenance in Pigeons
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against NoGo, by adding the mean reward value of the ongoing

experiment. Introducing new alternative Go actions raises

questions on whether they should be defined as Pavlovian or

not, and on the way they should be biased, i.e. using the same

mean reward value or a different one. Even so, it seems that this

would not explain the preference for intermittent keys versus

continuous keys. While there might be ways to make it work, we

think that the use of factored representations makes it straightfor-

ward and automatic for our model to explain these experimental

data and potentially predict how the model would behave in the

presence of new stimuli without filling it with a priori informations.

The recording of consumption-like engagements towards the

magazine during goal-tracking like behaviours would argue in

favour of our model, which predicts the acquisition of some

motivational value towards the magazine, whereas the model of

Dayan et al. [4] does not.

Resolution of conflicting results
The difference between all pigeons in Williams and Williams [8]

but P19 and Sanabria et al. [19] parallels well with the inter-

variability observed by Flagel et al. [21] within rats undergoing an

autoshaping procedure. In this study, a unique population of rats

provided very distinct subgroups. Sign-trackers were prone to

engage with the predictive conditioned stimulus (a lever), and goal-

trackers were prone to engage with the magazine where food

would be delivered as soon as the lever appeared. The

computational model reproduces the variability of behaviours in

pigeons in these two studies in a similar way, based on the varying

influence attributed to each system. The simulated pigeons of

Sanabria et al. [19] mainly rely on the MB system, while those of

Williams and Williams [8] mainly rely on the FMF system (except

for P19). Given the small size of the populations of pigeons

involved, one could hope that with a bigger population we could

observe within the same study a larger variation of behaviours

similar to those of sign-trackers and goal-trackers. Furthermore, it

has been shown that populations of rats taken from different

vendors (or even different colonies of the same vendor) can show

significant differences in their proportion of sign-trackers and goal-

trackers [63]. If confirmed in pigeons, such a result could

strengthen our hypothesis. This does not discard that part of the

difference in the observed behaviours also comes from the

difference in protocols between the two studies.

It is interesting to note that in a study about guinea pigs [64],

the averaged individual engaged with the conditioned cue under

autoshaping phases and switched to engage with the magazine

during negative automaintenance phases. Hence, while not

engaging with the cue when detrimental, animals could redirect

their engagement impulses towards the magazine, in a manner

similar to goal-trackers [21]. Such a behaviour could easily be

explained by the model with the appropriate parameters, i.e. a

reasonably high v with a low uITI . It would be interesting to know

if pigeons in which negative automaintenance is effective would do

the same, i.e. whether they would redirect their pecks towards the

magazine, if made possible (e.g. no blocking door).

Gamzu and Schwam [65] studied negative automaintenance in

4 squirrel monkeys and showed that only one did express a

persistent detrimental engagement, and only during early negative

automaintenance sessions. They concluded that the procedure fails

to produce maladaptive behaviour in these monkeys. Interestingly,

the authors state that while key pressing is virtually eliminated,

monkeys orient towards the key and occasionally approach it

without contact. The model would be able to account for such

behaviour with the motivational value of the key sufficiently high

to favour approaches towards it rather than the magazine but not

high enough so that it would be impossible to refrain from

engaging with it. Gamzu and Schwam [65] discuss the fact that,

contrary to pigeons, the action of key pressing in monkeys is very

different from their consumption behaviour, which could be one of

the reason of the failure of the negative automaintenance

procedure [66]. Another interpretation, based on the present

model, would be that the 4 monkeys are mainly goal-trackers. It

might be also the case that monkeys and human brains offer a

higher level of control in the integration of the two systems.

Figure 7. Simulation of Experiment 4 of Williams and Williams [8]. Cumulative pecks towards negative key (solid line), irrelevant key (dashed
line) and continuous key (dotted line) over time made by 2 simulated pigeons in different protocols (described in Table 1). Vertical bar indicates
phase switches. To be paralleled with Figure 7 of Williams and Williams [8].
doi:10.1371/journal.pone.0111050.g007
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Predictions
One of the motivations behind the development of the

computational model of Lesaint et al. [20] was to provide an

explanation for the particular patterns of DA recordings observed

in rats undergoing an autoshaping procedure [21], which

challenged the classical reward prediction error hypothesis

[27,67]. Assuming that some of the dopaminergic pathways in

pigeons share a similar role to those of rats [68], the computational

model gives predictions about what could be expected from

physiological recordings in a negative automaintenance procedure

(Figure 8).

The model predicts that in trials where pigeons orient towards

the negative key light (STs or GTs confounded) one should

observe DA peaks at CS presentation (as classically expected in

such experiments [27]). If pigeons refrain from pecking, one

should also observe DA peaks at reward delivery, but with a

smaller amplitude (i.e. not a full propagation of DA peaks from the

US to the CS as would be expected in an autoshaping experiment).

Finally, if pigeons peck the negative key light, one should observe a

deep in DA activity when the key light is turned-off and no reward

is delivered as expected by the classical omission of an anticipated

reward. Note that the model does not use an asymmetrical

representation of RPEs, hence it might be possible that DA

recordings at pecks might not exactly fit the current prediction

[69].

Furthermore, the model heavily relies on the hypothesis that the

presence of a stimulus, e.g. continuous key light or magazine,

during ITI necessarily reduces its value in the FMF system [20,33].

Hence, the model predicts that changing the experimental

protocol for the ITI part could have some impact on the observed

pecks. Indeed, we expect that removing the magazine during ITI,

e.g. by blocking it by a door, might make it more attractive to

pigeons during key light presentation and hence reduce their

detrimental pecks towards any negative key light.

In addition, given that RPEs of the FMF system parallel DA

recordings within the core of the nucleus accumbens in rats, we

can hypothesize the results of possible lesions or inactivation of the

homologue of the dopaminergic system in pigeons. We expect that

disabling the FMF system would block any consumption-like

behaviour, i.e. pecks towards key lights or magazine. We also

expect that pigeons that usually favour approach and engagement

towards the key lights will shift their behaviour towards a

somewhat more erratic one, i.e. engaging the magazine more

often than key lights. Finally, the difference of approach and

engagement towards negative, irrelevant and continuous key lights

should vanish.

Limitations
As evoked in Lesaint et al. [20], while using factored

representations, and making use of the features within particular

states, our approach still relies on the discrete time state paradigm

of classical RL, where updates are made at regular intervals and

assuming no time required for decisions to be taken. This

simplification is sufficient to explain the set of data considered

here, however it cannot explain the latencies of responses recorded

by Williams and Williams [8]. It also prevents us from attempting

to qualitatively account for other results of Sanabria et al. [19],

given that time is an important factor of their protocols.

Model-Based capacities of rats have been assessed in multiple

studies, however such capacities in pigeons remain to be

confirmed. Miyata and Fujita [70] showed that pigeons are able

to plan one to two steps ahead in mazes, which would confirm

their ability to store models of tasks, if simple enough. Further

experiments should be conducted to confirm the presence of an

MB system in pigeons. Note however that, while the presence of

an MB system is necessary to account for the pharmacological

data of Flagel et al. [21], there is no experimental data on negative

automaintenance that requires its presence. A classical MF system

would have provided similar results, as both algorithms eventually

converge to the same values.

The current results rely on parameters that are hand tuned and

could benefit from exhaustive raw data. While we are able to

reproduce tendencies and to explain which mechanisms of the

model are responsible for them, we could benefit from data on

which to actually fit the model more closely, for example by

individual trial-by-trial analyses [71]. Additionally, as done by

Flagel et al. [21], a study that combines not only behavioural data

but also physiological and pharmacological data could be of great

interest in confirming the model, as previously done by Lesaint

et al. [20].

We did not focus on pretraining conditions and the impact they

have on the resulting behaviours. The only possibility offered by

the model resides in its initialisation. As in most reinforcement

learning studies, with sufficient time, the current model should

eventually converge towards a solution that is independent of

initial conditions, which is definitely in discrepancy with what was

observed. Especially, data tend to show that pigeons need some

time to consider pecking, as if some kind of threshold needed to be

reached beforehand. The model does not model such aspects of

the tasks.

Finally, we did not discuss possible anatomical counterparts of

the systems in our computational model, as the involved

experiments did not imply any lesions or pharmacological

manipulations, e.g. injections of antagonists of the dopamine.

Therefore, at the current stage, it would be highly speculative to

Figure 8. Prediction of the model about expected patterns of
dopaminergic activity in negative automaintenance. Data are
expressed as mean 6 SEM. Average RPE computed by the FMF system
at CS appearance (red) and removal of the CS after engagement with
the negative key light (no US; gray) and withholding (US; black) for each
session of conditioning in the whole population of pigeons (STs and
GTs).
doi:10.1371/journal.pone.0111050.g008
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define which regions of the pigeon brain can be paralleled to each

system.

Concluding remarks
Here we used an existing computational model to account for

different properties of negative automaintenance, a suggested

Pavlovian and instrumental interaction phenomenon. This model

was initially developed to account for the variability of behaviours

observed in autoshaping experiments [20]. Interestingly, the

account of both autoshaping and negative automaintenance

phenomena relies on two major concepts of the model: Dual

learning systems and the use of factored representations to use

values over features. This works adds to an emerging set of studies

suggesting the presence and collaboration of multiple RL systems

in the brain. It questions the classical paradigm of state

representations and suggests that further investigation of factored

representations in RL models of Pavlovian and instrumental

processes experiments may be useful to explain their interactions.
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