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Abstract
Numerous algorithms have been proposed to allow legged robots to learn to walk.
However, the vast majority of these algorithms is devised to learn to walk in a straight
line, which is not sufficient to accomplish any real-world mission. Here we introduce
the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution),
a novel evolutionary algorithm that simultaneously discovers several hundreds of sim-
ple walking controllers, one for each possible direction. By taking advantage of so-
lutions that are usually discarded by evolutionary processes, TBR-Evolution is sub-
stantially faster than independently evolving each controller. Our technique relies on
two methods: (1) novelty search with local competition, which searches for both high-
performing and diverse solutions, and (2) the transferability approach, which com-
bines simulations and real tests to evolve controllers for a physical robot. We evaluate
this new technique on a hexapod robot. Results show that with only a few dozen
short experiments performed on the robot, the algorithm learns a repertoire of con-
trollers that allows the robot to reach every point in its reachable space. Overall, TBR-
Evolution opens a new kind of learning algorithm that simultaneously optimizes all
the achievable behaviors of a robot.

Keywords
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1 Introduction

Evolving gaits for legged robots has been an important topic in evolutionary compu-
tation for the last 25 years (de Garis, 1990; Lewis et al., 1992; Kodjabachian and Meyer,
1998; Hornby et al., 2005; Clune et al., 2011; Yosinski et al., 2011; Samuelsen and Glette,
2014). That legged robots is a classic of evolutionary robotics is not surprising (Bon-
gard, 2013): legged locomotion is a difficult challenge in robotics that evolution by
natural selection solved in nature; evolution-inspired algorithm may do the same for
artificial systems. As argued in many papers, evolutionary computation could bring
many benefits to legged robotics, from making it easier to design walking controllers
(e.g., Hornby et al. (2005)), to autonomous damage recovery (e.g., Bongard et al. (2006);
Koos et al. (2013a)). In addition, in an embodied cognition perspective (Wilson, 2002;
Pfeifer and Bongard, 2007; Pfeifer et al., 2007), locomotion is one of the most funda-
mental skills of animals, and therefore it is one of the first skill needed for embodied
agents.
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It could seem more confusing that evolutionary computation has failed to be cen-
tral in legged robotics, in spite of the efforts of the evolutionary robotics community
(Raibert, 1986; Siciliano and Khatib, 2008). In our opinion, this failure stems from
at least two reasons: (1) most evolved controllers are almost useless in robotics be-
cause they are limited to walking in a straight line at constant speed (e.g. Hornby
et al. (2005); Bongard et al. (2006); Koos et al. (2013a)), whereas a robot that only walks
in a straight line is obviously unable to accomplish any mission; (2) evolutionary al-
gorithms typically require evaluating the fitness function thousands of times, which
is very hard to achieve with a physical robot. The present article introduces TBR-
Evolution (Transferability-based Behavioral Repertoire Evolution), a new algorithm
that addresses these two issues at once.

Evolving controllers to make a robot walk in any direction can be seen as a gen-
eralization of the evolution of controllers for forward walking. A straightforward idea
is to add an additional input to the controller that describes the target direction, then
evolve controllers that use this input to steer the robot (Mouret et al., 2006). Unfortu-
nately, this approach requires testing each controller for several directions in the fitness
function, which substantially increases the time required to find a controller. In addi-
tion, an integrated controller that can use a direction input is likely to be more difficult
to find than a controller that can only do forward walking.

An alternate idea is to see walking in every direction as a problem of learning how
to do many different – but related – tasks. In this case, an evolutionary algorithm could
search for a repertoire of simple controllers that would contain a different controller for
each possible direction. This method circumvents the challenge of learning a complex
controller and can be combined with high level algorithms (e.g. planning algorithms)
that successively select controllers to drive the robot. Nevertheless, evolving a con-
troller repertoire typically involves as many evolutionary processes as there are target
points in the repertoire. Evolution is consequently slowed down by a factor equal to
the number of targets. With existing evolution methods, repertoires of controllers are
in effect limited to a few targets, because 20 minutes (Koos et al., 2013a) to dozens of
hours (Hornby et al., 2005) are needed to learn how to reach a single target.

Our algorithm aims to find such a repertoire of simple controllers, but in a single
run. It is based on a simple observation: with a classic evolutionary algorithm, when
a robot learns to reach a specific target, the learning process explores many different
potential solutions, with many different outcomes. Most of these potential solutions
are discarded because they are deemed poorly-performing. Nevertheless, while being
useless for the considered objective, these inefficient behaviors can be useful for other
objectives. For example, a robot learning to walk in a straight line usually encounters
many turning gaits during the search process, before converging towards straight line
locomotion.

To exploit this idea, TBR-Evolution takes inspiration from the “Novelty
Search”algorithm (Lehman and Stanley, 2011a), and in particular its variant the “Nov-
elty Search with Local Competition” (Lehman and Stanley, 2011b). Instead of reward-
ing candidate solutions that are the closest to the objective, this recently introduced al-
gorithm explicitly searches for behaviors that are different from those previously seen.
The local competition variant adds the notion of a quality criterion which is optimized
within each individual’s niche. As shown in the rest of the present article, searching for
many different behaviors during a single execution of the algorithm allows the evolu-
tionary process to efficiently create a repertoire of high-performing walking gaits.

To further reduce the time required to obtain a behavioral repertoire for the robot,
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Figure 1: (Right) The hexapod robot. It has 18 degrees of freedom (DOF), 3 for each
leg. Each DOF is actuated by position-controlled servos (Dynamixel actuators). A
RGB-D camera (Asus Xtion) is screwed on the top of the robot. The camera is used
to estimate the forward displacement of the robot thanks to a RGB-D Simultaneous Lo-
calization And Mapping (SLAM) algorithm (Endres et al., 2012) from the ROS frame-
work (Quigley et al., 2009). (Left) Goal of TBR-Learning. Our algorithm allows the
hexapod robot to learn to walk in every direction with a single run of the evolutionary
algorithm.
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TBR-Evolution relies on the transferability approach (Koos et al., 2013b; Mouret et al.,
2012), which combines simulations and tests on the physical robot to find solutions
that perform similarly in simulation and in reality. The advantages of the transfer-
ability approach is that evolution occurs in simulation but the evolutionary process
is driven towards solutions that are likely to work on the physical robot. In recent
experiments, this approach led to the successful evolution of walking controllers for
quadruped (Koos et al., 2013b), hexapod (Koos et al., 2013a), and biped robots (Oliveira
et al., 2013), with no more than 25 tests on the physical robot.

We evaluate our algorithm on two sets of experiments. The first set aims to show
that learning simultaneously all the behaviors of a repertoire is faster than learning each
of them separately1. We chose to perform these experiments in simulation to gather
extensive statistics. The second set of experiments evaluates our method on a physi-
cal hexapod robot (Fig. 1, left) that has to walk forward, backward, and turn in both
directions, all at different speeds (Fig. 1, right). We compare our results to learning in-
dependently each controller. All our experiments utilize embedded measurements to
evaluate the fitness, an aspect of autonomy only considered in a handful of gait discov-
ery experiments (Kimura et al., 2001; Hornby et al., 2005).

2 Background

2.1 Evolving Walking Controllers

We call Walking Controller the software module that rhythmically drives the motors of
the legged robot. We distinguish two categories of controllers: un-driven controllers and
inputs-driven controllers. An un-driven controller always executes the same gait, while
an inputs-driven controller can change the robot’s movements according to an input
(e.g. a speed or a direction reference). Inputs-driven controllers are typically com-
bined with decision or planning algorithms (Russell et al., 2010; Currie and Tate, 1991;
Dean and Wellman, 1991; Kuffner and LaValle, 2000) to steer the robot. These two cat-
egories contain, without distinctions, both open-loop and closed-loop controllers and
can be designed using various controller and genotype structures. For example, walk-
ing gait evolution or learning has been achieved on legged robots using parametrized
periodic functions (Koos et al., 2013a; Chernova and Veloso, 2004; Hornby et al., 2005;
Tarapore and Mouret, 2014a,b), artificial neural networks with both direct or generative
encoding (Clune et al., 2011; Valsalam and Miikkulainen, 2008; Tarapore and Mouret,
2014a,b), Central Pattern Generators (Kohl and Stone, 2004; Ijspeert et al., 2007), or
graph-based genetic programming (Filliat et al., 1999; Gruau, 1994).

When dealing with physical legged robots, the majority of studies only considers
the evolution of un-driven walking controllers and, most of the time, the task consists
in finding a controller that maximizes the forward walking speed (Zykov et al., 2004;
Chernova and Veloso, 2004; Hornby et al., 2005; Berenson et al., 2005; Yosinski et al.,
2011; Mahdavi and Bentley, 2006). Papers on alternatives to evolutionary algorithms,
like policy gradients (Kohl and Stone, 2004; Tedrake et al., 2005) or Bayesian optimiza-
tion (Calandra et al., 2014; Lizotte et al., 2007), are also focused on robot locomotion
along a straight line.

Comparatively few articles deal with controllers able to turn or to change the walk-
ing speed according to an input, especially with a physical robot. Inputs-driven con-
trollers usually need to be tested on each possible input during the learning process or

1This experiment is partly based on the preliminary results published in a conference paper (Cully and
Mouret, 2013)
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to be learned with an incremental process, which significantly increases both the learn-
ing time and the difficulty compared to learning an un-driven controller. Filliat et al.
(1999) proposed such a method, that evolves a neural network to control a hexapod
robot. Their neural network is learned with several steps: first, the network is learned
in order to walk in a straight line; in a second step, a second neural network is evolved
on top of the walking controller be able to execute turning manoeuvres. In a related
task (flapping wing flight), Mouret et al. (2006) proposed another approach, where an
evolutionary algorithm is used to design a neural network that pilots a simulated flap-
ping robot; the network was evaluated by its ability to drive the robot to 8 different
targets and the reward function was the sum of the distances to the targets.

Overall, many methods exist to evolve un-driven controllers, while methods for
learning inputs-driven controllers are very time-expensive, difficult to apply on a phys-
ical robot, and require an extensive amount of expert knowledge. To our knowledge,
no current technique is able to make a physical robot learning to walk in multiple di-
rections in less than a dozen hours. In this paper, we sidestep many of the challenges
raised by input-driven controllers while being able to drive a robot in every direction:
we propose to abandon input-driven controllers, and, instead, search for a large num-
ber of simple, un-driven controllers, one for each possible direction.

2.2 Transferability approach

Most of the previously described methods are based on stochastic optimization algo-
rithms that need to test a high number of candidate solutions. Typically, several thou-
sands of tests are performed with policy gradient methods (Kohl and Stone, 2004) and
hundreds of thousands with evolutionary algorithms (Clune et al., 2011). This high
number of tests is a major problem when they are performed on a physical robot. An
alternative is to perform the learning process in simulation and then apply the result to
the robot. Nevertheless, solutions obtained in simulation often do not work well on the
real device, because simulation and reality never match perfectly. This phenomenon is
called the Reality Gap (Jakobi et al., 1995; Koos et al., 2013b).

The transferability approach (Koos et al., 2013b,a; Mouret et al., 2012) crosses this
gap by finding behaviors that act similarly in simulation and in reality. During the
evolutionary process, a few candidate controllers are transferred to the physical robot
to measure the behavioral differences between the simulation and the reality; these
differences represent the transferability value of the solutions. With these few transfers,
a regression model is built up to map solution descriptors to an estimated transferability
value. The regression model is then used to predict the transferability value of untested
solutions. The transferability approach uses a multi-objective optimization algorithm
to find solutions that maximize both task-efficiency (e.g. forward speed, stability) and
the estimated transferability value.

This mechanism drives the optimization algorithm towards solutions that are both
efficient in simulation and transferable (i.e. that act similarly in the simulation and
in the reality). It allows the algorithm to exploit the simulation and consequently to
reduce the number of tests performed on the physical robot.

This approach was successfully used with an E-puck robot in a T-maze and with a
quadruped robot that evolved to walk in a straight line with a minimum of transfers on
the physical robots (Koos et al., 2013b). The reality gap phenomenon was particularly
apparent in the quadruped experiment: with a controller optimized only in simulation,
the virtual robot moved 1.29m (in 10s) but when the same controller was applied on the
physical robot, it only moved 0.41m. With the transferability approach, the obtained
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solution walked 1.19m in simulation and 1.09m in reality. These results were found
with only 11 tests on the physical robot and 200, 000 evaluations in simulation. This
approach has also been applied for humanoid locomotion (Oliveira et al., 2013) and
damage recovery on a hexapod robot (Koos et al., 2013a).

Since the transferability approach is one of the most practical tool to apply stochas-
tic optimization algorithms on physical robots, it constitutes an element of our method.

2.3 Novelty Search with Local Competition

A longstanding challenge in artificial life is to craft an algorithm able to discover a wide
diversity of interesting artificial creatures. While evolutionary algorithms are good can-
didates, they usually converge to a single species of creatures. In order to overcome
this issue, Lehman and Stanley recently proposed a method called Novelty search with
local competition (Lehman and Stanley, 2011b). This method, based on multi-objective
evolutionary algorithms, combines the exploration abilities of the Novelty Search al-
gorithm (Lehman and Stanley, 2011a) with a performance competition between similar
individuals.

The Novelty Search with Local Competition simultaneously optimizes two objec-
tives for an individual c: (1) the novelty objective (novelty(c)), which measures how
novel is the individual compared to previously encountered ones, and (2) the local
competition objective (Qrank(c)), which compares the individual’s quality (quality(c))
to the performance of individuals in a neighborhood, defined with a morphological
distance.

With these two objectives, the algorithm favors individuals that are new, those
that are more efficient than their neighbors and those that are optimal trade-offs be-
tween novelty and “local quality”. Both objectives are evaluated thanks to an archive,
which records all encountered family of individuals and allows the algorithm to define
neighborhoods for each individual. The novelty objective is computed as the average
distance between the current individual and its neighbors, and the local competition
objective is the number of neighbors that c outperforms according to the quality crite-
rion quality(i).

The authors successfully applied this method to generate a high number of crea-
tures with different morphologies, all able to walk in a straight line. The algorithm
found a heterogeneous population of different creatures, from little hoppers to impos-
ing quadrupeds, all walking at different speeds according to their stature. We will show
in this paper how this algorithm can be modified to allow a single robot to achieve sev-
eral different actions (i.e. directions of locomotion).

3 TBR-Evolution

3.1 Main ideas

Some complex problems are easier to solve when they are split into several sub-
problems. Thus, instead of using a single and complex solution, it is relevant to search
for several simple solutions that solve a part of the problem. This principle is often
successfully applied in machine learning: mixtures of experts (Jacobs et al., 1991) or
boosting (Schapire, 1990) methods train several weak classifiers on different sub-parts
of a problem. Performances of the resulting set of classifiers are better than those of a
single classifier trained on the whole problem.

The TBR-Evolution algorithm enables the application of this principle to robotics
and, particularly, to legged robots that learn to walk. Instead of learning a complex,
inputs-driven controller that generates gaits for every direction, we consider a reper-
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toire of un-driven controllers, where each controller is able to reach a different point
of the space around the robot. This repertoire gathers a high number of efficient and
easy-to-learn controllers.

Because of the required time, independently learning dozens of controllers is pro-
hibitively expensive, especially with a physical robot. To avoid this issue, the TBR-
Evolution algorithm transforms the problem of learning a repertoire of controllers into
a problem of evolving a heterogeneous population of controllers. Thus the problem
can be solved with an algorithm derived from novelty search with local competi-
tion (Lehman and Stanley, 2011b): instead of generating virtual creatures with various
morphologies that execute the same action, TBR-Evolution generates a repertoire of
controller, each executing a different action, working on the same creature. By simul-
taneously learning all the controllers without the discrimination of a specified goal,
the algorithm recycles interesting controllers, which are typically wasted with classical
learning methods. This enhances its optimizing abilities compared to classic optimiza-
tion methods.

Furthermore, our algorithm incorporates the transferability approach (Koos et al.,
2013b) to reduce the number of tests on the physical robot during the evolutionary
process. The transferability approach and novelty search with local competition can be
combined because they are both based on multi-objective optimization algorithms. By
combining these two approaches, the behavioral repertoire is generated in simulation
with a virtual robot and only a few controller executions are performed on the physical
robot. These trials guide the evolutionary process to solutions that work similarly in
simulation and in reality (Koos et al., 2013a,b).

The minimization of the number of tests on the physical robot and the simulta-
neous evolution of many controllers are the two assets that allow the TBR-Evolution
algorithm to require significantly less time than classical methods.

More technically, the TBR-Evolution algorithm relies on four principles, detailed
in the next sections:

• a stochastic, black box, multi-objective optimization algorithm simultaneously op-
timizes 3 objectives, all evaluated in simulation: (1) the novelty of the gait, (2) the
local rank of quality and (3) the local rank of estimated transferability:

maximize





Novelty(c)
−Qrank(c)

− ̂Trank(c)

• the transferability function is periodically updated with a test on the physical
robot;

• when a controller is novel enough, it is saved in the novelty archive;

• when a controller has a better quality than the one in the archive that reaches the
same endpoint, it substitutes the one in the archive.

Algorithm 1 describes the whole algorithm in pseudo-code.

3.2 Objectives

The novelty objective fosters the exploration of the reachable space. A controller is
deemed as novel when the controlled individual reaches a region where none, or few
of the previously encountered gaits were able to go (starting from the same point). The
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novelty score of a controller c (Novelty(c)) is set as the average distance between the
endpoint of the current controller (Ec) and the endpoints of controllers contained in its
neighborhood (N (c)):

Novelty(c) =

∑
j∈N(c)

‖Esimu(c)−Esimu(j)‖

card(N (c))
(1)

To get high novelty scores, individuals have to follow trajectories leading to endpoints
far from the rest of the population. The population will thus explore all the area reach-
able by the robot. Each time a controller with a novelty score exceeds a threshold (ρ),
this controller is saved in an archive. Given this archive and the current population of
candidate solutions, a neighborhood is defined for each controller (N (c)). This neigh-
borhood regroups the k controllers that arrive closest to the controller c (the parame-
ters’ values are detailed in the appendix).

The local quality rank promotes controllers that show particular properties, like
stability or accuracy. These properties are evaluated by the quality score (quality(c)),
which depends on implementation choices and particularly on the type of controllers
used (we will detail its implementation in section 4.1). In other words, among several
controllers that reach the same point, the quality score defines which one should be pro-
moted. For a controller c, the rank (Qrank(c)) is defined as the number of controllers
from its neighborhood that outperform its quality score: minimizing this objective al-
lows the algorithm to find controllers with better quality than their neighbors.

Qrank(c) = card(j ∈ N (c), quality(c) < quality(j)) (2)

The local transferability rank ( ̂Trank(c), equation 3) works as a second local com-

petition objective, where the estimation of the transferability score (T̂ (des(c))) replaces
the quality score. Like in (Koos et al., 2013b), this estimation is obtained by periodically
repeating three steps: (1) a controller is randomly selected in the current population or
in the archive and then downloaded and executed on the physical robot, (2) the dis-
placement of the robot is estimated thanks to an embedded sensor, and (3) the distance
between the endpoint reached in reality and the one in simulation is used to feed a

regression model (T̂ , here a support vector machine (Chang and Lin, 2011)). This dis-
tance defines the transferability score of the controller. This model maps a behavioral
descriptor of a controller (des(c)), which is obtained in simulation, with an approxima-
tion of the transferability score.

Thanks to this descriptor, the regression model predicts the transferability score of
each controller in the population and in the archive.

̂Trank(c) = card(j ∈ N (c), T̂ (des(c)) < T̂ (des(j))) (3)

3.3 Archive management

In the original novelty search with local competition (Lehman and Stanley, 2011b), the
archive aims at recording all encountered solutions, but only the first individuals that
have a new morphology are added to the archive. The next individuals with the same
morphology are not saved, even if they have better performances. In the TBR-Evolution
algorithm, the novelty archive represents the resulting repertoire of controllers, and
thus has to gather only the best controllers for each region of the reachable space.

For this purpose, the archive is differently managed than in the novelty search:
during the learning process, if a controller of the population has better scores
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(quality(c) or T̂ (c)) than the closest controller in the archive, the one in the archive
is replaced by the better one. These comparisons are made with a priority among
the scores to prevent circular permutations. If the transferability score is lower than
a threshold (τ ), only the transferability scores are compared, otherwise we compare the
quality scores. This mechanism allows the algorithm to focus the search on transfer-
able controllers instead of searching efficient, but not transferable, solutions. Such a
priority is important, as the performances of non-transferable controllers may not be
reproducible on the physical robot.

Algorithm 1 TBR-Evolution algorithm ( G generations, T transfers’ period)

procedure TBR-EVOLUTION

pop← {c1, c2, . . . , cS} (randomly generated)
archive← ∅

for g = 1→ G do

for all controller c ∈ pop do

Execution of c in simulation

if g ≡ 0[T ] then

TRANSFERABILITY UPDATE(c)

for all controller c ∈ pop do

OBJECTIVE UPDATE(c)
ARCHIVE MANAGEMENT(c)

Iteration of NSGA-II on pop

return archive

procedure TRANSFERABILITY UPDATE(c)
Random selection of c∗∈ pop ∪ archive and transfer on the robot
Estimation of the endpoint Ereal(c

∗)

Estimation of the exact transferability value
∣∣∣Esimu(c

∗)− Ereal(c
∗)

∣∣∣
Update of the approximated transferability function T̂

procedure OBJECTIVES UPDATE(c)
N (c)← The 15 controllers(∈ pop ∪ archive) closest to Esimu(c)
Computation of the novelty objective:

Novelty(c) =

∑
j∈N(c)

‖Esimu(c)−Esimu(j)‖

|N (c)|

Computation of the local rank objectives:
Qrank(c) = |j ∈ N (c), quality(c) < quality(j)|

T̂rank(c) = |j ∈ N (c), T̂ (des(c)) < T̂ (des(j)|

procedure ARCHIVE MANAGEMENT(c)
if Novelty(c) > ρ then

Add the individual to archive
cnearest ← The controller ∈ archive nearest to Esimu(c)

if T̂ (des(c)) > τ and quality(c) > quality(cnearest) then
Replace cnearest by c in the archive

else if T̂ (des(c)) > T̂ (des(c
nearest

)) then
Replace cnearest by c in the archive
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Figure 2: (Left) Snapshot of the simulated robot in our ODE-based physics simulator.
(Center) Kinematic scheme of the robot. The cylinders represent actuated pivot joints.
(Right) Control function γ(t, α, φ) with α = 1 and φ = 0.

4 Experimental Validation

We evaluate the TBR-Evolution algorithm on two different experiments, which both
consist in evolving a repertoire of controllers to access to the whole vicinity of the
robot. In the first experiment, the algorithm is applied on a simulated robot (Fig. 2,
left), consequently the transferability aspect of the algorithm is disabled. The goal of
this experiment is to show the benefits of evolving simultaneously all the behaviors of
the repertoire instead of evolving them separately. The second experiment applies the
algorithm directly on a physical robot (Fig 1, left). For this experiment, the transferabil-
ity aspect of the algorithm is enabled and the experiment shows how the behavioral
repertoire can be learned with a few trials on the physical robot.

4.1 Implementation choices

The pseudo-code of the algorithm is presented in Algorithm 1. The TBR-Evolution
algorithm uses the same variant of NSGA-II (Deb et al., 2002) as the novelty search
with local competition (Lehman and Stanley, 2011b). The simulation of the robot is

based on the Open Dynamic Engine (ODE) and the transferability function T̂ uses the
ν-Support Vector Regression algorithm with linear kernels implemented in the library
libsvm (Chang and Lin, 2011) (learning parameters set to default values). All the al-
gorithms are implemented in the Sferesv2 framework (Mouret and Doncieux, 2010)
(parameters and source code are detailed in appendix). The simulated parts of the
algorithms are computed on a cluster of 5 quad-core Xeon-E5520@2.27GHz computers.

4.1.1 Robot

Both the virtual and the physical robots have the same kinematic scheme (see figure 2
center). They have 18 degrees of freedom, 3 per leg. The first joint of each leg controls
the direction of the leg while the two others define its elevation and extension. The
virtual robot is designed to be a “virtual copy” of the physical hexapod: it has the same
mass for each of its body parts, and the physical simulator reproduces the dynamical
characteristics of the servos. On the physical robot, the estimations of the covered dis-
tance are acquired with a Simultaneous Localisation and Mapping (SLAM) algorithm
based on the embedded RGB-D sensor (Endres et al., 2012).
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4.1.2 Genotype and Controller

The same genotype and controller structure are used for the two sets of experiments.
The genotype is a set of 24 parameter values defining the angular position of each leg
joint with a periodic function γ of time t, parametrized by an amplitude α and a phase
shift φ (Fig. 2, right):

γ(t, α, φ) = α · tanh (4 · sin (2 · π · (t+ φ))) (4)

Angular positions are updated and sent to the servos every 30ms. The main feature
of this particular function is that the control signal is constant during a large portion
of each cycle, thus allowing the robot to stabilize itself. In order to keep the “tibia” of
each leg vertical, the control signal of the third servo is the opposite of the second one.
Consequently, positions sent to the ith leg are:

• γ(t, αi
1, φ

i
1) for servo 1;

• γ(t, αi
2, φ

i
2) for servos 2;

• −γ(t, αi
2, φ

i
2) for servos 3.

The 24 parameters can each have five different values (0, 0.25, 0.5, 0.75, 1) and with
their variations, numerous gaits are possible, from purely quadruped gaits to classic
tripod gaits.

For the genotype mutation, each parameter value has a 10% chance of being
changed to any value in the set of possible values, with the new value chosen randomly
from a uniform distribution over the possible values. For both of the experiments, the
crossover is disabled.

Compared to classic evolutionary algorithms, TBR-Evolution only changes the
way individuals are selected. As a result, it does not put any constraint on the type
of controllers, and many other controllers are conceivable (e.g. bio-inspired central
pattern generators (Sproewitz et al., 2008; Ijspeert, 2008), dynamic movement primi-
tives (Schaal, 2003) or evolved neural networks (Yosinski et al., 2011; Clune et al., 2011)).

4.1.3 Endpoints of a controller

The endpoint of a controller (in simulation or in reality) is the position of the center
of the robot’s body projected in the horizontal plane after running the controller for 3
seconds:

E(c) =

{
centerx(t = 3s)− centerx(t = 0s)
centery(t = 3s)− centery(t = 0s)

}

4.1.4 Quality Score

To be able to sequentially execute saved behaviors, special attention is paid to the final
orientation of the robot. Because the endpoint of a trajectory depends on the initial
orientation of the robot, we need to know how the robot ends its previous movement
when we plan the next one. To facilitate chaining controllers, we encourage behaviors
that end their movements with an orientation aligned with their trajectory.

The robot cannot execute arbitrary trajectories with a single controller because con-
trollers are made of simple periodic functions. For example, it cannot begin its move-
ment by a turn and then go straight. With this controller, the robot can only follow
trajectories with a constant curvature, but it can still can move sideways, or even turn
around itself while following an overall straight trajectory. We chose to focus the search
on circular trajectories, centered on the lateral axis, with a variable radius (Fig. 3A),
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and for which the robot’s body is pointing towards the tangent of the overall trajec-
tory. Straight, forward (or backward) trajectories are still possible with the particular
case of an infinite radius. This kind of trajectory is suitable for motion control as many
complex trajectories can be decomposed in a succession of circle portions and lines. An
illustration of this principle is pictured on figure 3 (D-E-F).

To encourage the population to follow these trajectories, the quality score is set as
the angular difference between the arrival orientation and the tangent of the circular
trajectory that corresponds to the endpoint (Fig. 3B):

quality(c) = −|θ(c)| = −|α(c)− β(c)| (5)

4.1.5 Transferability score

The transferability score of a tested controller c∗ is computed as the distance between
the controller’s endpoint reached in simulation and the one reached in reality:

transferability(c∗) = −|Esimu − Ereal| (6)

In order to estimate the transferability score of untested controllers, a regression
model is trained with the tested controllers and their recorded transferability score.
The regression model used is the ν-Support Vector Regression algorithm with linear
kernels implemented in the library libsvm (Chang and Lin, 2011) (learning parameters
are set to default values), which maps a behavioral descriptor (des(c)) with an esti-
mated transferability score (T (des(c))). Each controller is described with a vector of
Boolean values that describe, for each time-step and each leg, whether the leg is in con-
tact with the ground (the descriptor is therefore a vector of size N × 6, where N is the
number of time-steps). This kind of vector is a classic way to describe gaits in legged
animals and robots (Raibert, 1986). During the evolutionary process, the algorithm
performs 1 transfer every 50 iterations.

4.2 Experiments on the Virtual Robot

This first experiment involves a virtual robot that learns a behavioral repertoire to reach
every point in its vicinity. The transferability objective is disabled because the goal of
this experiment is to show the benefits of learning simultaneously all the behaviors of
the repertoire instead of learning them separately. Using only the simulation allows
us to perform more replications and to implement a higher number of control experi-
ments. This experiment also shows how the robot is able to autonomously:

• discover possible movements;

• cover a high proportion of the reachable space;

• generate a behavioral repertoire.

The TBR-Evolution experiment and the control experiments (described in the next
section) are replicated 40 times to gather statistics.

4.2.1 Control Experiments

To our knowledge, no work directly tackles the question of learning simultaneously
all the behaviors of a controller repertoire, thus we cannot compare our approach with
an existing method. As a reference point, we implemented a naive method where the
desired endpoints are preselected. A different controller will be optimized to reach
each different wanted point individually.
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Figure 3: (A) Examples of trajectories following a circle centered on the lateral axis with
several radii. (B) Definition of the desired orientation. θ represents the orientation error
between α, the final orientation of the robot, and β, the tangent of the desired trajectory.
These angles are defined according to the actual endpoint of the individual, not the
desired one. (C) Reachable area of the robot viewed from top. A region of interest (ROI)
is defined to facilitate post-hoc analysis (gray zone). The boundaries of the region are
defined by two lines at 60 degrees on each side of the robot. The curved frontier is made
of all the reachable points with a curvi-linear abscissa lower than 0.6 meters ( these
values were set thanks to experimental observations of commonly reachable points).
Dots correspond to targets selected for the control experiments. (D-E-F) Illustration of
how a behavioral repertoire can be used with a hexapod robot. First, a path planning
algorithm computes a trajectory made of lines and portions of circles (LaValle, 2006;
Siciliano and Khatib, 2008). Second, to follow this trajectory, the robot sequentially
executes the most appropriate behavior in the repertoire (here numbered on E and F).
For closed-loop control, the trajectory can be re-computed at each time-step using the
actual position of the robot.
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We define 100 target points, spread thanks to a K-means algorithm Seber (1984)
over the defined region of interest (ROI) of the reachable area (see Fig. 3C). We then
execute several multi-objective evolutionary algorithms (NSGA-II Deb et al. (2002)),
one for each reference point. At the end of each execution of the algorithm, the nearest
individual to the target point in the Pareto-front is saved in an archive. This experiment
is called “nearest” variant. We also save the controller with the best orientation (quality
score described previously) within a radius of 10 cm around the target point and we
call this variant “orientation”. The objectives used for the optimization are:

minimize

{
Distance(c) = ‖Ec − EReference‖
Orientation(c) = |α(c)− β(c)|

We also investigate how the archive management added in TBR-Evolution im-
proves the quality of produced behavioral repertoires. To highlight these improve-
ments, we compared our resulting archives with archives issued from the Novelty
Search algorithm (Lehman and Stanley, 2011a) and from the Novelty Search with Local
Competition algorithm (Lehman and Stanley, 2011b), as the main difference between
these algorithms is archive management procedure. We apply these algorithms on the
same task and with the same parameters as in the experiment with our method. We
call these experiments “Novelty Search”(NS) and “NS with Local Competition”. For
both of these experiments we will analyze both the produced archives and the result-
ing populations.

For all the experiments we will study the sparseness and the orientation error of
the behavioral repertoires generated by each approach. All these measures are done
within the region of interest previously defined. The sparseness of the archive is com-
puted by discretizing the ROI with a one centimeter grid (G), and for each point p of
that grid the distance from the nearest individual of the archive (A) is recorded. The
sparseness of the archive is the average of all the recorded distances:

sparseness(A) =

∑
p∈G mini∈A(distance(i, p))

card(G)
(7)

where card(G) denotes the number of elements in G.
The quality of the archive is defined as the average orientation error for all the

individuals inside the ROI:

Orientation Error(A) =

∑
i∈A∈ROI θ(i)

card(A ∈ ROI)
(8)

4.2.2 Results

Resulting behavioral repertoires from a typical run of TBR-Evolution and the control
experiments are pictured on figures 4, 5 and 9. The endpoints achieved with each con-
troller of the repertoire are spread over the reachable space in a specific manner: they
cover both the front and the back of the robot, but less the lateral sides. These limits are
not explicitly defined, but they are autonomously discovered by the algorithm.

For the same number of evaluations, the area is less covered with the control exper-
iments (nearest and orientation) than with TBR-Evolution (Fig. 4). With only 100 000
evaluations, this area is about twice larger with TBR-Evolution than with both control
experiments. At the end of the evolution (1 000 000 evaluations), the reachable space is
more dense with our approach. With the “nearest” variant of the control experiment, all
target points are reached (see Fig. 3C), this is not the case for the “orientation” variant.
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Figure 4: Comparison between the typical results of the TBR-Evolution algorithm, the
“nearest”, and the “orientation”. The archives are displayed after 100 000 evaluations
(top) and after 1 000 000 evaluations (bottom). Each dot corresponds to the endpoint
of a controller. The solid lines represent the final orientation of the robot for each con-
troller, while the gray dashed lines represent the desired orientation. The orientation
error is the angle between solid and dashed lines.
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Figure 5: Comparison between the typical results of the TBR-Evolution algorithm, the
Novelty Search, and the NS with Local Competition. The archives are displayed after
100 000 evaluations and after 1 000 000 evaluations. Each dot corresponds to the end-
point of a controller. The solid lines represent the final orientation of the robot for each
controller, while the gray dashed lines represent the desired orientation. The orienta-
tion error is the angle between solid and dashed lines.
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Figure 6: Comparison between typical results of the TBR-Evolution algorithm, the pop-
ulation of Novelty Search, and the population of NS with Local Competition. The
archives/populations are displayed after 100 000 evaluations and after 1 000 000 eval-
uations. Each dot corresponds to the endpoint of a controller. The solid lines represent
the final orientation of the robot for each controller, while the gray dashed lines rep-
resent the desired orientation. The orientation error is the angle between solid and
dashed lines.
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The archives produced by Novelty Search and NS with Local Competition both
cover a larger space than the TBR-Evolution algorithm (Fig. 5). These results are sur-
prising because all these experiments are based on novelty search and differ only in the
way the archive is managed. These results show that TBR-Evolution tends to slightly
reduce the exploration abilities of NS and focuses more on the quality of the solutions.

We can formulate two hypotheses to explain this difference in exploration. First,
the “local competition” objective may have an higher influence in the TBR-Evolution
algorithm than in the NS with Local Competition: in NS with local competition, the
individuals from the population are competing against those of the archive; since this
archive is not updated if an individual with a similar behavior but a higher perfor-
mance is encountered, the individuals from the population are likely to always compete
against low-performing individuals, and therefore always get a similar local competi-
tion score; as a result, the local competition objective is likely to not be very distinctive
and most of the selective pressure can be expected to come from the novelty objective.
This different selective pressure can explain why NS with local competition explores
more than BR-Evolution, and it echoes the observation that the archive obtained with
NS and NS with local competition are visually similar (Fig. 5). The second hypothesis is
that the procedure used to update the archive may erode the borderline of the archive:
if a new individual is located close to the archive’s borderline, and if this individual
has a better performance than its nearest neighbor in the archive, then the archive man-
agement procedure of TBR-Evolution will replace the individual from the archive with
the new and higher-performing one; as a consequence, an individual from the border
can be removed in favor of a higher-performing but less innovative individual. This
process is likely to repeatedly “erode” the border of the archive and hence discourage
exploration. These two hypotheses will be investigated in future work.

The primary purpose of the Novelty Search with Local Competition is to maintain
a diverse variety of well adapted solutions in its population, and not in its archive. For
this reason, we also plotted the distribution of the population’s individuals for both the
Novelty Search and the NS with Local Competition (Fig. 6). After 100,000 evaluations,
and at the end of the evolution, the population covers less of the robot’s surrounding
than TBR-Evolution. The density of the individuals is not homogeneous and they are
not arranged in a particular shape, contrary to the results of TBR-Evolution. In partic-
ular, the borderline of the population seems to be almost random.

The density of the archive is also different between the algorithms. The density
of the archives produced by TBR-Evolution is higher than the other approaches, while
the threshold of novelty (ρ) required to add individuals in the archive is the same.
This shows that the archive management of the TBR-Evolution algorithm increases the
density of the regions where solutions with a good quality are easier to find. This
characteristic allows a better resolution of the archive in specific regions.

The orientation error is qualitatively more important in the “nearest” control ex-
periment during all the evolution than with the other experiments. This error is im-
portant at the beginning of the “orientation” variant too, but, at the end, the error is
negligible for the majority of controllers. The Novelty Search, NS with local compe-
tition and the population of the Novelty Search have a larger orientation error, the
figures 5 and 6 show that the orientation of the controllers seems almost random. With
such repertoire, chaining behaviors on the robot is more complicated than with the
TBR-Evolution’s archives, where a vector field is visible. Only the population of the
NS with Local Competition seems to show lower orientation error. This illustrates the
benefits of the local competition objective on the population’s behaviors.
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The TBR-Evolution algorithm consistently leads to very small orientation errors
(Fig. 4 and Fig. 9); only few points have a significant error. We find these points in
two regions, far from the starting point and directly on its sides. These regions are
characterized by their difficulty to be accessed, which stems from two main causes: the
large distance to the starting point or the complexity of the required trajectory given
the controller and the possible parameters (Appendix 4.1). For example the close lat-
eral regions require executing a trajectory with a very high curvature, which cannot
be executed with the range of parameters of the controller. Moreover, the behaviors
obtained in these regions are most of the time degenerated: they take advantages of
inacurracies in the simulator to realize movement that would not be possible in reality.
Since accessing these points is difficult, finding better solutions is difficult for the evolu-
tionary algorithm. We also observe a correlation between the density of controllers, the
orientation error and the regions difficult to access (Fig. 9): the more a region is difficult
to access, the less we find controllers, and the less these controllers have a good orien-
tation. For the others regions, the algorithm produces behaviors with various lengths
and curvatures, covering all the reachable area of the robot.

In order to get a statistical point of view, we studied the median, over 40 runs, of
the sparseness and the quality of controllers inside a region of interest (ROI) (Fig. 7,
Top). The TBR-Evolution algorithm achieved a low sparseness value with few eval-
uations. After 100 000 evaluations, it was able to generate behaviors covering the
reachable space with an interval distance of about 3 cm. At the end of the process, the
sparseness value is near 2 cm. With the “nearest” and the “orientation” experiments,
the variation is slower and reaches a significantly higher level of sparseness (p-values
= 1.4 × 10−14 with Wilcoxon rank-sum tests). The “orientation” variant of the control
experiment exhibits the worst sparseness value (> 4cm). This result is expected be-
cause this variant favors behaviors with a good orientation even if they are far from
their reference point. This phenomenon leads to a sample of the space less evenly dis-
tributed. The “nearest” variant achieves every target points, thus the sparseness value
is better than with the “orientation” variant (3 cm vs 4cm, at the end of the experiment).
The Novelty Search and the NS with Local Competition experiments follow the same
progression (the two lines are indistinguishable) and reach their final value faster than
the TBR-Evolution algorithm. As our algorithm can increase the density of controller
in particular regions, at the end of the evolution, the final value of sparseness of TBR-
Evolution is better than all the control experiments. The sparseness of the populations
of Novelty Search and NS with Local Competition are indistinguishable too, but also
constant over all the evolution and larger than all the tested algorithms, mainly because
of the uneven distribution of their individuals (fig. 6)

From the orientation point of view (Fig. 7, bottom), our approach needs few eval-
uations to reach a low error value (less than 5 degrees after 100 000 evaluations and less
than 1.7 degrees at the end of the evolutionary process). The variation of the “orienta-
tion” control experiment is slower and needs 750 000 evaluations to cross the curve of
TBR-Evolution. At the end of the experiment this variant reaches a significantly lower
error level (p-values = 3.0× 10−7 with Wilcoxon rank-sum tests), but this corresponds
to a difference of the medians of only 0.5 degrees. The “nearest” variant suffers from
significantly higher orientation error (greater than 15 degrees, p-values = 1.4 × 10−14

with Wilcoxon rank-sum tests). This is expected because this variant selects behaviors
taking into account only the distance from the target point. With this selection, the ori-
entation aspect is neglected. The Novelty Search and the NS with Local Competition
experiments lead to orientation errors that are very high and almost constant over all
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Figure 7: (Top) Variation of the sparseness of the controller repertoire. For each point
of a one centimeter grid inside the ROI (Fig. 3), the distance from the nearest controller
is computed. The sparseness value is the average of these distances. This graph plots
the first three quartiles of the sparseness computed with 40 runs for each algorithm.
(Bottom) Variation of the median of the orientation error over all the controllers inside
the region of interest. This graph also plots the three first quartiles (25%, 50%, 75%)
computed with 40 runs for each algorithm.
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Figure 8: (Left) Theoretical sparseness of the control experiments according to the num-
ber of points. With more points, the sparseness value will be better (lower). (Right)
Extrapolations of the variation of the sparseness for the “nearest” variant of the control
experiment according to different number of targets. Each line is an extrapolation of
the variation of the sparseness of the “nearest variant”, which are based on a number
of points starting from 50 to 400, with a 50 points step. The variation of TBR-Evolution
is also plotted for comparison.

the evolution. These results come from the archive management of these algorithms
which do not substitute individuals when a better one is found. The archive of these al-
gorithms only gathers the first encountered behavior of each reached point. The orien-
tation error of the NS with Local Competition is lower than the Novelty Search because
the local competition promotes behavior with a good orientation error (compared to
their local niche) in the population, which has an indirect impact on the quality of the
archive but not enough to reach a low error level. The same conclusion can be drawn
with the population of these two algorithms: while the populations of the Novelty
Search have a similar orientation error than its archives, the populations of the NS with
Local Competition have a lower orientation error than its archives.

With the sets of reference points, we can compute the theoretical minimal sparse-
ness value of the control experiments (Fig. 8, Left). For example, changing the num-
ber of targets from 100 to 200 will change the sparseness value from 3.14 cm to 2.22
cm. Nonetheless, doubling the number of points will double the required number of
evaluations. Thanks to these values we can extrapolate the variation of the sparseness
according to the number of points. For example, with 200 targets, we can predict that
the final value of the sparseness will be 2.22 and thus we can scale the graph of our con-
trol experiment to fit this prediction. Increasing the number of targets will necessarily
increase the number of evaluations, for example using 200 targets will double the num-
ber of evaluations. Following this constraint, we can also scale the temporal axis of our
control experiment. We can thus extrapolate the sparseness of the archive with regard
o the number of target, and compare it to the sparseness of the archive generated with
TBR-Evolution.

The extrapolations (Fig. 8, right) show higher sparseness values compared to TBR-
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Evolution within the same execution time. Better values will be achieved with more
evaluations. For instance, with 400 targets the sparseness value reaches 1.57 cm, but
only after 4 millions of evaluations. This figure shows how our approach is faster than
the control experiments regardless the number of reference points.

Figures 7 and 8 demonstrate how TBR-Evolution is better both in the sparseness
and in the orientation aspects compared than the control experiments. Within few eval-
uations, reachable points are evenly distributed around the robot and corresponding
behaviors are mainly well oriented.

(An illustrating video is available on: http://youtu.be/2aTIL_c-qwA)

4.3 Experiments on the Physical Robot

In this second set of experiments, we apply the TBR-Evolution algorithm on a physical
hexapod robot (see Fig. 1 left). The transferability component of the algorithm allows
it to evolve the behavioral repertoire with a minimum of evaluation on the physical
robot. For this experiment, 3000 generations are performed and we execute a transfer
(evaluation of one controller on the physical robot) every 50 generations, leading to a
total of 60 transfers. The TBR-Evolution experiments and the reference experiments are
replicated 5 times to gather statistics2.

4.3.1 Reference Experiment

In order to compare the learning speed of the TBR-Evolution algorithm, we use a refer-
ence experiment where only one controller is learned. For this experiment, we use the
NSGA-II algorithm with the transferability approach to learn a controller that reaches
a predefined target. The target is situated 0.4m in front and 0.3m to the right: a point
not as easy to be accessed as going only straight forward, and not as hard as executing
a U-turn. It represents a good difficulty trade-off and thus allows us to extrapolate the
performances of this method to more points.

The main objective is the distance (Distance(c)) between the endpoint of the con-
sidered controller and the target. The algorithm also optimizes the estimated transfer-

ability value (T̂ (des(c))) and the orientation error (perf(c)) with the same definition as
in the TBR-Evolution algorithm:

minimize





Distance(c)

T̂ (des(c))
perf(c)

To update the transferability function, we use the same transfer frequency as in
TBR-Evolution experiments (every 50 generations). Among the resulting trade-offs, we
select as final controller the one that arrives closest to the target among those with an

estimated transferability T̂ (des(c))lessthan0.10m. This represents a distance between
the endpoint reached in simulation and the one reached in reality lower than 10 cm.

4.3.2 Results

After 3000 iterations and 60 transfers, TBR-Evolution generates a repertoire with a me-
dian number of 375 controllers (min = 352, max = 394). This is achieved in approxi-
mately 2.5 hours. One of these repertoires is pictured in figure 10, left. The distribution
of the controllers’ endpoints follows the same pattern as in the virtual experiments:

2Performing statistical analysis with only 5 runs is difficult but it still allows us to understand the main
tendencies. The current set of experiments (5 runs of TBR-Evolution and the control experiment) requires
more than 30 hours with the robot and it is materially challenging to use more replications.
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Figure 9: (Left) Variation of density of controller (number of controllers per dm2).
(Right) Variation of the orientation error (given by the nearest controller) along a typical
run in simulation.
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Figure 10: Typical repertoire of controllers obtained with the TBR-Evolution algorithm.
(Left) The dots represent the endpoints of each controller. The solid lines are the final
orientations of the robot while the dashed ones are the desired orientations. The an-
gle between these two lines is the orientation error. (Center) Transferability map. For
each point of the reachable space, the estimated transferability of the nearest controller,
within a radius of 5cm, is pictured. (Right) Execution on the physical robot. The 30 se-
lected controllers are pictured with square and their actual endpoint with circles. The
size and the color of the markers are proportional to their accuracy. To select the tested
controllers, the reachable space is split into 30 regions. Their boundaries are defined
by two lines at 60 degrees on each side of the robot and by two curved frontiers that
regroup all reachable points with a curvi-linear abscissa between 0.2 and 0.6 m. These
regions are then segmented into 15 parts for both the front and the rear of the robot. All
of these values are set from experimental observations of commonly reachable points.

they cover both the front and the rear of the robot, but not the lateral sides. Here again,
these limits are not explicitly defined, they are autonomously discovered by the algo-
rithm.

Similarly to the experiments on the virtual robot, the majority of the controllers
have a good final orientation and only the peripheries of the repertoire have a distin-
guishable orientation error. TBR-Evolution successfully pushes the repertoire of con-
trollers towards controllers with a good quality score and thus following the desired
trajectories.

From these results we can draw the same conclusion as with the previous exper-
iment: the difficulty of accessing peripheral regions explains the comparatively poor
performances of controllers from these parts of archive. The large distance to the start-
ing point or the complexity of the required trajectory meets the limits of the employed
controllers.

The transferability map (Fig. 10, center) shows that the majority of the controllers
have an estimated value lower than 15cm (dark regions). Nevertheless, some regions
are deemed non-transferable (light regions). These regions are situated in the periph-
eries too, but are also in circumscribed areas inside of the reachable space. Their oc-
currence in the peripheries have the same reasons as for the orientation (section 4.2),

24 Evolutionary Computation Volume x, Number x



Evolving a Behavioral Repertoire for a Walking Robot

1 2 3 4 5

In
a
cc

u
ra

cy
 (

m
e
te

r)

Runs

2

RunsAll

All reference 
experiments

8 14 20

TBR-Learning experiments

Transfers-controllers ratio
222222 1 4

0

0.1

0.2

0.3

0.4

0.5

Figure 11: Accuracy of the controllers. The accuracy is measured as the distance be-
tween the endpoint reached by the physical robot and the one reached in simulation (30
points for each run, see text). The results of the TBR-Evolution experiments are, for
each run, separately pictured (Left) and also combined for an overall point of view
(Center). The performances of the reference experiments are plotted according to the
number of transfers performed (Right). In both cases, one transfer is performed every
50 iterations of the algorithm.

but those inside the reachable space show that the algorithm failed to find transferable
controllers in few specific regions. This happens when the performed transfers do not
allow the algorithm to infer transferable controllers. To overcome this issue, different
selection heuristics and transfer frequencies will be considered in future work.

In order to evaluate the hundreds of behaviors contained in the repertoires on the
physical robot, we select 30 controllers in each repertoire of the 5 runs. The selection is
made by splitting the space into 30 areas (Fig. 10) and selecting the controllers with the
best estimated transferability in each area.

Most of these controllers have an actual transferability value lower than 15 cm
(Fig. 11, left), which is consistent with the observations of the transferability map
(Fig. 10, center) and not very large once taken into consideration the SLAM precision,
the size of the robot and the looseness in the joints. Over all the runs, the median ac-
curacy of the controllers is 13.5 cm (Fig. 11, center). Nevertheless, every run presents
outliers, i.e. controllers with a very bad actual transferability value, which originate
from regions that the transferability function does not correctly approximate.

In order to compare the efficiency of our approach to the reference experiment, we
use the “transfers-controllers ratio”, that is the number of performed transfers divided
by the number of produced controllers at the end of the evolutionary process. For
instance, if we reduce the produced behavioral repertoires to the 30 tested controllers,
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Figure 12: Evolution of the number of controllers deemed transferable. At each transfer
(i.e. every 50 iterations), the number of controllers with an estimated transferability
lower than 15cm is pictured for all the 5 runs. The bold black line represents the median
value, the dark region the first and third quartile and the light one the lower and upper
bounds. The variability of the curve is due to the periodic transfers, which update the
transferability function and thus the estimated transferability values.

this ratio is equal to 60/30 = 2 for the TBR-Evolution experiments, since we performed
60 transfers.

The performances of the control experiments depend on the number of performed
transfers (Fig. 11, right) and thus on this ratio. For an equal ratio, the reference ex-
periments are 74% less accurate than TBR-Evolution (13.5 cm vs. 23.4 cm, p-value=
0.12 with the Wilcoxon ranksum test), while the accuracies of both experiments are not
statistically different (13.5 cm vs. 15.6 cm and 10.6 cm, p-value= 0.23 and respectively
0.35) if the reference algorithm uses from 8 to 14 transfers to learn one controller (i.e.
a process 4 to 7 times longer). The reference experiment only takes advantage of its
target specialisation when 20 transfers are performed. With a transfers-controllers ra-
tio equals to 20, the accuracy of the reference controllers outperforms the controllers
generated with the TBR-Evolution algorithm (13.5 cm vs 4.5 cm, p-value= 0.06). Nev-
ertheless, with such a high ratio, the reference experiment only generates 3 controllers,
while our approach generates 30 of them with the same running time (60 transfers and
3000 generations).

We previously only considered the 30 post evaluated controllers, whereas TBR-
Evolution generates several hundreds of them. After 60 transfers, the repertoires con-
tain a median number of 217 controllers that have an estimated transferability lower
than 0.15 m (Fig. 12). The previous results show that more than 50% of the tested
controllers have an actual transferability value lower than 0.15 m and 75% lower than
0.20 m. We can consequently extrapolate that between 100 and 150 controllers are ex-
ploitable in a typical behavioral repertoire. Once taking into consideration all these
controllers, the transfers-controllers ratio of the TBR-Evolution experiments falls be-
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tween 0.4 and 0.6 and thus our approach is about 25 times faster than the reference
experiment, for a similar accuracy.

5 Conclusion and Discussion

To our knowledge, TBR-Evolution is the first algorithm designed to generate a large
number of efficient gaits without requiring to learn each of them separately, or to test
complex controllers for each direction. In addition, our experiments only rely on in-
ternal, embedded measurements, which is critical for autonomy, but not considered in
most previous studies (e.g., Kohl and Stone (2004); Zykov et al. (2004); Chernova and
Veloso (2004); Yosinski et al. (2011); Mahdavi and Bentley (2006)).

We evaluated our method on two experiments, one in simulation and one with a
physical hexapod robot. With these experiments, we showed that, thanks to its ability
to recycle solutions usually wasted by classic evolutionary algorithm, TBR-Evolution
generate behavioral repertoires faster than by evolving each solution separately. We
also showed that the archive management allows it to generate behavioral repertoire
with a significantly higher quality than the Novelty Search algorithm (Lehman and
Stanley, 2011a).

With the TBR-Evolution algorithm, our physical hexapod robot was able to learn
several hundreds of controllers with only 60 transfers of 3 seconds on the robot, which
was achieved in 2.5 hours (including computation time for evolution and the SLAM
algorithm). The repartition of these controllers over all the reachable space has been
autonomously inferred by the algorithm according to the abilities of the robot. Our
experiments also showed that our method is about 25 times faster than learning each
controller separately.

Overall, these experiments show that the TBR-Evolution algorithm is a powerful
method for learning multiple tasks with only several dozens of tests on the physical robot. Fig-
ure 13 and the supplementary video illustrate the resulting ability of the robot to walk
in every direction. In the footsteps of Novelty Search, this new algorithm thus high-
lights that evolutionary robotics can be more than black-box optimization (Doncieux
and Mouret, 2014): evolution can simultaneously optimize in many niches, each of
them corresponding to a different, but high-performing, behavior.

In future work, we plan to investigate the generation of behavioral repertoires in
an environment with obstacles. Selecting the transfers according to the presence of
obstacles might enable the robot to avoid them during the learning process. This ability
is rarely considered in this kind of learning problem: most of the time, the robot is
placed in an empty space or manually replaced in a starting point (for example Kohl
and Stone (2004); Zykov et al. (2004); Berenson et al. (2005), and the present work). This
would be a step forward in autonomous learning in robotics.

Both the Transferability approach and the Novelty Search with Local Competi-
tion do not put any assumption on the type of controller or genotype employed. For
example, the Transferability approach has been used to evolve the parameters of Cen-
tral Pattern Generators (Oliveira et al., 2013) or those of an Artificial Neural Networks
(Koos et al., 2013b), and the Novelty Search algorithm has been employed on plas-
tic artificial neural encoded with NEAT (Risi et al., 2010; Lehman and Stanley, 2011a)
and on graph-based virtual creatures (Lehman and Stanley, 2011b). Similarly, since
the TBR-Evolution is the combination of these two algorithms, it can also be used
with any type of genotype or controller. In future work, we will therefore investigate
more sophisticated genotypes and phenotypes like, for instance, neural networks en-
coded with HyperNEAT (Stanley et al., 2009; Clune et al., 2011; Tarapore and Mouret,
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Figure 13: Illustration of the results. These 5 typical trajectories correspond to con-
trollers obtained with TBR-Evolution as recorded by the SLAM algorithm. The supple-
mentary video shows a few other examples of controllers.
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2014a,b), or oscillators encoded by compositional pattern-producing networks (CPPN),
like SUPGs (Morse et al., 2013; Tarapore and Mouret, 2014a,b). Nevertheless, such ad-
vanced controllers can use feedback to change their behavior according to their sensors,
and understanding how feedback-driven controllers and a repertoire-based approach
can be elegantly combined is an open question.

The TBR-Evolution puts also no assumption on the type of robot and it would
be interesting to see the abilities of the algorithm on more challenging robots like
quadrupedal or bipedal robots, where the stability is more critical than with the hexa-
pod robot.

The ability of TBR-Evolution to autonomously infer the possible actions of the
robot makes this algorithm a relevant tool for developmental robotics (Lungarella et al.,
2003). With our methods, the robot progressively discovers its abilities and then per-
fects them. This process is similar to the “artificial curiosity” algorithms in develop-
mental robotics (Barto et al., 2004; Oudeyer, 2004), which make robots autonomously
discover their abilities by exploring their behavioral space. It will be relevant to study
the links between these approaches and our algorithm, which come from different
branches of artificial intelligence. For example, can we build a behavioral repertoire
thanks to the artificial curiosity? Or, can we see the novelty search aspects of TBR-
Evolution like a curiosity process? Which of these two approaches is less affected by
the curse of dimensionality?
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APPRENDIX

The source-code of our experiments and a supplementary video can be downloaded
from: http://pages.isir.upmc.fr/evorob_db

• Parameters used for the experiments on the virtual robot:

– TBR-Evolution, Novelty Search and NS with Local Competition experiments:

∗ Population size: 100 individuals

∗ Number of generations: 10 000

∗ Mutation rate: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ k:15

– “Nearest” and “Orientation” control experiments:

∗ Population size : 100 individuals

∗ Number of generations : 50 0000 (100 * 500)

∗ Mutation rate : 10% on each parameters

∗ Crossover : disabled

• Parameters used for the experiments on the physical robot:

– TBR-Evolution and the control experiment:
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∗ Population size: 100 individuals

∗ Number of generations: 3 000 generations

∗ Mutation: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ Transfer period: 50 iterations

∗ τ : -0.05 m
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